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Abstract

We describe a concise and elegant functional program, written in Haskell, that computes

solutions for a classic puzzle known as the “snake cube.” The program reflects some of the

fundamental characteristics of the functional style, identifying key abstractions, and defining

a small collection of operators for manipulating and working with the associated values.

Well-suited for an introductory course on functional programming, this example highlights

the use of visualization tools to explain and demonstrate the choices of data structures and

algorithms that are used in the development.

1 Introduction

A popular wooden puzzle, the “snake cube” comprises a string of 27 small cubes,

typically alternating between dark and light colours, that is solved by folding the

puzzle in on itself so that the pieces form a single, large, 3×3×3 cube. The following

diagram illustrates a partially folded version of the puzzle on the left and the solved

form on the right:

Although the task can be accomplished in just a few seconds with prior knowledge,

figuring out a solution from scratch can be quite difficult. (The author writes from

the experience of his own struggles as well as the experience of watching others

attempt to solve it.) In this paper we present a concise and elegant functional

program written in Haskell (Peyton Jones, 2003) that computes solutions to the
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standard snake cube, and is readily adapted to other variants. The development

is well-suited for use in an introductory course on Haskell programming: beyond

the obvious visual appeal of the problem, and the ability for students to hold and

experiment with a physical puzzle while they are working through the code, the

program also provides a good introduction to important tools and techniques of

functional programming. This includes, for example, built-in data structures such

as tuples and lists; basic language constructs, particularly list comprehensions; and

a novel demonstration of Wadler’s (1985) programming technique for “replacing

failure by a list of successes.”

2 Constructing the snake cube

Before we set about the process of computing solutions, it is useful to capture

the structure of the puzzle in more detail. Although other methods are possible,

the snake cube is usually constructed by threading the small cubes together with

an elasticated cord that stretches from one end to the other, entering and exiting

individual pieces of the puzzle through centred holes in the faces of the small cubes.

In some cases, the entry and exit are on opposite faces, but in others they are on

adjacent faces, effectively creating a 90◦ change in direction. The result of this is to

break the snake into straight sections, each of which includes either two or three

neighbouring cubes. (These sections must fit within the final 3×3×3 cube and cannot

be folded, so they can be at most three cubes in length.) The following diagram

shows the structure of a standard snake cube once it has been flattened out, and

makes it easy to see the sections of two or three cubes along the length of the puzzle:

The essential details of this structure can be captured by a list of integers. In the fol-

lowing, we choose arbitrarily to list the sections of the snake from left to right; revers-

ing the list would, of course, result in an equivalent description of the same puzzle.

snake :: [Int]

snake = [3, 2, 2, 3, 2, 3, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 3]

As a sanity check, we can verify that sum snake − (length snake − 1) = 27, the

total number of small cubes in the puzzle. This formula works because sum snake

overcounts the total by including each of the (length snake − 1) corner pieces twice.

It is fairly easy to see that the last cube on the right of the diagram above must

end up in one of the eight corners of the final 3×3×3 cube in any solution; otherwise

there is no way to fit the last four sections (each of length 3) into the final cube.

In fact, the first cube on the left must also end up in a corner of the final solution.

Readers with good spatial reasoning skills may be able to deduce this from the
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x
(1,0,0)

y

(0,1,0)

z (0,0,1)

(1,1,1)

(2,1,1) (3,1,1)

Fig. 1. Using vectors to represent Positions and Directions within the snake cube puzzle.

diagram alone, but it quickly becomes obvious once you have the puzzle in your

hands and begin to experiment.

3 Moving into three dimensions

As we start to think about assembling the puzzle in three dimensions, it is natural

to adopt a conventional coordinate system as illustrated in Figure 1. Note that we

can use vectors such as (1, 0, 0), (0, 1, 0), and (0, 0, 1) to represent directions within

the large cube corresponding to the x , y , and z axes, respectively. We can also use

vectors to reference each of the smaller cube positions within the assembled puzzle.

In what follows, we have chosen, somewhat arbitrarily, to represent each small cube

by the coordinates of its furthest point from the origin. Thus, the corner cube that

is closest to the origin is (1, 1, 1) and its immediate neighbours along the positive

x -axis are (2, 1, 1) and (3, 1, 1). Note that all of the vectors that we are dealing with

here have integer coordinates, so they can be represented by values of the following

types:

type Direction = (Int , Int , Int)

type Position = (Int , Int , Int)

In this paper, we will only use six different Direction values, corresponding in

Figure 1 to right/left (x -axis), up/down (y-axis), and forward/backward (z -axis).

In numerical terms, these are the vectors in which one coordinate is either 1 or −1

and the others are both zero. To describe which Position values correspond to valid

locations within the solved puzzle, we will use a predicate, inCube 3, that is defined

as follows:

inCube :: Int → Position → Bool

inCube n (x , y , z ) = inRange x && inRange y && inRange z

where inRange i = 1 � i && i � n

https://doi.org/10.1017/S0956796813000014 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000014


148 M. P. Jones

soln0 = [[(1, 1, 1)]] soln1 = [(1, 3, 1), (1, 2, 1)] : soln0

soln2 = [(3, 3, 1), (2, 3, 1)] : soln1 soln3 = [(3, 3, 3), (3, 3, 2)] : soln2

Fig. 2. A sequence of steps placing three sections, each of length 3, within a 3×3×3 cube.

Making n a parameter in this definition will allow us to generalize later to more

complex versions of the puzzle, including the “king snake,” which has a string of 64

small cubes that can be assembled into a large 4×4×4 cube.

4 Describing solutions

We will represent solutions to the snake cube puzzle as sequences of steps that

fit each of the puzzle pieces into its final place, moving from the first section to

the last. With a physical puzzle in hand, it may actually be necessary to perform

the steps in a slightly different order to avoid conflicts between the pieces of the

puzzle that have already been placed and the “dangling tail” that comprises the

remaining puzzle sections. Although this can occur in practice, it is usually easy to

work around with the puzzle in hand. And in some cases, just reversing the order

of the list of sections—so that we start working from the opposite end—can make

the puzzle easier to assemble (see the description of reversePuzzle in Section 7). For

these reasons, we will not worry about modeling the dangling tail in our attempts

to compute puzzle solutions.

The diagram in Figure 2 illustrates a sequence of steps for fitting three puzzle

sections, each containing three small cubes, into the space of the large cube. As

a special case, we begin by placing the first small cube at (1, 1, 1) in soln0. Then,

for each of the three sections, we add a separate list that describes the two new

pieces in that section with the position of the most recently placed small cube at
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the front. This will allow us to build up solutions incrementally: any solution s

that fits (n + 1) sections will include a solution, tail s , that fits the first n sections

(assuming n � 1).

type Solution = [Section]

type Section = [Position]

The pieces within each section are also ordered with the most recently placed small

cube first, so we can always find the Position of the most recently placed small cube

in a full solution, s :: Solution , by using head (head s). This also means that we can

obtain a list of all the positions that have been filled in a given solution s from

the first to last (and with alternating dark and light colours if we wish to model

that aspect of the puzzle) by using reverse (concat s). For example, with the steps

illustrated in Figure 2, we have:

reverse (concat soln3)

= [(1, 1, 1), (1, 2, 1), (1, 3, 1), (2, 3, 1), (3, 3, 1), (3, 3, 2), (3, 3, 3)]

5 Building sections

The sequence of cubes that appears in any given section is determined: by the

position, start , of the first cube (which is also the last cube in the previous section);

by the direction, (u , v , w ), of the section; and by its length, len .

section :: Position → Direction → Int → Section

section start (u , v , w ) len = reverse (tail (take len pieces))

where pieces = iterate (\(x , y , z )→ (x + u , y + v , z + w )) start

The local definition here produces an infinite list, pieces , of positions with the

required start and direction. Using take len , we truncate the list to the length of the

section, and then use tail to discard the first position (which will, again, have already

been included in the previous section). Finally, we use reverse to ensure that the list

is ordered with the most recently placed cube first. For example, the first two full

sections from Figure 2, which appear at the heads of soln1 and soln2, respectively,

can be calculated as follows:

section (1, 1, 1) (0, 1, 0) 3 = [(1, 3, 1), (1, 2, 1)]

section (1, 3, 1) (1, 0, 0) 3 = [(3, 3, 1), (2, 3, 1)]

6 Changing directions

It remains to account for the change of direction between adjacent puzzle sections.

As an example, if we begin with a section that has direction (1, 0, 0), then there are

four possible directions for the next section—forwards (0, 0, 1), backwards (0, 0,−1),

up (0, 1, 0), and down (0,−1, 0)—as illustrated in the following diagram:
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(1,0,0)

(0,0,1) (0,0,−1) (0,1,0) (0,−1,0)

More generally, in any given case, the new directions can be obtained from

the old by rotating the coordinates of the old direction to the left (using the

function left (x , y , z ) = (y , z , x ) to permute the tuple coordinates) or to the right

(using right (x , y , z ) = (z , x , y)), and then either optionally flipping the sign (using

inv (x , y , z ) = (−x , −y , −z ), or else the identity function, id , if no sign change

is required). In the diagram, for example, the two new directions on the left are

obtained using a left rotation of the coordinates, while those on the right use a right

rotation. In addition, the second and fourth new directions involve a change of sign,

while the first and third keep the same sign as the original. Given this observation,

we can define the following function that computes all of the new directions that

are possible after a section with direction dir .

newDirs :: Direction → [Direction]

newDirs dir = [sig (rot dir) | rot ← [left , right], sig ← [id , inv ]]

where left , right , inv :: Direction → Direction

left (x , y , z ) = (y , z , x )

right (x , y , z ) = (z , x , y)

inv (x , y , z ) = (−x , −y , −z )

Note that we do not require this definition to work for arbitrary inputs, just for

the six specific Direction vectors in which one coordinate is either 1 or −1 and the

others are zero.

In practice, by expanding the list comprehension and inlining the uses of left ,

right , id , and inv , we can show that the definition of newDirs can be written more

compactly as follows:

newDirs (x , y , z ) = [(y , z , x ), (−y , −z , −x ), (z , x , y), (−z , −x , −y)]

Nevertheless, as a matter of (admittedly subjective) programming style, we prefer the

original definition because it provides useful structural information that is lost in the

process of deriving the shorter version. For example, the use of a list comprehension

in the first definition makes it easy to see, at a glance, that each of the results is

produced by combining a rotation (either left or right) with an optional sign change

(either id or inv ). By comparison, the form of the second definition provides no
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direct insight as to why each of the four elements in the result list was chosen, and

it requires a more careful inspection to check that the details are correct.

7 Describing complete puzzles

Building on the definitions in the previous sections, we can now give a general

framework for describing instances of the snake cube puzzle as values of the

following datatype.

data Puzzle = Puzzle { sections :: [Int],

valid :: Position → Bool ,

initSoln :: Solution ,

initDir :: Direction }

Each puzzle specifies a list of sections that describes the flattened puzzle structure

as well as a predicate that identifies the valid positions within the solved three-

dimensional puzzle. We also include a field, initSoln , that will be used as the starting

point for any solutions that we compute. This will typically only be used to specify

the position of the first small cube, but it can also be used to constrain a puzzle

by fixing the positions of some initial sections. (See Section 9 for one application

of this.) Finally, each puzzle specifies an initial direction, initDir , that should fit the

initial solution. In particular, the first section of a puzzle p must always be placed

along one of the directions in newDirs (initDir p).

For example, the standard snake puzzle that is shown in the preceding illustrations

can be described as follows (we have already argued that the first small cube must

be placed in one of the corners of the large cube, hence the choice of [[(1, 1, 1)]] as

an initial solution):

standard :: Puzzle

standard = Puzzle { valid = inCube 3,

initSoln = [[(1, 1, 1)]],

initDir = (0, 0, 1),

sections = snake }

Other variations of the puzzle can be described as modifications to this basic

structure. For example, Creative Crafthouse, a Florida company that distributes

a wide range of wooden puzzles, manufactures a “Mean Green” variant that

they characterize as being more difficult than the standard snake. One possible

explanation for the increased difficulty is that this version has only 16 sections

instead of the 17 sections in the standard snake, potentially giving less flexibility for

folding.

meanGreen :: Puzzle

meanGreen = standard { sections = [3, 3, 2, 3, 2, 3, 2, 2, 2, 3, 3, 3, 2, 3, 3, 3] }

This example, like most of the others in this section, uses Haskell’s update syntax;

in this case, we define meanGreen as a variant of standard that differs only in its list

of sections .
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The previously mentioned king cube variant of the puzzle can also be described

in this framework. It differs from the standard by targeting a 4×4×4 cube with 46

individual sections, each of which contains either 2, 3, or 4 small cubes.

king :: Puzzle

king = standard { valid = inCube 4,

sections = [3, 2, 3, 2, 2, 4, 2, 3, 2, 3, 2, 3, 2, 2, 2,

2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 4, 2,

2, 2, 4, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2] }

Unlike standard , where we can be sure that the first small cube will be placed in the

corner of the large cube in any valid solution, it is possible to find solutions for the

king cube where neither the first nor the last small cube is a corner in the solved

puzzle. To allow for this in our framework, we must define distinct Puzzle values

for each different starting position. Given the specific numbers in sections king ,

however, we can argue by symmetry that there are only two other starting positions

that need to be considered in a search for all possible solutions (and, in fact, it turns

out that king2 has no solutions):

king1, king2 :: Puzzle

king1 = king { initSoln = [[(2, 1, 1)]] }
king2 = king { initSoln = [[(1, 2, 2)]] }

Another way to create a variant of a puzzle is by reversing the order of the sections:

reversePuzzle :: Puzzle → Puzzle

reversePuzzle p = p { sections = reverse (sections p)}

For puzzles like standard and king , where the only solutions both begin and end

with pieces in the corners of the larger cube, applying reversePuzzle does not

change any fundamental aspects of solvability. However, we sometimes find that

the sequences of assembly instructions that we get for reversePuzzle p using the

methods in Section 8 are easier to follow in practice than those that we get for

p. (Or, conversely, harder to follow; for example, there is a certain point in our

solution for reversePuzzle standard that requires some awkward manipulation to

avoid a conflict with the ‘dangling tail’, as suggested in Section 4. The solution that

we obtain for standard , however, can be followed without any such problems.) For

this reason, reversePuzzle can be a useful tool in finding practical solutions to snake

cube puzzles. Reversing a puzzle can also have a significant impact on the running

time of our solver because it forces a different view of the search space. For example,

in the next section, we will see that it takes approximately eight times longer to

enumerate the solutions to reversePuzzle king than it does to enumerate essentially

the same set of solutions to king .

One more challenge that can be applied to any of the previous puzzles is to find

the most compact, flat form that has all of the sections in a single level. We can

construct the flat variant of a puzzle by using a valid predicate that only allows

https://doi.org/10.1017/S0956796813000014 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000014


Functional pearl 153

Positions with z == 1.

flat :: Puzzle → Puzzle

flat p = p { valid = (\(x , y , z )→ z == 1)}

Using the tools presented in the next section, we can determine that there are 22,768

distinct solutions to flat standard , for example, but only 16 that give the most

compact layout possible. Once we allow for the inherent symmetries (generated by a

reflection, and by rotations through multiples of 90◦), we can divide these numbers

by a factor of 8, and see that there are really only two distinct, most compact

solutions out of 2,846, as shown in the following diagrams.

These diagrams were constructed by (a) using the function described in the next

section to enumerate all solutions to flat standard ; (b) scanning that list to find the

most compact solutions (a simple but useful programming exercise for the reader);

and then (c) using the methods that will be described in Section 10 to produce the

illustrations.

8 Solving puzzles

In this section we describe a method for solving the snake cube and related puzzles

using a simple, brute force algorithm.

Suppose that we have a particular puzzle, p; that we have already placed a

number of sections to construct a given (partial) solution, soln; and that the next

section has length len . In this setting, we can find the start position for the next

section using start = head (head soln). If we pick a particular direction, dir , for the

new section, then we can calculate the positions sect = section start dir len that the

new section will occupy and use that to produce an extended solution, sect : soln .

Of course, for this to be acceptable, we must ensure that all of the positions in sect

are valid in the given puzzle, and we must also check that none of the positions in

sect have already been occupied by other sections in the starting solution, soln . The

following definition captures these ideas:

extend :: Puzzle → Solution → Direction → Int → [Solution]

extend p soln dir len = [sect : soln | let start = head (head soln)

sect = section start dir len ,

all (valid p) sect ,

all (‘notElem ‘ concat soln) sect]

Note that our definition of extend uses a special form of list comprehension that

has only a local definition and two Boolean guards to the right of the vertical bar.
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This is an elegant and compact Haskell idiom for describing a list with at most one

element; the extended solution, sect : soln , is included only when both of the guards

are True.

We can now construct the desired function that solves an arbitrary puzzle,

enumerating the list of all of its solutions:

solutions :: Puzzle → [Solution]

solutions p = solve (initSoln p) (initDir p) (sections p)

where solve :: Solution → Direction → [Int]→ [Solution]

solve soln dir [ ] = [soln]

solve soln dir (len : lens)

= concat [solve soln ′ newdir lens

| newdir ← newDirs dir ,

soln ′ ← extend p soln newdir len]

The main function defined here, solutions , is simply a wrapper that extracts the

necessary components of the input puzzle that are needed as arguments to a worker

function, solve. The latter maintains a partial solution, soln , and a current direction,

dir , as it iterates through the list of puzzle sections. If there are no remaining puzzle

sections, then we have placed all of the puzzle pieces and can output soln as a

full solution. Otherwise, there is at least one puzzle section of length len that must

still be placed: we consider each possible direction, newdir , for that section; try to

extend the current solution; and then recurse to find places for the remaining puzzle

sections.

Our use of lists and list comprehensions gives us a particularly compact and

elegant way to describe these functions. In effect, solutions is constructing and

searching a large tree structure, but all we see as the output is a lazily generated

list of complete solutions. Experienced readers will recognize this approach as

an instance of the programming technique that was described by Wadler (1985)

as showing “how to replace failure by a list of successes.” This same idea has

been used in other areas, for example, as an alternative to exception handling; in the

implementation of theorem proving tactics; and as a foundation for the construction

of parser combinator libraries.

Using these functions, we can compute length (solutions standard ) = 4, and can

enumerate the sequence of steps in any one of those solutions, such as:

head (solutions standard )

= [[(3, 3, 3), (2, 3, 3)], [(1, 3, 3)], [(1, 2, 3)], [(2, 2, 3), (2, 2, 2)],

[(2, 2, 1)], [(2, 1, 1), (2, 1, 2)], [(2, 1, 3)], [(1, 1, 3)], [(1, 1, 2), (1, 2, 2)],

[(1, 3, 2), (2, 3, 2)], [(3, 3, 2)], [(3, 2, 2)], [(3, 2, 3)], [(3, 1, 3), (3, 1, 2)],

[(3, 1, 1), (3, 2, 1)], [(3, 3, 1), (2, 3, 1)], [(1, 3, 1), (1, 2, 1)], [(1, 1, 1)]]

These results are produced almost immediately, even in the Hugs interpreter. The

other puzzles described in Section 7 can be solved in the same way. Solving the

mighty king snake, however, requires considerably more patience: reflecting the

larger search space—a search tree of depth 46 rather than 17—it takes a little under

seven minutes to compute solutions king on a fairly typical laptop, and an astonishing
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

7161

Fig. 3. A solution to the snake cube puzzle.

55 minutes if we switch to solutions (reversePuzzle king), even when the solver is

compiled using GHC.

Of course, it is a little disappointing to present a solution to the snake cube as a

list of lists of tuples; we would much prefer to be able to visualize the solution in

graphical form. Fortunately, it is not too difficult to convert our computed solution

into the sequence of graphics shown in Figure 3, adding one additional puzzle

section at each step.

This version is much easier to follow in practice than the original sequence of

tuples. Then again, it is hard to capture the precise details of a solution in a sequence

of three-dimensional sketches. For example, the reader may note that there is no

apparent difference between the diagrams for Steps 11 and 12. But, once again, if

you have the puzzle in hand and, in this case, look ahead to the diagram for Step

13, then it is easy to infer the appropriate action for Step 12, and then proceed to

complete the puzzle. Success!

Further details about the methods that we use to construct the diagrams shown

in Figure 3, as well as some of the other illustrations in this paper, are provided in

Section 10.
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9 Leveraging symmetry to eliminate solutions

As mentioned in the previous section, our algorithm finds four solutions to the

standard snake cube puzzle. But, in fact, these are really just four variations of the

same solution that are equivalent under symmetry. To see why this occurs, note

that there are two possible directions for the first puzzle section (either (1, 0, 0) or

(0, 1, 0), because we have chosen initDir standard = (0, 0, 1)). And in each of those

two cases, there are two possible choices of direction for the second puzzle section.

This gives four distinct ways to start a solution to the puzzle, but all of them include

the L-shaped configuration, possibly rotated or reflected, that was shown in Step

2 of Figure 3. As we proceed with each subsequent step on any one of those four

configurations, there is a corresponding step in each of the others.

The redundancy that we see here is a consequence of the inherent symmetries of

the cube, or, from a different perspective, of the essentially arbitrary choices that

we have made in selecting our coordinate system. One way to avoid this is to fix

the positions of the first two puzzle sections before attempting to solve the rest.

And although the details can be a little fiddly, it is not too difficult, in principle, to

adjust the description of any specific puzzle in this way, changing the initSoln field

to include specific positions for the initial sections and dropping the corresponding

entries from the sections field. Happily, we can describe this process in a general

manner as a transformation on Puzzle values:

advance :: Puzzle → Puzzle

advance p = head [p { initDir = newdir ,

initSoln = soln ′,

sections = tail (sections p) }
| newdir ← newDirs (initDir p),

soln ′ ← extend p (initSoln p) newdir (head (sections p))]

The key idea here is that advance p represents the same puzzle as p, but forces an

arbitrary choice for the first step toward a solution. The overall structure seen here

is very similar to the definition of the solutions function that was described in the

previous section, and it uses the same extend operator to find valid extensions of

the initial solution in p. The essential differences are that (a) instead of making

a recursive call, we package up the results in a new Puzzle; and (b) instead of

exploring the list of all possible solutions, we make an “arbitrary” choice by using

head to pick the first valid extension.

The advance operation can be used, for example, to show that there is really only

one way to solve the standard snake cube puzzle:

(length · solutions · advance · advance) standard = 1

Given the intuition that motivates advance, this approach seems more appealing

than simply noticing that solutions standard includes multiple elements and hoping

that the head will be a good representative for all of them. On the other hand, there

are also situations where advance is not appropriate because it could inadvertently

eliminate portions of the search space, potentially causing us to miss the solutions
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showCubes :: [Position] → String
showCubes = unlines · concat · zipWith cube2sk (cycle [“brown”, “white”])

cube2sk :: String → Position → [String]
cube2sk col a = [prefix++concat (map show f ) | f ← faces]

where prefix = “polygon[fill=”++col++“]”
faces = [[a, d, g, c], [b, e, h, f ], [a, b, f , d],

[c, g, h, e], [a, c, e, b], [d, f , h, g]]
(x, y, z) = a
b = (x, y, z−1)
c = (x, y−1, z)
d = (x−1, y, z)
e = (x, y−1, z−1)
f = (x−1, y, z−1)
g = (x−1, y−1, z)
h = (x−1, y−1, z−1)

a

b

c

d

e

f

g

h

Fig. 4. Functions for generating a Sketch diagram from a list of small cube positions.

that we were seeking. One example of this occurs with the king1 puzzle: it would

not be a good idea to make an arbitrary choice between the two possible positions

for the first puzzle section in this case because they are not related by a symmetry

within the overall cube. As such, advance should be used with care.

10 Visualizing solutions to the snake cube puzzle

One of the attractive aspects of working on the problems described in this paper

is the ability to hold and play with an actual, physical snake cube puzzle as you

think about and develop a program for solving it. This works particularly well in

a classroom setting where it is possible to hand out copies of the puzzle for the

students to experiment with. But even without a physical copy, the snake cube puzzle

still has a strong visual appeal, as illustrated by some of the diagrams in this paper.

In this section, we give a brief overview of how these diagrams were constructed.

In most cases, we started by writing some Haskell code—to process computed

solutions, for example. But the real work was done using Gene Ressler’s Sketch

tool (Ressler, 2012) and Tantau’s (2010) TikZ package. The former takes text files

containing simple three-dimensional scene or object descriptions and uses those to

generate code for the latter, which will render the images in a LATEX document. For

example, the code in Figure 4 shows how we can take a list of Position values, each

describing a small cube, and generate a corresponding list of polygon definitions

for use with Sketch. The showCubes function essentially just pairs up each small

cube with a colour, alternating between dark and light (rendered as brown and

white in the code and in the online version of this paper), and then concatenates the

resulting list of Sketch commands into a single Haskell String . The cube2sk function

generates the Sketch code for individual cubes, each of which is described by a list

of six (square) polygons, one for each face. (Sketch uses hidden surface removal

techniques, together with a specification of the camera position and orientation, to
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determine exactly which of these faces will be visible in each generated diagram.) The

only subtlety here is that, by default, Sketch polygons are one-sided, and only visible

on the side from which the vertices appear in a counter clockwise order. The small

diagram shows our scheme for labelling the eight vertices of the cube, which can

also be used to check that each of the faces is described correctly. For example, the

expression showCubes [(1, 1, 1)] produces a string containing the following Sketch

code.

polygon[fill=brown](1,1,1)(0,1,1)(0,0,1)(1,0,1)

polygon[fill=brown](1,1,0)(1,0,0)(0,0,0)(0,1,0)

polygon[fill=brown](1,1,1)(1,1,0)(0,1,0)(0,1,1)

polygon[fill=brown](1,0,1)(0,0,1)(0,0,0)(1,0,0)

polygon[fill=brown](1,1,1)(1,0,1)(1,0,0)(1,1,0)

polygon[fill=brown](0,1,1)(0,1,0)(0,0,0)(0,0,1)

For a given Solution , we can construct a list of lists of Position values to describe the

set of cubes that has been placed at each step in the solution (as seen, of course, in

Figure 3). The task of converting a Solution into a list of that type can be described

using standard Haskell list processing functions.

steps :: Solution → [[Position]]

steps = tail · reverse · map reverse · scanr1 (++)

The most important detail here is to ensure that the small cubes in each output list

are correctly ordered so that each one appears with the appropriate colour when

displayed using showCubes . This is accomplished by using scanr1 to build up a list

of “partial sums,” starting from the right of the solution, and then mapping the

reverse function over each resulting list. The leftmost use of reverse ensures that the

solutions are displayed in the appropriate order, ending with the completed puzzle.

Finally, we use tail to drop the very first step in the solution, which, otherwise,

would just show the position of the initial small cube (as in the diagram for soln0

in Figure 2). With these tools in place, we can define a function that takes a puzzle

as input and generates a sequence of Sketch diagrams, each described by a single

string, for the first complete solution:

showSteps :: Puzzle → [String]

showSteps = map showCubes · steps · head · solutions

To complete the task, we require some additional Sketch code (to draw grid lines,

and set appropriate perspective views, for example) and some more Haskell code

(to wrap the outputs from showSteps with the Sketch code and write the results

to a corresponding sequence of output files). None of this, however, is difficult

(or interesting!), and so for further details we refer the reader instead to the

supplementary material section at the end of the paper for links to the source code

(with more solutions and other related materials).

11 Further development

In this paper, we have described a concise and elegant functional program, written in

Haskell, that computes solutions for the snake cube puzzle and is readily adapted to
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other variants. These tools provide a platform for investigating and understanding a

range of snake cube puzzles. For example, we have used the solver to compute four

distinct solutions for the 4×4×4 cube (one for king and three for king1). Based on

available resources and published solutions on the Internet, it is possible that only

three of these solutions were previously known. Our program is also attractive in an

educational setting. One reason for this is that the code reflects some fundamental

characteristics of the functional style, identifying key abstractions such as Positions,

Directions, Solutions, and Puzzles, and defining a small collection of operators for

manipulating and working with these values. In addition, we benefit from working

on a problem that not only has visual appeal but also a strong tactile component

for those with access to a physical copy of the puzzle.

There are several opportunities for building on the ideas presented here. On a

practical front, for example, it would be useful, particularly for the larger examples,

to show multiple views of a puzzle at each step of assembly so that there are fewer

(or, ideally, no) places where details of the next step are hidden from view. One

way to accomplish this is by applying a geometric transformation to the cubes in

any given solution step. For example, given a list cubes :: [Position], the following

expression will add in the second copy of the same step, but rotated through 90◦,

and translated to the right of the original.

cubes ++ map (\(x , y , z )→ (z + 7, y , 4− x )) cubes

(In practice, we need to do some additional work to account for colouring, but the

same basic methods/transformations still apply.) An alternative approach would be

to make use of a three-dimensional graphics library, such as OpenGL, to build an

interactive viewer for puzzle solutions.

A shortcoming of the approach that we have used in this paper is the need to

specify an initial direction and cube position as part of each Puzzle data structure.

By providing these details explicitly, we encode some geometric insights about the

structure of individual puzzles, and we can avoid generating large sets of solutions

that are all equivalent up to symmetry. We do not know, however, if a more elegant

approach is possible, perhaps starting from a slightly higher level description of a

puzzle, and computing a full set of solutions automatically, without the need to

explore multiple options by hand.

Another practical concern is the “dangling tail” problem that was described in

Section 4. This can occur because our method of finding solutions does not account

for the possibility that unplaced sections of the puzzle might conflict with parts of

the puzzle that have already been put in position. What is needed here, however,

is not a new method of finding solutions, but instead an algorithm for finding an

appropriate set of folding steps, with a previously calculated final solution as the

goal, and the flexibility to adjust the angle between any pair of adjacent sections at

each step in the assembly.

In this paper, we have described two distinct versions of the 3×3×3 snake

cube puzzle: standard and meanGreen . Several others have been manufactured as

physical puzzles. But, as a final challenge, particularly for those with an interest

in combinatorics, how many distinct variants are possible, and how many of those
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have only one unique solution once we account for symmetry? These questions

could potentially be tackled by a brute force method, generating all of the possible

integer lists containing 2s and 3s that satisfy the sanity check described in Section 2,

and then feeding those candidate designs as inputs to our solver. But is there a more

efficient solution? And can such an approach be scaled up to larger cube sizes, or

even to more general n × m × p puzzles?
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