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Abstract

A dihedral number field is a non-normal quartic field K which possesses a quadratic subfield k. That
is, K = k(Ja) for some integer a of k. Integral bases of these fields were known by Sommer (1907),
but the form in which they were known was of little use for computational purposes. In this paper we
construct integral bases of those dihedral fields with quadratic subfield of the form Q(4d), d * 1
(mod 8), for which only rational quantities need be determined. Although the general theory may
easily be generalized to the case d = 1 (mod 8), the actual determination of integral bases in this case
is left to a later paper.

1980 Mathematics subject classification (Amer. Math. Soc): 12 A 30.

1. Introduction

A dihedral number field K is a non-normal quartic extension of Q which
possesses a quadratic subfield k. That is, K = k(Ja) for some integer a of k.
Integral bases of these fields have been known for some time, indeed the
following result is quoted by Sommer (1907):

"Let

(2) = X'iX'j,

where one of the factors may be absent and lx, l2 are non-negative integers such
that 0 < /x + l2 < 2 and
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352 Walter Ledermann and Carol van der Ploeg [2 J

be prime decompositions of (2) and (a) in k. For n e Z denote by n' the greatest
integer < n/2 and let gl and g2 be the greatest rational integers for which the
congruence

a = v2 (mod \2<a+fl»X^ft + fli))

is solvable for some integer v of k. Let b = (/?j, B2) be relatively prime to Xx and
\ 2 in k and such that

is a principal ideal. Finally, let v be chosen so that

Then Rj = / ^ ( ( P + Ja)/y) and fi2 = B2((t> + Ja)/y) are integers of K and, if
[1, u] is an integral basis of k, the four integers [1, to, Qx, fl2] form an integral
basis of AT."

In this paper we construct integral bases of dihedral number fields with
quadratic subfields Q(/d), where dis a square-free positive (rational) integer such
that d m 1 (mod 8). Our method will be elementary in the following sense: if [1, u]
is an integral basis for k = Q(Jd), then the dihedral number field can be written
K = k{Ja), where a = A + Bu with suitable rational integers A, B. It is our
object to express the integral basis of K in rational terms, involving arithmetic
properties of A, B, and d, and without recourse to/?-adic arguments.

W. E. H. Berwick (1927) has devoted a monograph to the construction of
integral bases. His introductory chapters bear some resemblance to our treatment,
but the bulk of his applications refer to number fields of a different kind. In our
theoretical approach we follow more closely Mann (1955). It goes without saying
that all writers on this topic are decisively influenced by the monumental work of
Hilbert (1897).

2. Definitions and notation

We employ the standard notations n{ ), tr( ) for the absolute norm and trace
of an integer or ideal and nk( ), tr^( ) for the relative norm and trace over k. Ik

and Ik denote the rings of integers of K and k respectively. For a rational prime p
and integer n, pe\\n means that n = 0 (mod pe) but n * 0 (mod pe+l). For
«-tuples of rational integers (rx,...,rn), (su...,sn) the notation [rlt. ..,rn] =
[$! , . . . ,sn] (mod m) means that rt = st (mod m) for / = 1,...,«. This should not
be confused with the highest common factor such as {A, B) below.

Let [1, u] be an integral basis for k = Q(Jd), so that

_ (Jd ild= 2,3 (mod4),

\ ( l + V^)/2 if</= I (mod4) ,

and let K = k{/a) where a = A + Bw, A, B e Z.
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[31 Integral bases of dihedral numberfields. I 353

It is easily shown that we may assume, without loss of generality, that the
highest common factor (A, B) is square-free and that B > 0. The validity of the
first assumption is seen immediately; for if a = m2B where m e Z and B e Ik has
no squared rational divisors, then K = k(-/P) and so we may assume from the
outset that a has no squared divisors. For the second assumption, consider the
conjugate « of « in k. We shall use the notation

_ _ (d \id= 2,3 (mod4),
(2.1) D- - W W - ^ 1 ) / 4 i f r f = 1 ( m o d 4 ) >

(2.2) E = o) + u = {
V ' \ l i f« /= l (mod4)

so that da — A + Bu where B < 0 then a = (A + EB) — Bu> and the coefficient
of w is positive. Thus we may choose our notation for u and w so that B > 0.

Suppose that (a) has prime decomposition

(a) = X^'-^XV^iri*-1-* ' • • • ir/e/+d/Q

in k, where \,|(2), the ir, are distinct prime ideals of degree one, Q is a product of
primes of degree two and e,, •#, = 0 or 1. Since (A, B) is square-free note that if
et > 0 then either ir,2e'|(a) or •n;2e'|(a), where the bar denotes conjugation in k. We
choose our notation for IT, and if, so that ir,2e'|(a). If ir, = if, then e,= 1. Let
"(if,-) = Pi where (d/p,) ¥= - 1 and put C = Tl{=l pf'.

3. Minimal integers

We employ a general method for constructing integral bases of algebraic
numberfields based on a construction of Hilbert (1897); let Q(&) be an arbitrary
numberfield of degree n. Then any integer /? of Q(&) may be written in the form

co + C l0 + c2fl
2 + • • • + C|.fl

f

where c0, c, c,., ( G Z , / > 0 and 0 < / < n - 1. If cl¥= 0 then /? is called an
integer of degree / in d and a minimal integer of degree / in # is one which, of all
integers of degree i in d, has least coefficient of d' in absolute value. It can be
shown that every minimal integer of degree i in & may be written in the form

' =

where c0, cv... ,c,_1; ti G Z and r, > 0 and that any set [Bx, B2,... ,i8n_J forms
an integral basis for Q(&): see Mann (1955). We therefore seek minimal integers
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of degrees one, two and three and in Ja and for this the following observation is

of fundamental importance:

If fie K then $&IK if and only ifnk(fi), trfe(j8) e Ik.

4. Minimal integers of degree one

We seek the largest positive / e Z for which B = (c0 + }/a)/t is an integer for
some c0 e Z. Since trk(fi) = 2cQ/t and

nk(fi) = {cl - a)//2 = (cl - A)/t2 -(B/t2)*,

& is an integer if and only if the following congruences are solvable:

(4.1) 2c0

(4.2) ,4=

(4.3) 5 =

Let tl be the largest positive value of t for which (4.1)-(4.3) are solvable and
denote by fi1 the corresponding minimal integer. If tx = 0 (mod p) for some odd
prime p then by (4.1) c0 = 0 (mod p) and so A = B = 0 (mod p2) by (4.2) and
(4.3). This is impossible since (A, B) is square-free and so tx = 2X. Clearly x < 1,
for otherwise (A, B) = 0 (mod4). Suppose x = 1: Since (A, B) * 0 (mod4) c0

must be odd and (4.1)-(4.3) are solvable provided that [A, B] = [1,0] (mod4).
Thus we have

LEMMA 1. A minimal integer of degree one in ]/a is given by

_ / (1 + 4^)/2 if [A, B) s [1,0] (mod 4),
Pi — \ /—

I a otherwise.

5. Minimal integers of degree two

The following result provides a lower bound for the denominator of a minimal
integer:

LEMMA 2. Let fit = (c0 + q d + • • • + c^fi''1 + # ' )A be a minimal integer.
Ify = (d0 + dxd + • • • + d^fl'1 + # ' ) / ' i s an integer, where d0, d1,...,di_1,
t G Z and t > 0 then tt = 0 (mod /).
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P R O O F . Let m = l.c.m.(/, / ,) and pu t m — st = rtt where ( r , s) = 1. Let u,
» e Z b e such that ur + vs = 1. Then

M0,. + vy = (e0 + efi + • • • + e , ^ ' " 1 + &')/m

is an integer. Since /?, is minimal /,- > m, so we must have r = 1 and /, = st.
Since « = (—A + a)/B is an integer of degree two in y^ , Lemma 1 shows that

every minimal integer of degree two in ya takes the form

B = ( c o + c^Ja + a)/nB

for some positive integer n. Since

and nk(B) = ((c0 + yl)2 - c\A + DB2)/n2B2 + [(2(c0 + A) - c2 +
the numbe r ft is an integer if and only if the following four congruences are
solvable for some c0 , cx, n e Z :

(5.1)

(5.2)

(5.3)

(5.4) (

2(

2(c0 + ,

c0 + A)2

2 = O(mod«) ,

co +A) = 0 (mod nB),

i) - c 2 + £B = O(mod«

- c\A + DB2 s 0 (mod;

2B),

n2B2

We seek the largest positive value of n for which the congruences (5.1) and (5.4)
are solvable. By (5.1) n = 1 or 2. Suppose n = 2. By (5.2) c0 + y4 = 0 (mod B)
and (5.3) and (5.4) yield c\ = 0 (mod B) and q2 4̂ = 0 (mod B2). Putting c2 = /5
gives L4 = 0 (mod 5) . Let w = (A, B) and put v4 = mAx, B — mBl where
(Aly Bx) = 1. Then M j s O (mod 5X) and so / = 0 (mod Bx), say / = ^ B ^ Thus
c2 = /j/wB2 and this implies that /x s 0 (mod m) because m is square-free. Hence
q s O (mod B). Now putting c0 + A = xB and cx = yB in (5.3) and (5.4) yields

(5.5) 2x-.y2£ + £: = 0(

(5.6) x2 -y2A + D = 0(mod4).

We seek conditions on A and B for (5.5) and (5.6) to be solvable. Note that
they are not solvable for evenj; for if y is even they become

E = 2x (mod4), D = -x2 (mod4)

but when d = 1 (mod 4) then E = 1 and the first is not satisfied and when d * 1
(mod 4) then E = 0 so that x must be even and the second is not satisfied. Thus y
is odd and (5.5) and (5.6) are solvable provided that

[A, B] = [D + x2, E + 2x] (mod4).

Conversely if A, B satisfy the above then

B = ( ( - A + xB) + yByfa + a)/2B
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is an integer. Note that x and y need only be determined modulo 2; for if
x = x0 + IX andy = y0 + 2Y where x0 = 1 or 0 andy0 = 1, then

0= ((-A + x0B) + y0B^ + a)/IB + (X + Y&).

But X + Y-/a G IK and so we may assume that x = 1 or 0 and y = 1, without
loss of generality. Thus if [A, B] = [D, E] (mod4) then (5.1)-(5.4) are solvable
for n = 2, c0 = -A, Cj = £ and so ( - / 4 + JSV'a + a ) / 2 B = (w + \fa)/2 is a
minimal integer of degree two in Ja; and if [A, B] = [D + 1, E + 2] (mod4)
then (5.1)-(5.4) are solvable for n = 2, c0 = B — A, cl = B and so

((B -A) + Bifc + <x)/2B = (1 + to + Va )/2

is a minimal integer of degree two in v ^ . Finally, if [A, B] * [D, E] or [D + 1, E
+ 2] (mod 4) then (5.1)-(5.4) are not solvable for n = 2, but are clearly solvable
for n = 1 because « = (—A + a)/B is an integer, which is minimal in this case.
We summarize our results in the following:

LEMMA 3. A minimal integer of degree two in Ja is given by

fw + v^)/2 if [A, B] s [D,E] (mod4),

l + « + Ja)/2 if [A, B] = [D + 1, E + 2] (mod4),

co otherwise.

6. Minimal integers of degree three

We use Lemma 2 to obtain a lower bound for the denominator of a minimal
integer of degree three, using the following result:

THEOREM 1. (i) There exist rational integers r, s, u, v such that

(6.1) A + rB = sC,

(6.2) D - r(r - E) = uC,

(6.3) (2r - E)s + uB = vC.

(ii) The number -q = (-A + (r - E)B + a)Ja/BC is an integer ofK.

PROOF, (i) Let pe\\C where e > 0. If d = 0 (mod p) then e = 1 and so we may
put

(rD
2 (mod pe) if d * 1 (mod 4),

(6.4) d=[
I (2r - 1) (mod4^e) if </ s 1 (mod4)
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for some rp e Z. (Clearly rp = 0 (mod p) when d * 1 (mod 4) and 2rp- \ = 0
(mod/?) when d = 1 (mod4).) Since in this case p\(a) we have (A,B)=0
(mod /?) and so we may straight away put

(6.5) A + rpB = 0(modpe).

We show that (6.4) and (6.5) hold for some rp also when d * 0 (mod/?). So
henceforth suppose that d * 0 (mod /?). Then d is a quadratic residue modulo
every power of p and so (6.4) is immediate. Substituting for d in (6.4) using (2.1)
and (2.2) yields

(6.6) D = rp{rp-E) (mod p<).

Now let (/?) = irif in k, where the notation for ir and ii is chosen so that <n2e\(a).
Factorizing (6.6) in k gives

(rp — oi)(rp — « ) = 0

and so either rp — w = 0 (mod IT17) or /• — w = 0 (mod ii^), since neither factor
has a rational divisor. But rp - u> = 0 (mod iie) if and only i f ( £ - / - / ) ) - w = 0
(mod iie). Moreover rp satisfies (6.6) if and only if (E — rp) does, and rp * (E - rp)
(mod />) so we may choose our notation for rp and (E — rp) so that

(6.7) rp = w(modir f)

without loss of generality. We now consider two separate cases:
(a) ( A 5 ) * 0(mod/>):
Since y4 + Bu = 0 (mod n2 f) , (6.7) yields A + rpB = 0 (mod irf). But A + rpB

e Z and so (6.5) holds.
(b)(A,B) = 0(mod/>):
Put A = y4j^ and B = B1p where (Ax, Bx) * 0 (mod/?) because (A, B) is

square-free. Then AY + fit<o = 0 (modir2*"1) and, since 2e — 1 > e, (6.7) yields
zlj + /-^Bj = 0 (mod ire). But y4x + rpB1 G Z and so Ax + z^^! = 0 (mod pe).
Thus

(6.8) A + rpB = 0 (mod pe+1)

and (6.5) follows a fortiori.
Now for a prime pj\C let A^ = n/=1;(/#7)/?f; + 1. Since (Np , pj) = 1 there exists

a rational integer Np such that A ĵV^ = 1 (mod pj1 + l). If we now put

r = E rpNpN'p
p\c

then

(6.9) r = r p ( m o d / ; e + 1 )

and (6.5) yields A + rB = 0 (mod />e). This holds for all primes/? such
and so we have proved (6.1). Similarly (6.2) follows from (6.6).
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To prove (6.3) note that

(6.10) n(a) = A2 + EAB - DB2

= (A - rB){A + rB) + EB(A + rB) - uB2C

by (6.2), so by (6.1)

(6.11) n(a) = s2C2 -((2r- E)s + uB)BC.

If d = 0 (mod p) then B = 2r — E = 0 (mod p) and since e = 1 we may put

(6.12) (2r-E)s + uB = 0 (mod pe).

If d * 0 (mod /i)we consider cases (a) and (b) above separately:
(a) (A, B)* 0(modp):
By (6.1)/? + B and sope\\BC. But by definition of C we have

n(o) = C2 = 0 (mod pe)

and so by (6.11), (6.12) holds.
(b)(A,B) = 0(mod/>):
By (6.8) and the fact that (A, B) is square-free we have/>||5, and so pe+1\\BC.

Further, by (6.8) and (6.9), A + rB = 0 (mod/?**1) and so (6.1) yields s = 0
(mod p). Thus in this case

and so by (6.11), (6.12) holds.
Thus (6.12) holds for all primes/? such that/»e||C and this proves (6.3). Notice

that (6.3) and (6.11) yield the useful identity

(6.13) «(«) = (s2-vB)C2.

(ii) We show that nk(t]) and trA(Tj) are integers of k: since a = A + Bu we may
write Tj = (w + r — E)Ja /C from which it follows that tr/t(7j) = 0. A short
calculation using (6.1)-(6.3) yields

(6.14) nk(-q) = -(us +(r - E)v + vu)

and clearly nk(-q) e Ik.

We use the integer TJ of this theorem to provide a lower bound for the
denominator of a minimal integer of degree three in \[a , that is, an integer of the
form B = (c0 + c1/a + c2a + aja)/t where c0, cv c2 and / e Z and / > 0 is
maximal. In the usual manner, computation of the relative norm and trace yields
four congruences, the simultaneous solvability of which is a necessary and
sufficient condition for the number B to be integral:

(6.15) 2flc2 = 0 (mod0 ,

(6.16) 2(co + Ac2) = 0(modO,
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(6.17) ( c 0 + Ac2f - A(Cl + A)2 - B2DF = 0 ( m o d t2),

(6.18) B(2c2(c0 + Ac2)-(3A + cx)(A + e t ) - B(EF + BD)) = 0 ( m o d t2)

where F = 3A + EB + 2q - cj.
In the consideration of the solution of these congruences we make use of the

following result:

LEMMA 4. If a, b, c e Z and (a, b) is square-free, and if

(c - bfb = 0(moda2) and (c - b)(c - 3b) = 0 (mod a),

then c = b(mod a).

PROOF. Let (a, b) = m so that a = ma1 and b = mb1 where (a1, bx) = 1. Our
first supposition becomes (c - b)2bl s 0 (mod aj), which yields c = b (mod aj).
Putting c — b — llal yields /fij = 0 (mod m), but / j 2 ^ s 0 (mod m) by our
second assumption. Since m is square-free and (al5 fej) = 1 we must have lx = 0
(mod m). Putting /x = ml gives c = fc + la as required.

THEOREM 2. Every minimal integer of degree three in ya has denominator 2"BC
where a is a non-negative rational integer.

PROOF. Applying Lemma 2 to TJ shows that the denominator of such an integer
is of the form nBC where n is a non-negative rational integer. Suppose there exists
an odd prime q for which n = 0 (mod q). Then there exist c0, c1; c2 ^ Z which
satisfy (6.15)-(6.18) with t = qBC (and so also with t = B and t = BC). We
consider two separate cases according to the parity of B:

(a) B odd: Considering (6.16)-(6.18) with t = B yields

A(cx + A)2 = 0 (mod B2) and (3A + Cl){A + cx) = 0 (mod B)

and s o c , s — ̂ 4 (mod B) by Lemma 4. Put

(6.19) q = IB - A,

Considering (6.15)-(6.18) with / = qBC, we first note that

c2 = (

by (6.15) and so F s A + (21 + E)B (mod q2C2), and that

c0 + Ac2 s 0 (mod #5C)

by (6.16). Thus (6.17) and (6.18) become

(6.20) A(l2 + D) + BD(2l + E) = 0 (mod q2C2),

(6.21) A(2l + E) + B(D+(1+ E)2) = 0 (modq2C2).
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(b) even: Considering (6.16)-(6.18) with t = B = 2B0 and using Lemma 4
yields cl = —A (mod Bo) and so we may put

q = 1OBO- A.

Considering (6.15)-(6.18) with / = qBC, we first note that

c2 = O(mod^C)

as before, so F = A + (/0 + E)B (mod q2C2), and that

co + Ac2 = 0 (mod qB0C0)

by (6.16). Now (6.17) and (6.18) become

A(ll + AD) + 8B0D(l0 + E) = 0 (mod q2C2),

2A(l0 + E) + B0(4D+(l0 + 2E)2) = 0 (mod q2C2).

Now define the rational integer 2' such that 22' = 1 (mod q2C2) and put / = 270.
Then the above congruences are transformed into (6.20) and (6.21) respectively
when the first is multiplied by (2')2 and the second by 2'. We therefore proceed
from (6.20) and (6.21) in the general case.

Addition of suitable multiples of these yields

A(l(l + E) - D)2 s 0 (mod q2C2),

B(l(l + E) - D)2 = 0 (mod q2C2)

and so D = /(/ + E) (mod qC) because {A, B) is square-free. Putting D =
1(1+ E) + wqC in (6.20) and (6.21) gives

(6.22) (21 + E)(A + ( / + E)B)+(A + (21 + E)B)wqC = 0 (modq2C2),

(6.23) (21+ E)(A +(l+ E)B) + BwqC = 0 (mod q2C2).

We show that there exists no odd prime q for which (6.22) and (6.23) are
solvable. Since

(6-24) < / > . _ . ,_. -
I(mod4),

k AD + 1 = (21 + I)2 + AwqC if d = 1 (mod 4)

either d = 0 (mod q) or (d/q) — 1; we consider these two cases separately.
(i) d = 0 (mod ?). Putting (6.23) in (6.22) gives (A + (I + E)B)w = 0 (mod q),

that is

(6.25) A +(t+ E)B = 0(modq)

because w ^ 0 (mod q) as J is square-free. But 2/ + £ = 0 (mod q) by assump-
tion and so (6.23) yields 5 = 0 (mod q). Thus by (6.25) (A, B) = 0 (mod #), that
is, q\(a). Hence 7r2|(a) where (q) = it2 and so C = 0 (mod g), which is impossible
since d is square-free.
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(ii) (d/q) = 1. Putting D = 1(1 + E) + wqC in (6.10) gives

(6.26) n(a) = (A - IB)(A + (/ + E)B) - B2wqC.

Since now 2/ + E * 0 (mod q), (6.25) follows from (6.23). Putting A + (I + E)B
= xq in (6.26) yields

n(a) = (x(A - IB) - wB2C)q.

But since by (6.23), (21 + E)x + BCw s= 0 (mod q), we have

x(A - IB) - wB2C = x(A +(/ + E)B) = O(mod^)
and so n(a) = 0 (mod q2). Thus either C = 0 (mod q) or (v4, 5 ) = 0 (mod q).
But if (A, B) = 0 (mod <?) then by (6.23) .4 + (/ + £ ) B = 0 (mod q2) and (6.26)
yields n(d) = 0 (mod q3): thus C = 0 (mod q) in any case.

Let qe\\C where e > 0. Then by (6.23) A + (I + E)B = yqe+l for some>> <= Z.
Putting C = qeCx in (6.26), where ( Q , 4) = 1, gives

n(a) = (y(A - IB) - wB2Cx)q
e+l.

But since by (6.23), (21 + E)y + BCxw = 0 (mod qe+l) we have

y(A - IB)-WB2C1 =y(A +(l+E)B) = 0(modqe+1)
and so n(a) = 0 (mod#2<<?+1)). Since qe\\C we must have (A, B) = 0 (mo&q).
Now by (6.23) A + (I + E)B = zqe+2 for some z G Z and (6.26) yields

n(a) = (z(A1-lB1)-wB2Cl)q
e+3

where A = qAx a n d £ = qBv But since by (6.23) (2/ + E)z + fijQw = 0(mod qe)
we have z(Al - IBX) - wB2Cl = z(Ax + (I + E)B1) = 0 (mod qe) and so n(a)
= 0 (mod q2e+i) which is impossible since it would imply that C = 0 (mod qe+l).

Thus there exists no odd prime q such that n = 0 (mod g) and Theorem 2 is
proved.

7. Determination of minimal integers of degree three

We use the results of Section 6 to determine minimal integers of degree three in
\fa in the cases (i) d = 2,3 (mod 4); (ii) d = 5 (mod 8). So from henceforth we
shall assume that d * 1 (mod 8).

THEOREM 3. Suppose there exists an integer

B = (co+ cja + c2a + a\[a)/2aBC

where a e Z and a > 0. 7/ie/i

(i) 77im? exist h, l,m e Z SHC// tfiaf

(7.1) co = 2a~1C(hB - mA),

(7.2) cx = lB-A,

(7.3) c2 = 2a
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(ii) There exist x, y, z e Z such that

(7.4) A +(l + E)B = 2"-1xC,

(7.5) D - / ( / + £ ) = 2"-lyC,

(7.6) (21+ E)x+yB = 2a-1zC.

(iii) Without loss of generality we may choose h and m modulo 2. Finally the
rational integers defined above satisfy

(7.7) h2 + Dm2 - Iz - xy = 0 (mod4),

(7.8) 2mh + Em2 - z = 0 (mod4).

PROOF. The assumption that /? be integral is equivalent to the simultaneous
solvability of (6.15)-(6.18) with t = 2aBC (a > 0).

(i) (7.1) and (7.3) follow immediately from (6.15) and (6.16). Putting t = IB in
(6.16)-(6.18) and using Lemma 4 yields (7.2).

(ii) Substituting (7.1)-(7.3) in (6.17) and (6.18) yields

(7.9) 2 2 «^ X >C 2 ( /J 2 + Dm2) - A(l2 + D) - BD(2l + E) s 0 (mod22aC2),

(7.10) 22<a-1)C2(2m/i + Em2) - A(2l + E)

-B((l + E)2 + D) = 0 (mod22aC2)

and so

A(l2 + D)+ BD(2l + E) = 0 (modl2*"-1^2)
and

A(2l + E) + B((l + E)2 + D) = 0 (mod22<a i'C2).

Addition of suitable multiples of these yields

A(l(l + E) - D)2 = 0 (mod22(a-1)C2)
and

B(l(l + E) - D)2 = 0 (mod22(a-1»C2)

so (7.5) follows from the fact that {A, B) is square-free. Substituting (7.5) in (7.9)
and (7.10) yields

(7.11) 22<a-1)C2(/i2 + Dm1) - 1(21 + E)(A +(l + E)B)

-2°-lCy(A +(21 + E)B) = 0 (mod22aC2)

(7.12) 22("-l)C2(2mh + Em2) -(21 + E)(A +(l + E)B)

-2a~1CyB = 0 (mod22"C2).
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We claim that

(7.13) A +(l + E)B = 0(mod2"-1).

If d = 1 (mod 4) then 2/ + E is odd and (7.13) follows immediately from (7.12). If
d = 2,3 (mod 4) we note that (7.12) yields

- ( 2 / + E)(A + (/ + E)B) = 2a-1Cy5(mod22(a"1)C2)

which gives, on substitution in (7.11)

y(A + ( / + E)B) = 0 (mod2a~1).

If y is odd then (7.13) is immediate. Suppose then that>> is even. Since D(= d) is
not a quadratic residue mod 4, (7.5) implies that a = 1 and so (7.13) is trivial. We
may now put A + (I + E)B = 212"1JC0 in (7.12) and this yields (2/ + E)x0 +
yBC = 0 (mod2a"1C2), say

(7.14) (2 + E)xo+yBC = z2a'lC2.

Now by (6.10), (7.5) and (7.14) we have

n(a) = (A - IB)(A +(l + E)B) - 2a~lyB2C

But n(a) = 0 (mod C2) so 2a~lx0 = 0 (mod C) and we may put x0 = xC because
C is odd. This yields (7.4) and substitution in (7.14) gives (7.6).

REMARK. Substitution for x0 in the above formula for n(a) yields the useful
identity

(7.15) A2 - DB2 + EAB = 22(fl-1)C2(x2 - zB).

(iii) Substitution of (7.4) and (7.6) in (7.11) and (7.12) gives (7.7) and (7.8)
respectively. To show that h and m need only be determined modulo 2, write
m = m0 + 2M and h = h0 + 2H where M, H e Z and m0, h0 = 0 or 1. Then
putting (7.1) and (7.3) in the expression for B gives, after some calculation,

0 = (2a-lBC(h0 + wo«)+(c1 + a)ifc)/2aBC +(H + Met).

Since ft is an integer if and only if B — (H + Mu) is an integer, we may assume
from the outset that m = m0 and h = h0.

COROLLARY. If the number B of Theorem 3 is an integer then

0 < a < 2 when d = 2,3 (mod 4)

and

0 < a < 1 when d = 5 (mod8).
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PROOF. When d = 2,3 (mod4) then D(= d) is not a quadratic residue modulo
4 and so it follows from (7.5) that a < 2. When d = 5 (mod 8) substituting (2.1) in
(7.5) yields

«/= ( 2 / + l ) 2 + 2 f l +VC

from which it follows immediately that a < 1 because */ is not a quadratic residue
(mod 8).

LEMMA 5. The value of the integer r in Theorem 1 may be chosen modulo 4
without loss of generality.

PROOF. If (r, s, u, v) is a solution of (6.1)-(6.3) then so is

(/• + nC, s - nC,u +(2r - E)n + n2C, v - 2ns + 2n2B)

for any n e Z. Since (r, /• + C, r + 2C, r + 3C) is a complete set of residues
modulo 4, we may choose a solution to (6.1)-(6.3) so that r takes any value
modulo 4, without loss of generality.

We are now able to determine minimal integers of degree three in v^ according
to the different values of A and B. We consider the two cases of the beginning of
this section separately:

CASE(i) d = 2,3 (mod 4).
It turns out that the maximum value of a is 0,1,2 according as (a) B is odd, (b)

B is even and A is odd, (c) A and B are both even, respectively. We consider these
three cases separately:

(a) B odd. Assume there exists an integer B with denominator 2BC. Then
(7.1)-(7.8) hold with a = 1, and by (7.15)

A2 - d s x2 - zB (mod4)

because C is odd. Using the above it is easy to verify that (7.4)-(7.8) cannot hold,
in fact, for any values of A and d. For example, when A is odd and d = 2 (mod 4)
then the above yields x2 - zB = 3 (mod4). Since by (7.8) we must have z = 0
(mod 2), this yields x = 1 (mod 2) and z = 2 (mod 4). Thus by (7.8), m = h = 1,
so by (7.7) y = 1 (mod 2). But this contradicts (7.6) because B is odd. A similar
argument holds when A is odd and d = 3 (mod 4), and when A is even. Thus there
are no integers of degree three in -(a with denominator 2BC and therefore the
integer TJ of Theorem 1 is minimal in this case.

(b) A odd, B even. Since (7.4) is clearly not solvable for a > 2, the following
Lemma provides minimal integers of degree three in this case:
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LEMMA 6. Suppose that A is odd and B is even, and let the integer TJ be defined by
Theorem l(ii), where the rational integer r is chosen so that r = d (mod 2). Then

(i) (4d + i))/2 is an integer when d = 2 (mod 4),
(ii) (1 + 4d + 7))/2 is an integer when d = 3 (mod 4).

PROOF, (i) trk((/d + TJ)/2) = 0 since trfc(r/) = 0, and using (6.14) we get
nk{(Jd + TJ) /2 ) = (d - (us + rv + vJd))/4. Thus (Jd + TJ)/2 is an integer if
and only if us = d (mod 4) and v = 0 (mod 4). But by Lemma 5 we may choose r
to be even, without loss of generality, and so (6.2) yields u = 2 (mod 4). Moreover
(6.1) yields s = 1 (mod 2) as A is odd, and so us = 2 (mod 4). Finally (6.3) gives
v = 0 (mod 4) and so {Jd + TJ)/2 is indeed an integer provided that d = 2
(mod 4).

(ii) tr t((l + {d + TJ) /2) = 1 + Jd e Ik, and by (6.14) nk((l + {d + TJ) /2) =

(1 + d - us — rv + (2 - v)\[d)/4. Thus (1 + {d + TJ) /2 is an integer if and
only ifus = l + d + 2 r (mod 4) and v = 2 (mod 4). But if we now choose r to be
odd (6.2) again yields u = 2 (mod 4), hence us = 2 (mod 4) as 5 is odd by (6.1).
Moreover (6.3) gives v = 2 (mod 4) and since when d = 3 (mod 4) (1 + d + 2r)
= 2 (mod 4), (1 + yfd + ij)/2 is indeed an integer in this case.

(c) A and B both even. If we still choose the integer r of Theorem 1 so that r = d
(mod 2) then the number ij/2 is an integer in this case. For tryt(i)/2) = 0 and
nk(rf/2) = -(us + vr + v/d)/4 e Ik if and only if us = v = 0 (mod4). But
when A = B = 0 (mod 2), (6.1) yields 5 = 0 (mod 2) and when r = d (mod 2),
(6.2) yields u = 0 (mod 2), and (6.3) yields v = 0 (mod 4). Now TJ/2 is an integer
of degree three in Jot with denominator 2BC, which we now show to be minimal
unless

(7.16) [A, B] = [2(d2 + l),2d] (mod4).

Suppose there exists an integer of degree three in V^ with denominator ABC, so
that (7.1)-(7.8) hold for a = 2: by (7.4) we have A + IB = 2x (mod 4) and by
(7.5) we have y = \ (mod 2) and I = d (mod 2) and so by (7.6), 2dx + yB = 0
(mod 4) because 2 = 0 (mod 2) by (7.8). If x = 0 (mod 2) then the above imply
that [A, B] = [0,0] (mod4) which is impossible. Hence x = 1 (mod2) and [A, B]
= [2(d2 + I),2rf](mod4).

Suppose now that (7.16) holds, and consider two separate cases according to
the value of d modulo 4:

I d = 2 (mod4). By (7.16), [A, B, d] = [2,0,2] (mod4). From the above we
have I = z = 0 (mod 2) and x = y = 1 (mod 2). Thus by (7.7) h = 1. We consider
the solution of (7.4)-(7.8) in the two cases: m = 0, h = 1; m = h = 1. The
calculations are tedious but it may be verified that a solution exists if and only if
A + B = d (mod 8), so that if [A, B,d]s [2,0,2] (mod 4) but A + B * d (mod 8),
the integer TJ/2 is again minimal.
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LEMMA 7. Suppose that [A, B, d] = [2,0,2] (mod 4) and A + B = d (mod 8). Let
the integer TJ be defined by Theorem l(iii) where the integer r is chosen so that r = 0
(mod 4). Then

(i) (2 + i))/4 is and integer when B = 0 (mod 8),
(ii) (2(1 + \fd) + TJ)/4 is an integer when B = 4 (mod 8).

PROOF. Since B = 0 (mod 4) we have A = sC (mod 16) by (6.2) and D = uC
(mod 16) by (6.1), on choosing r = 0 (mod 4), which is possible by Lemma 5.
Hence usC2 = Ad (mod 16). Since * is even (6.3) yields vC = uB (mod 16) and we
have

([4,0] (mod 16) wheni?S(mod8),
K ' [US'Vi \ [12,8] (mod 16) when B = 4 (mod8).

(i) trt((2 + ij)/4) = l e / 4 and by (6.14)

"*((2 + T?)/4) = (4 -(us + rv + v\fd))/\6

and so by (7.17), (2 + i)) /4 is an integer when B = 0 (mod 8).
(ii) tr*((2(l + v/rf) + TJ ) /4 ) = 1 + Jd <= / t and by (6.14)

«*((2(1 + )/d) + i j ) /4) = (4(1 + < / ) - i » - n ; + ( 8 -

and by (7.17), (2(1 + v£) + i?)/4 is an integer when 5 = 4 (mod 8).
II rfs3 (mod4). By (7.16), [A,B,d]= [0,2,3] (mod4). From the general

argument above we have z = 0 (mod 2) and / s * = _y = 1 (mod 2). Thus by (7.7),
m & h (mod 2) and the solution of (7.4)-(7.8) need only be considered in the two
cases: m = 0, h = 1; m = 1, h = 0. It turns out that a solution exists if and only
if A — 1 = d (mod 8): a verification of this is tedious and therefore omitted. Thus
if [A, B, d] = [0,2,3] (mod4) and A - 1 * d (mod 8) the integer TJ/2 is minimal,
and when A — 1 = d (mod 8) we have the following result:

LEMMA 8. Suppose that [A, B, d] = [0,2,3] (mod 4) and A - 1 = d (mod 8). L^?
the integer t] be defined by Theorem l(ii) where the integer r is chosen so that r = 1
(mod 4). Then

(i) (2 + i j ) /4 is an integer when B = 6 (mod 8),
(ii) (2ya + T J ) / 4 is an integer when B = 1 (mod 8).

PROOF. By Lemma 5 we may choose r = 1 (mod 4) without loss of generality.
This gives A + B = sC (mod 8) by (6.1) and D - 1 = uC (mod 8) by (6.2). Hence
usC2 = (A + BXD - 1) (mod 16), that is,

' 4 (mod 16) when B = 6 (mod8),
us = {

12 (mod 16) when B = 2 (mod 8).
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Moreover, since u = s (mod 8) when B = 6 (mod 8) and u & s (mod 8) when
B = 2 (mod 8) we have, by (6.3), v = 0 (mod 16).

(i) The integrability of (2 + TJ)/4 is evident from the proof of Lemma 7(i): for
^((2 + 7j)/4) e Ik since [us, v] = [4,0] (mod 16) when B = 6 (mod 8).

(ii) tTk((2}/d + T?)/4) = 4d e Ik and by (6.14)

nk((2\/d + TJ)/4) = (4d - us - rv - v\/d)/16 e Ik

when [us,v] = [12,0] (mod 16), that is, when 5 = 2 (mod 8).
Since there are no integers of degree three in Ja with denominator 2"BC, a > 2

(Theorem 3, corollary), the integers of Lemmas 7 and 8 are minimal. Thus we
have completed our search for minimal integers of degree three in 4a in the case
d = 2,3 (mod 4). We summarize our results in the following:

LEMMA 9. Suppose that d = 2,3 (mod4) and let TJ = (r + 4d)4a /C where the
rational integer r satisfies Theorem 1 and is chosen so that r = d + 2 (mod 4). Then
a minimal integer of degree three in Ja is given by

Tj when 5 = 1 (mod 2),

(</d + TJ)/2 when [A, B] = [1,0] (mod2) andd = 2 (mod4),

(1 + 4d + TJ)/2 when [A, B] = [1,0] (mod2) andd=3 (mod4),

(2(1 + v^) + t|)/4 when[A,B,d} = [2,4,6] or [6,4,2] (mod8),

(2yfd + T J ) / 4 when[A,B, d] = [0,2,7] or [4,2,3] (mod 8),

(2 + i,)/4 when [A, B,d] =[2,0,2] or [6,0,6],

or [0,6,7] or [4,6,3] (mod 8),
TJ/2 otherwise.

CASE (ii) <f = 5 (mod 8).

Suppose that there exists an integer of degree three in y^ with denominator
2aBC, a > 0. Then, by Theorem 3, (7.1)-(7.8) are solvable for a = 1 (but not for
a > 1, by the corollary). We consider the solution for four separate cases
according as m, h = 0 or 1:

(a) m = h = 0. There is no solution of (7.4)-(7.8). For by (7.8), z = 0 (mod 4)
and so (7.7) yields xy = 0 (mod 4). But D is odd and so y is also odd, by (7.5).
Hence x = 0 (mod 4) and (7.6) yields B = 0 (mod 4). Now by (7.4), A = 0
(mod 4), which is impossible.

(b) m = 1, A = 0. By (7.8), z = l (mod 4) and so (7.7) becomes D =
I + xy (mod 4). This gives a solution of (7.4)-(7.6) for [A, B] modulo 4 as set out
below:
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/

/

= 0

= 1

(mod 2)

(mod 2)

D = 1

[1

[2

(mod 4)

,0]

,3]

D = 3 (mod 4)

[1,0]

[0,3]

Now ii[A, B] is given in the above we have the following

LEMMA 10. Suppose that d = 5 (mod8) and that [A, B] = [1,0] or [D + 1,3]
(mod 4). Let the integer r\ be defined by Theorem 1(») where the rational integer r is
chosen so that r = A (mod 4). Then (w + TJ)/2 is an algebraic integer.

PROOF. That r may be chosen modulo 4 is clear by Lemma 5. Now

e lk if v = 1 (mod4)

and by (6.14)

nk((u + T J ) / 2 ) = (D- us - ( r - l)v + ( 1 - v)

and us = D - r + 1 (mod 4). It may easily be verified that v and us take the
above values when r = A (mod4), D is odd and [A, B] = [1,0] or [D + 1,3]
(mod 4). For example, if [A, B, D] = [2,3,1] (mod4) then by (6.1) s = 0 (mod4)
and s o u s s O (mod 4). But D — r + l = l — 2 + 1 = 0 (mod 4). Moreover mul-
tiplying (6.3) by C and using (6.2) yields

v = uBC = 3B = 1 (mod4).
Similar arguments hold for the other values of A, B and D above, and the lemma
is proved.

When [A, B] * [1,0] or [D + 1,3] (mod 4), (7.4)-(7.6) are not solvable and so
there exists no integer of degree three in Ja with denominator 2BC where the
coefficients c0 and c2 are given by (7.1) and (7.3) with m = 1 and h = 0.

(c) m - 0, h = 1. By (7.8), z = 0 (mod 4) and by (7.7), xy = 1 (mod 4). This
gives the unique solution of (7.4)-(7.8) for [A, B] modulo 4, according to the
different values of D and /, as set out below:

/ =

/ =

0

1

(mod 2)

(mod 2)

D = 1

[2

[1

(mod 4)

,3]

,1]

D = 3 (mod 4)

[0,3]

[3,1]

When [A, B]*[D + 1,3] or [D, 1] (mod4) there exists no integer of degree
three in Ja. with denominator 2BC where the coefficients c0 and c2 are given by
(7.1) and (7.3) with m = 0 and h = 1. Otherwise, we have the following:

LEMMA 11. Suppose that d = 5 (mod 8) and that [A, B] = [D,l] or [D + 1,3]
(mod 4). Let the integer i) be defined by Theorem l(ii) where the rational integer r is
chosen so that r * A (mod 2). Then (1 + TJ)/2 is an algebraic integer.
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PROOF. That the parity of r may be chosen without loss of generality, is clear by
Lemma 5. Now tr*((l + T) ) /2 ) = 1 e Ik and by (6.14)

" * ( ( ! + v)/2) = ( 1 - us -(r-l)v- vu)/4 <= Ik

if and only if v = 0 (mod 4) and us = 1 (mod 4). It is easily verified that v and us
take the values when the conditions of the lemma are satisfied. For example,
when [A, B] = [D,l] (mod4) we have, by (6.1), sC = D + r (mod 4) and, by
(6.2), uC = D + r (mod4), as r is even. Thus usC2 = (D + r)2 = 1 (mod4), as D
is odd, so us = 1 (mod 4) because C is odd. Moreover, (6.3) yields, on multiplica-
tion by C,

v = uC — sC = 0 (mod 4).

A similar argument holds when [A, B] = [D + 1,3] (mod4) and the lemma is
proved.

(d) m = h = 1. By (7.8), z = \ (mod4) and by (7.7) l + D + l-xy = 0
(mod4). This gives the unique solution of (7.4)-(7.8) for [A, B] (mod4) as set out
below:

/ =

1 =

o
1

(mod 2)

(mod 2)

D = 1

[1

[1

(mod 4)

,1]

,0]

D = 3 (mod 4)

[3,1]

[1,0]

When [A, B] * [D, 1] or [1,0] (mod4) there exists no integer of degree three in
{a with denominator 2BC and coefficients c0 and c2 given by (7.1) and (7.3) with
m = h = 1. But when [A, B] = [D,l] or [1,0] (mod 4) we have already found
integers of degree three in with denominator 2BC. This therefore completes our
search for minimal integers of degree three in 4a, and our results are set out in
the following:

LEMMA 12. Suppose that d = 5 (mod8) and let TJ = (r - 1 + u){a /C, where
the rational integer r satisfies Theorem 1 and so may be chosen modulo 4 without loss
of generality. Then a minimal integer of degree three in \/a is given by:

(1 + TJ)/2 where r& A (mod2),

if[A,B] = [Z>, 1] or [Z> +1,3] (mod4);
(« + 7j)/2 where r= 1 (mod4), if [A, B] = [1,0] (mod4);
7j where r is arbitrary, otherwise.

8. Tables of integral bases

Having constructed minimal integers of degrees one, two and, when
d * 1 (mod 8), degree three in Va\ we now have integral bases of the form
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[1, /?!, f}2, /J3] as explained in Section 3, for all dihedral number fields with
quadratic subfield Q{Jd), d*\ (mod 8).

Table 1: d = 2,3 (mod 4).
Let TJ = (/• + Jd)Ja /C where the rational integer r satisfies Theorem 1 and is

chosen so that r = d + 2 (mod 4).

A

I(mod4)

1 (mod 4)

1 (mod 4)
3 (mod 4)
3 (mod 4)

I(mod4)
3 (mod 4)
3 (mod 4)

0 (mod 2)
2 (mod 4)

2 (mod 8)
6 (mod 8)
2 (mod 8)
6 (mod 8)

0 (mod 8)
0 (mod 8)
4 (mod 8)
4 (mod 8)

2 (mod 8)
6 (mod 8)

2 (mod 8)
6 (mod 8)

0 (mod 8)
4 (mod 8)

0 (mod 8)

4 (mod 8)

B

ODD

0 (mod 4)

0(mod4)

2 (mod 4)
0(mod4)
2 (mod 4)

2 (mod 4)
0(mod4)
2 (mod 4)

2 (mod 4)
0 (mod 2)

0 (mod 8)
0 (mod 8)
4 (mod 8)
4 (mod 8)

2 (mod 8)
6 (mod 8)
2 (mod 8)
2 (mod 8)

0(mod8)
0 (mod 8)

4 (mod 8)
4 (mod 8)

2 (mod 8)

2 (mod 8)

6 (mod 8)

6 (mod 8)

d

2 (mod 4)

3 (mod 4)

2 (mod 4)
2 (mod 4)
2 (mod 4)

3 (mod 4)
3 (mod 4)
3 (mod 4)

2 (mod 4)
3 (mod 4)

6 (mod 8)
2 (mod 8)
2 (mod 8)
6 (mod 8)

3 (mod 8)
3 (mod 8)
7 (mod 8)
7 (mod 8)

2 (mod 8)
6 (mod 8)

6 (mod 8)
2 (mod 8)

7 (mod 8)

3 (mod 8)

7 (mod 8)

3 (mod 8)

Integral basis

[l>V/^,v/rf,J|]

[1,(1 + A) /2 ,V£ , (V£ + T))/2]

[1,(1 +v/^)/2,vft,(l + 4d + v)/2)

[l,v^,V^,T|/2]

[l,\/̂ ,(v/rf + i/a)/2,ii/2]

[l,l/a,(l + 4d + ^)/2,r)/2]

[1,A,(^+v/^)/2,(2 + i,)/4]

[1,A,(^+A")/2,(2(1 +]fd) + r,)/4]

[l,v£,(l + v/^+v^)/2,(2v£+»))/4]

[l,Ja,(Jd + \/«)/2,(2 + TJ)/4]
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Table 2: d = 5 (mod 8).
Let ij = (r - 1 + (1 + {d)/T){a /C, where the rational integer r satisfies

Theorem 1 and is chosen so that:

r = 1 (mod4) if [A, B] = [1,0] (mod4);

r = 0 (mod2) if A = 1 (mod2) and B = 1 (mod4);

r = 1 (mod2) if A = 0 (mod2) and B = 3 (mod 4).

1 (mod 4)

I(mod2)

0 (mod 2)

B

0 (mod 4)

I(mod4)

3 (mod 4)

otherwise

Integral basis

[1,(1 + v/^)/2,(l + 4d)/2,((\ + 4d)/2 + T,)/2]

[1,V "̂,((1 + v^)/2 + V^")/2,(l + r,)/2]

[1,^,(1 + (1 + {d)/l + ̂ ) /2 , ( l + r,)/2]

[l,V^,(l + v^)/2,t,]
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