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Starting from the Boltzmann–Enskog kinetic equations, the charge transport equation
for bidisperse granular flows with contact electrification is derived with separate mean
velocities, total kinetic energies, charges and charge variances for each solid phase. To
close locally averaged transport equations, a Maxwellian distribution is presumed for both
particle velocity and charge. The hydrodynamic equations for bidisperse solid mixtures
are first revisited and the resulting model consisting of the transport equations of mass,
momentum, total kinetic energy, which is the sum of the granular temperature and the trace
of fluctuating kinetic tensor, and charge is then presented. The charge transfer between
phases and the charge build-up within a phase are modelled with local charge and effective
work function differences between phases and the local electric field. The revisited
hydrodynamic equations and the derived charge transport equation with constitutive
relations are assessed through hard-sphere simulations of three-dimensional spatially
homogeneous, quasi-one-dimensional spatially inhomogeneous bidisperse granular gases
and a three-dimensional segregating bidisperse granular flow with conducting walls.
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1. Introduction

Granular materials acquire electrostatic charges after coming into frictional contact with
themselves or with other materials. This process is called ‘contact electrification’ or short
‘tribocharging’. Tribocharging is naturally observed in Earth and Martian sandstorms
(Stow 1969; Melnik & Parrot 1998), and ash plumes of volcanic eruptions (Méndez
Harper & Dufek 2016; Méndez Harper et al. 2020). It also is observed in industrial
processes such as silo storage (Gu & Wei 2017), pneumatic conveying (Yao et al. 2004),
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pharmaceutical blending and mixing (Naik et al. 2016), electrostatic precipitation (Mizuno
2000) and powder coating (Barletta & Tagliaferri 2006). Tribocharging also causes
industrial implications; wall sheeting in polyethylene fluidized bed reactors (Ciborowski
& Wlodarski 1962; Hendrickson 2006), particle segregation and mixing inefficiencies
(Forward, Lacks & Sankaran 2009) and potential hazard in packing containers (Glor
2005).

The governing physics of charge transfer are still under debate (Williams 2011; Lacks &
Sankaran 2011). There are three main mechanisms suggested in the literature: (i) electron
transfer (Harper 1967), (ii) ion transfer (McCarty & Whitesides 2008) and (iii) bulk
material transfer (Williams 2012). All three have experimental evidence supporting them
(Matsusaka et al. 2010a). In the electron transfer model, the driving force for electron
transfer between contacting materials is the difference between the work functions of the
materials. The electron transfer model probes the charge transfer between the conducting
materials very well, but it is not applicable for insulators which have low charge mobility
(Duke & Fabish 1978; Bailey 2001). The ion transfer mechanism proposes that insulators
mainly exchange ions located on their surfaces during contact (McCarty & Whitesides
2008). The ions are not necessarily part of the material, but can be tied to the environment
properties (e.g. humidity) and during a mechanical contact between two surfaces, some of
the ions may transfer from surface to surface that leads to different overall charges on the
surfaces (Wiles et al. 2004; McCarty & Whitesides 2008; Waitukaitis et al. 2014; Schella,
Herminghaus & Schröter 2017). When particles come into contact, they may also exchange
material with one another. The material exchanged can have a non-zero charge difference
that leads a charge transfer through a mechanism referred to as the bulk material transfer.
While this possible mechanism has been known for some time (Salaneck, Paton & Clark
1976), its predictability and reproducibility are questionable (Lowell & Rose-Innes 1980).

One can ask whether tribocharging via electron or ion transfer mechanisms can
be captured through a simple modelling framework, which is suitable for easy
integration to large-scale granular flows. Recently, we developed a computational
fluid dynamics-discrete element method (CFD-DEM) approach for gas–solid flows that
accurately predicts the effects of tribocharging on flow hydrodynamics (Kolehmainen
et al. 2016, 2017a). In this approach, charge transfer between particles and charge build-up
in the overall system are accounted for short-range electrostatic forces using the Coulomb
force with neighbouring particles and long-range electrostatic forces via Poisson’s
equation (Kolehmainen et al. 2016). The charge accumulation on particles is modelled
by an effective-work-function-based model (Laurentie, Traoré & Dascalescu 2013). The
effective work function is a lumped parameter that can be used to quantify charging
rates and extents observed in specific experimental studies (Laurentie et al. 2013; Naik
et al. 2015, 2016; Kolehmainen et al. 2017b; Sippola et al. 2018) or quantum calculations
(Naik et al. 2015). Similar CFD-DEM approaches were also developed by Pei, Wu &
Adams (2016) and Grosshans & Papalexandris (2017). We validated the computational
framework against experimental measurements of charge on monodisperse particles in
vibrated and fluidized beds (Kolehmainen et al. 2017a; Sippola et al. 2018). The studies
show that the total charge in the system is well predicted with the developed models.
CFD-DEM simulations, however, are limited to relatively small systems in the centimetre
range and not affordable for large industrial-scale systems due to the highly demanding
computational effort. To achieve simulations of gas–solid flows with charged particles in
larger systems, the kinetic-theory-based Eulerian–Eulerian models (also called two-fluid
models) with tribocharging have been recently developed for monodisperse particles
(Kolehmainen, Ozel & Sundaresan 2018b; Ray et al. 2019) (the readers are referred to a
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rich literature on the two-fluid model without charge transfer, e.g. Savage & Jeffrey 1981;
Jenkins & Savage 1983; Lun et al. 1984; Garzó & Dufty 1999a). Singh & Mazza (2019) has
also developed hydrodynamic equations to study homogeneous and quasi-monodisperse
aggregation of charged granular gases. In two-fluid models with tribocharging, the mean
charge transport equation was derived from the Boltzmann equation with an assumption
of Maxwellian distributions for particle velocities and charges, and coupled with the
two-fluid hydrodynamic equations. These models allow for conduction of mean charge
through collisions in the presence of an electric field and the boundary condition capturing
charge generation at the solid boundary. Ray et al. (2019) and Montilla, Ansart & Simonin
(2020) further proposed a model for the velocity-charge covariance that accounts for the
self-diffusion of charge. Kolehmainen et al. (2018b) validated the constitutive equations
for mean charge transfer through hard-sphere simulation results whereas Ray et al.
(2019) validated the developed models through gas–solid fluidized bed experimental data
(Sowinski, Mayne & Mehrani 2012).

The recent charge transport models are only applicable for particles with a uniform
size distribution. The gas–solid systems and granular flows containing particles with
a variety of sizes and masses (polydisperse particles) experience a specific clustering,
deposition dynamics due to tribocharging that is not well understood. Furthermore, there
is no consensus on the charge distribution based on particle size. As an example, Salama
et al. (2013) and Schella et al. (2017) studied tribocharging of particles with a bidisperse
size distribution and concluded that larger particles tended to obtain a more negative
charge than smaller particles. In contrast, Forward et al. (2009), Zhao et al. (2003), Lee
et al. (2018) and Liu et al. (2020) observed the opposite behaviour. Very recently, Ray
et al. (2020) extended their monodisperse charge model for bidisperse particles to study
steady-state solution of a bipolar charging of the particles with different sizes but the same
material. The charge transport closures were derived by following the kinetic theory of
Jenkins & Mancini (1987) for bidisperse granular flows assuming that deviations of phase
granular temperature from the equipartitioned granular temperature are small. However,
several studies showed the importance of non-equipartition of granular temperature for
bidisperse segregated granular flows (Alam & Luding 2003, 2005; Galvin, Dahl & Hrenya
2005; Liu, Metzger & Glasser 2007; Serero et al. 2008). The non-equipartition of granular
temperature was also shown by Wildman & Parker (2002) and Feitosa & Menon (2002) in
experiments where binary mixtures of solid particles were agitated in vibrating fluidized
beds. It was discussed that the non-equipartition of granular temperature further increased
the driving forces associated with size segregation with the gradient terms of phase
granular temperatures. The extensions of kinetic theory of granular flows with bidisperse
particles and non-equipartitioned granular temperatures were proposed by Garzó & Dufty
(1999b), Huilin, Gidaspow & Manger (2001), Iddir & Arastoopour (2005), Garzó, Dufty
& Hrenya (2007b) and Garzó, Hrenya & Dufty (2007a) for dilute and dense granular
flows. In this study, we develop the charge transport equation for collisional bidisperse
granular flows with separate mean velocities, charges, charge variances and fluctuating
kinetic energies for each phase without accounting for the interstitial fluid effect. The
developed model predictions are assessed through a set of hard-sphere simulations of
bidisperse granular flows with various particle sizes, particle mass ratios and mixture solid
volume fractions in a range from 0.2 to 0.4.

The structure of the paper is as follows; we revisit mass, momentum and granular
temperature transport equations for bidisperse granular flows in § 2. In the latter part of this
section, we present the charge transport equation with constitutive relations for binary solid
mixtures. Hard-sphere simulations of spatially homogeneous and inhomogeneous elastic
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granular flows are introduced in § 3 and their results are compared with the developed
model predictions. In § 3.2.1, we discuss how the work function difference within a binary
mixture generates charge in inhomogeneous flow. In § 3.3, we present the hard-sphere
simulation results with the proposed model predictions for a segregating bidisperse
granular flow bounded with conducting walls. In § 4, we summarize our findings and
discuss further developments to the proposed model.

2. Theoretical derivation

2.1. Boltzmann equation for charged particles with bidisperse size distribution
Starting from the Boltzmann equation with the probability density function, we can
describe the statistical behaviour of a binary mixture of particles in the dense regime. We
denote the probability density function of particles by fpi(x, cpi, qpi, t) at position x with
velocity cpi and charge qpi on particles for the discrete phase i. The number of particles in
the phase i with velocity between cpi and cpi + dcip and charge between qpi and qpi + dqpi
at position x and time t is then given by fpi dcpi dqpi. The evolution of the probability
density function follows the Boltzmann equation

∂ fpi

∂t
+ ∇ · (cpi fpi

)+ ∂

∂cpi

(〈
dcpi

dt

〉∣∣∣∣
cpi,qpi

fpi

)
+ ∂

∂qpi

(〈
dqpi

dt

〉∣∣∣∣
cpi,qpi

fpi

)
=
(
∂ fpi

∂t

)
coll
.

(2.1)
The time derivative terms in 〈·〉 describe the rate of change of particle velocity and charge
in the Lagrangian frame. The term on the right-hand side is the rate of change of the
probability density function with particle–particle collisions.

2.2. Discrete particle equations
The rate of change of particle velocity is defined by the equation of motion as

mpi
dcpi

dt
= F ei. (2.2)

Here, mpi is the mass of a particle in the discrete phase i. The external forces acting on
the discrete phase i such as gravitational and fluid–solid interaction forces (e.g. drag and
Archimedes forces) are not accounted and only the electrostatic force acting on a particle
is accounted for as follows:

F ei = qpi E, (2.3)

where E is the resolved electric field (higher-order terms due to polarization (Kolehmainen
et al. 2018a) and magnetic forces (Genc & Derin 2014) were neglected). The resolved
electric field is computed by solving a Poisson’s equation

∇2φ = −ρq

ε
, (2.4)

for the electrical potential, φ, where ρq is the charge density and ε is the electrical
permittivity. Then, the resolved electric field is obtained by taking the gradient of the
electrical potential

E = −∇φ. (2.5)

The charge transfer occurs only by collision, therefore,
dqpi

dt
= 0. (2.6)
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2.3. Moment equations
Any macroscopic property of the discrete phase i is defined using the probability density
function and averaging properties over a range of velocity and charge is given as follows:

〈ψpi〉 = 1
npi

∫
R

∫
R3
ψpi fpi dcpi dqpi, (2.7)

where npi is the number density of the phase i particles. For each phase, mean velocity, Upi,
granular temperature,Θpi, mean charge, Qpi, and charge variance, Qpi, are then defined as

Upi = 1
npi

∫
R

∫
R3

cpi fpi dcpi dqpi, (2.8)

Θpi = mpi

3npi

∫
R

∫
R3
(c′

pi · c′
pi) fpi dcpi dqpi, (2.9)

Qpi = 1
npi

∫
R

∫
R3

qpi fpi dcpi dqpi, (2.10)

Qpi = mpi

npi

∫
R

∫
R3

q′
piq

′
pi fpi dcpi dqpi, (2.11)

where c′
pi is the fluctuating phase velocity and q′

pi is the fluctuating phase charge. The
fluctuating phase velocity is defined as the difference between phase and mean velocities;
c′

pi = cpi − Upi. Averaging the Boltzmann equation (2.1) over a range of velocities and
charges and using the relation npimpi = αpiρpi, the Enskog equation is obtained

∂

∂t

(
αpiρpi〈ψpi〉

)+ ∇ · (αpiρpi〈cpiψpi〉
) = C(mpiψpi)+ αpiρpi

〈
dcpi

dt
∂ψpi

∂cpi

〉
, (2.12)

where αpi is the solid volume fraction, ρpi is the density in the discrete phase i. The two
terms on the left-hand side represent the transport of a quantity ψpi, the first term on the
right-hand side represents the rate of change of the quantity averaging over collisions and
the last term represents the external force (herein, it is the electrostatic force) acting on the
particles. To close the system, the collisional operator, C(mpiψpi), needs to be modelled.
For a binary mixture of particles, the rate of change of a property due to collisions can be
decomposed into the flux and source terms by following Jenkins & Mancini (1987)

C(mpiψpi) =
∑
h=i,j

d2
pih

∫
k·w>0

mpi(ψ
+
pi −ψpi)|k · w|

× f ∗
pih(cpi, x, cph, x + dpihk)dk dcpi dcph dqpi dqph (2.13)

=
∑
h=i,j

(−∇ · θ ih(mpiψpi)+ χih(mpiψpi)
)
. (2.14)

The flux term, θ ih, represents the redistribution of a quantity within and between phases
while the source term, χih, represents the dissipation of the quantity ψpi between the
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phases i and h. These terms are derived by using the following integrals:

θ ih(mpiψpi) = −
d3

pih

2

∫
k·w>0

mpi(ψ
+
pi −ψpi)|k · w|k

× f ∗
pih(cpi, x − 1

2 dpihk, cph, x + 1
2 dpihk) dk dcpi dcph dqpi dqph, (2.15)

χih(mpiψpi) = d2
pih

∫
k·w>0

mpi(ψ
+
pi −ψpi)|k · w|

× f ∗
pih(cpi, x − 1

2 dpihk, cph, x + 1
2 dpihk) dk dcpi dcph dqpi dqph. (2.16)

In these integrals,ψ+
pi refers to a quantity after collision, k is the unit vector from the centre

of two particles at contact, w is the relative velocity between two particles and dpih is the
mean diameter defined as (dpi + dph)/2 where dpi and dph are diameters of phase i and h,
respectively. The symbol f ∗

pih refers to the joint pair distribution function for phases i and h
at the contact point. With an assumption of random motion of particles, it is approximated
with a Taylor’s expansion at contact point as

f ∗
pih = g0 fpi fph

(
1 + dpih

2
k · ∇ ln

(
fph

fpi

))
, (2.17)

where g0 is the radial distribution. To compute integrals, we presume that both charge and
velocity distributions follow a Maxwellian distribution. The probability density function
for the discrete phase i is then defined as

fpi(cpi, qpi, x, t) = npi

(
mpi

2πΘpi

)3/2

exp
(

− mpi

2Θpi
(cpi − Upi) · (cpi − Upi)

)
︸ ︷︷ ︸

fpi,c(
mpi

2πQpi

)1/2

exp
(

− mpi

2Qpi
(qpi − Qpi)

2
)

︸ ︷︷ ︸
fpi,q

. (2.18)

We aim to develop the constitutive closures and the charge transport equation for
collisional granular flows with bidisperse charged particles where charge transfer occurs
mainly via particle–particle collisions. Therefore, the correlation between charge and
velocity has been neglected in the probability density function. For the dilute regime, this
assumption is invalid and an additional term arising from self-diffusion of charge should
be modelled. Readers are referred to a rigorous theoretical development achieved by a
recent study of Montilla et al. (2020) on the modelling of the charge-velocity correlation
for monosize particles.

2.4. Revisiting hydrodynamic equations for bidisperse granular flows
Before presenting the charge transport equation, we revisit the hydrodynamic equations
for the granular flows with bidisperse size distribution. The transport equations for
mass (ψpi = 1), momentum (ψpi = cpi) and granular temperature (ψpi = (c′

pi · c′
pi)/2 =

3(Θpi/mpi)/2) are derived from the Enskog equation (2.12). The closure relations for
the collision terms are derived by following Iddir & Arastoopour (2005). However, there
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are slight differences in the derived constitutive equations discussed below. If there is no
exchange of mass or breaking of particles during collisions, the mass balance for the phase
i is written as

∂

∂t

(
αpiρpi

)+ ∇ · (αpiρpiUpi
) = 0. (2.19)

The momentum balance for the phase i is written as

αpiρpi

[
∂

∂t
+ Upi · ∇

]
Upi =

∑
h=i,j

(−∇ · θ ih + χ ih
)− ∇ ·

(
αpiρpi〈c′

pic
′
pi〉
)

+αpiρpi

mpi
QpiE. (2.20)

Here, the electric field, E, is computed with (2.4) and (2.5). The first two terms on
the right-hand side represent the rate of change of momentum due to collisions and
redistribution due to the random velocity fluctuations, respectively. The flux term for the
collisional operator is defined as

θ ih = npinph
mpimph

(mpi + mph)

(
mpimph

ΘpiΘph

)3/2

(1 + ec)g0
d3

pih

48

[
πM1I − 2dpih

5
√

πM2

× mpimph

(mpi + mph)

∑
l=i,h

(
1
Θpl

[
(∇Upl)

s + 5
6
∇ · UplI

])⎤⎦ , (2.21)

with

(∇Upl)
s = 1

2

(
(∇Upl)+ (∇Upl)

T)− 1
3∇ · UplI. (2.22)

The source term is given by

χ ih = −npinph
mpimph

(mpi + mph)

(
mpimph

ΘpiΘph

)3/2

(1 + ec)g0
d2

pih

6

[√
π

4
(Upi − Uph)M3

+ dpih
π

8

[
M1

(
∇ ln

nph

npi
− 3

2
∇ ln

Θph

Θpi

)
+ 1

4

(
3M4

(
mph∇Θph

Θ2
ph

− mpi∇Θpi

Θ2
pi

)

+ 5M5
mpimph

(mpi + mph)2

(
mpi∇Θph

Θ2
ph

− mph∇Θpi

Θ2
pi

)

+ 10BM6
mpimph

(mpi + mph)

(
∇Θph

Θ2
ph

+ ∇Θpi

Θ2
pi

))]]
, (2.23)

where ec is the restitution coefficient with ec = 1 for fully elastic collisions. The coefficients
Mk (k = 1, . . . , 6) and B are given in table 1. The derivations of these terms are not given
here but the reader is referred to Iddir & Arastoopour (2005) for further details.
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A = mpiΘpj + mpjΘpi

2ΘpiΘpj
, D = mpimpj(mpjΘpj + mpiΘpi)

2(mpi + mpj)2ΘpiΘpj
, B = mpimpj(Θpj −Θpi)

2(mpi + mpj)ΘpiΘpj

M1 = 1
A3/2D5/2 + 5B2

A5/22D7/2 + 35B4

8A7/2D9/2 + · · ·

M2 = 1
A3/2D3 + 3B2

A5/2D4 + 6B4

A7/2D5 + · · ·

M3 = 1
A3/2D2 + 2B2

A5/2D3 + 3B4

A7/2D4 + · · ·

M4 = 1
A5/2D5/2 + 25B2

6A7/2D7/2 + 245B4

24A9/2D9/2 + · · ·

M5 = 1
A3/2D7/2 + 7B2

2A5/2D9/2 + 63B4

8A7/2D11/2 + · · ·

M6 = 1
A5/2D7/2 + 7B2

2A7/2D9/2 + · · ·

M7 = 1
A5/2D3 + 3B2

A7/2D4 + · · ·

M8 = 1
A7/2D3 + 21B2

5A9/2D4 + · · ·

M9 = 1
A5/2D4 + 4B2

A7/2D5 + · · ·

M10 = 1
A5/2D3 + 9B2

A7/2D4 + 30B4

A9/2D5 + · · ·

M11 = 1
A5/2D3 + 5B2

A7/2D4 + 14B4

A9/2D5 + · · ·

M12 = 1
A3/2D4 + 4B2

A5/2D5 + 10B4

A7/2D6 + · · ·

M13 = 1
A5/2D4 + 4B2

A7/2D5 + · · ·

M14 = 1
A5/2D5/2 + 15B2

2A7/2D7/2 + 175B4

8A9/2D9/2 + · · ·

N1 = 1
A3/2D12/5 Γ

(
12
5

)
+ B2

A5/2D17/5 Γ

(
17
5

)
+ B4

2A7/2D22/5 Γ

(
22
5

)
+ · · ·

N2 = 1
A5/2D12/5 Γ

(
12
5

)
+ 5B2

3A7/2D17/5 Γ

(
17
5

)
+ 7B4

6A9/2D22/5 Γ

(
22
5

)
+ · · ·

N3 = 1
A3/2D17/5 Γ

(
17
5

)
+ B2

A5/2D22/5 Γ

(
22
5

)
+ B4

2A7/2D27/5 Γ

(
27
5

)
+ · · ·

N4 = 1
A5/2D17/5 Γ

(
17
5

)
+ B2

A7/2D22/5 Γ

(
22
5

)
+ · · ·

N5 = 1
A3/2D29/10 Γ

(
29
10

)
+ B2

A5/2D39/10 Γ

(
39
10

)
+ B4

2A7/2D49/10 Γ

(
49
10

)
+ · · ·

Table 1. Model coefficients of flux and source terms for the phase momentum, granular temperature and
charge transport equations. The model coefficients, Mk (k = 1, . . . , 6) and B, are used in (2.21) and (2.23). The
model coefficients, Mk (k = 1, . . . , 14) and B are used in (2.25) and (2.26). The model coefficients, Nk (k =
1, . . . , 5) and B, are used in (2.36)–(2.38), (2.40) and (2.41). The symbol Γ (.) refers to the gamma function.
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Charge transport equation for bidisperse granular flows

The transport equation for granular temperature of the solid phase i is given by

3
2
∂

∂t

(
αpiρpi

Θpi

mpi

)
+ 3

2
∇ ·

(
αpiρpiUpi

Θpi

mpi

)
=
∑
h=i,j

(−∇ · qih + γih
)
, (2.24)

with the flux, qih, and source, γih, terms defined as

qih = −npinph
mpimph

(mpi + mph)

(
mpimph

ΘpiΘph

)3/2

(1 + ec)g0d3
pih

(
dpih

48
√

π

[(
∇ ln

[
nph

npi

]

+3
2
∇ ln

[
Θpi

Θph

])
BM7 + 5

4

(
mph

∇Θph

Θ2
ph

− mpi
∇Θpi

Θ2
pi

)
BM8 + 3mpimph

2(mpi + mph)2
BM9

×
(

mpi
∇Θph

Θ2
ph

− mph
∇Θpi

Θ2
pi

)
+ mpimph

2(mpi + mph)

(
∇Θph

Θ2
ph

+ ∇Θpi

Θ2
pi

)
M10

]

+ (1 − ec)

64
mph

(mpi + mph)

[
2π

3
(Upi − Uph)M1 + √

πdpih

[
2
3

(
∇ ln

[
nph

npi

]
+ 3

2
∇ ln

[
Θpi

Θph

])
M2

+ 1
2

(
mph

∇Θph

Θ2
ph

− mpi
∇Θpi

Θ2
pi

)
M11 + mpimph

(mpi + mph)2

(
mpi

∇Θph

Θ2
ph

− mph
∇Θpi

Θ2
pi

)
M12

+2B
mpimph

(mpi + mph)

(
∇Θph

Θ2
ph

+ ∇Θpi

Θ2
pi

)
M13

]])
, (2.25)

and

γih = npinph
mpimph

(mpi + mph)

(
mpimph

ΘpiΘph

)3/2

(1 + ec)g0d2
pih

[√
π

4
BM7 − πdpih

160

×
[(

mph
∇ · Uph

Θph
− mpi

∇ · Upi

Θpi

)
M14 + 5B

mpimph

(mpi + mph)

(∇ · Uph

Θph
+ ∇ · Upi

Θpi

)
M6

]

− 1
8

mph

(mpi + mph)
(1 − ec)

[√
πM2 − πdpih

8

(
mph

∇ · Uph

Θph
− mpi

∇ · Upi

Θpi

)
BM6

−πdpih

8
mpimph

(mpi + mph)

(∇ · Uph

Θph
+ ∇ · Upi

Θpi

)
M5

]]
. (2.26)

The derived models are very similar to the ones proposed by Iddir & Arastoopour (2005)
but there are differences in the high-order terms of the model coefficients (see table 1).
The differences might result from the Taylor expansion of the relative velocity and the
centre of mass velocity multiplication (see (A13)) for integral of the collision operator.
Our approximation is detailed in Appendix A. Unfortunately, Iddir & Arastoopour (2005)
did not give an explicit explanation about how they treated this term. The assessment
benchmark of these revisited constitutive equations through hard-sphere simulation results
is given in § 3.

2.5. Transport equation for phase mean charge
In this section, we present the transport equation for mean charge for each phase. Assuming
that charge and velocity distributions are uncorrelated and using (2.12), the transport
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L. Ceresiat, J. Kolehmainen and A. Ozel

equation for the mean charge is given by

∂

∂t

(
αpiρpi

mpi
Qpi

)
+ ∇ ·

(
αpiρpi

mpi
QpiUpi

)
= C(qpi). (2.27)

The charge transfer during collision between particles is based on the model proposed
by Laurentie et al. (2013) with the phase effective work function, ϕph=i,j, and the electric
field, E. The transfer charge between particles l and m within the same phase (i.e. the
phase i) is given by

q(l)+pi = q(l)pi + dq = q(l)pi + Amax(k · w)ε0

(
−E · k +

q(m)pi − q(l)pi

πε0d2
pi

)
, (2.28)

q(m)+pi = q(m)pi − dq = q(m)pi − Amax(k · w)ε0

(
−E · k +

q(m)pi − q(l)pi

πε0d2
pi

)
. (2.29)

For between different phases;

q(l)+pi = q(l)pi + dq = q(l)pi + Amax(k · w)ε0

(
ϕpi − ϕpj

δce
− E · k + 1

πε0

(
q(m)pj

d2
pj

−
q(l)pi

d2
pi

))
,

(2.30)

q(m)+pj = q(m)pj − dq = q(m)pj − Amax(k · w)ε0

(
ϕpi − ϕpj

δce
− E · k + 1

πε0

(
q(m)pj

d2
pj

−
q(l)pi

d2
pi

))
.

(2.31)

In (2.30) and (2.31), δc is the cutoff distance of electron transfer, e is the elementary charge
and ε0 is the electrical permittivity in a vacuum; Amax is the maximum overlapping area
computed with help of the contact Hertz theory as (Kolehmainen et al. 2017a)

Amax = 2πr∗
p

(
15m∗

p

16Y∗
p
√

r∗
p

)2/5

|k · w|4/5 = A∗|k · w|4/5. (2.32)

The maximum overlapping area is approximated by a collision of two elastic particles
that follows a conversion of the particle kinetic energy into the potential energy of a
Hertzian spring (it is assumed that the electric potential energy is negligible as compared
with the potential energy in the spring). In (2.32), A∗ is the effective area which is only
a function of particle physical properties such as the effective Young modulus, Y∗

p , the
effective mass, m∗

p, and the effective radius, r∗
p , that are defined as

1
Y∗

p
=

1 − ν2
pi

Ypi
+

1 − ν2
pj

Ypj
,

1
r∗

p
= 1

rpi
+ 1

rpj
,

1
m∗

p
= 1

mpi
+ 1

mpj
. (2.33a–c)

The maximum contact area could be more accurately computed for granular material with
viscoelastic particles by following Schwager & Pöschel (2008) or Brilliantov & Pöschel
(2010). However, due to the complex nature of contact electrification, an agreement on
the charge transfer model in granular material has not yet been reached, as discussed by
Matsusaka et al. (2010b). The contact electrification also depends on many other particle

926 A35-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

73
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.739


Charge transport equation for bidisperse granular flows

properties such as shape, roughness, surface functionalization etc. Therefore, we preferred
to use the elastic spheres in the phenomenological charge transfer model.

The closure of the collisional operator in (2.27) is defined as follows:

C(qpi) =
∑
h=i,j

(−∇ · θ
q
ih(qpi)+ χ

q
ih(qpi)

)
, (2.34)

where the flux term, θ
q
ih(qpi), represents the spatial redistribution of charge and the source

term, χq
ih(qpi), represents the charge transfer between phases. The derivations of flux and

source terms for the phase charge transport equation are discussed in Appendix A and their
final forms are given in (A31) and (A32), respectively. Here, we present these equations
in a compact form by following Kolehmainen et al. (2018b). The flux term, θ

q
ih, is then

written as

θ
q
ih = −σ θih · E − κθih

(
∇Qph

d2
ph

+ ∇Qpi

d2
pi

)
− Dθ

ih

(
ϕpi − ϕph

δce
+ 1

πε0

(
Qph

d2
ph

− Qpi

d2
pi

))
,

(2.35)

with the triboelectric conductivity tensor, σ θih, the triboelectric diffusivity, κθih, and the
triboelectric phase coupling coefficient, Dθ

ih. These coefficients are defined below. The
first term on the-right-hand side in (2.35) represents a current density due the electric field
resulting from the charge on the particles. The second term results from the dispersion
of charge while the third term arises due to charge difference between particles during a
collision. The triboelectric phase coupling coefficient appears due to the non-equipartition
of granular temperature (see (2.38)). These terms are defined in explicit forms as

σ θih = npinph

(
mpimph

ΘpiΘph

)3/2

A∗ε0g0
d3

pih

8
√

π

[
− 5

21
N1I + 3

1102
dpih

mpimph

(mpi + mph)
N5

×
⎡
⎣∑

l=i,j

1
Θpl

(
(∇Upl)+ (∇Upl)

T + ∇ · UplI
)⎤⎦
⎤
⎦ , (2.36)

κθih = npinph

(
mpimph

ΘpiΘph

)3/2

A∗g0
d4

pih√
π

5
336

N1, (2.37)

Dθ
ih = npinph

(
mpimph

ΘpiΘph

)3/2

A∗ε0g0
5

112
d4

pih
√

π

[
1
3

(
∇ ln

(
nph

npi

)
+ 3

2
∇ ln

(
Θpi

Θph

))
N1

+ 1
8

(
mph

∇Θph

Θ2
ph

− mpi
∇Θpi

Θ2
pi

)
N2 + 1

6
mpimph

(mpi + mph)2

(
mpi

∇Θph

Θ2
ph

− mph
∇Θpi

Θ2
pi

)
N3

+1
3

B
mpimph

(mpi + mph)

(
∇Θph

Θ2
ph

+ ∇Θpi

Θ2
pi

)
N4

]
. (2.38)

The source term, χq
ih, is written as

χ
q
ih = −σ

χ
ih · E + Dχih

(
ϕpi − ϕph

δce
+ 1

πε0

(
Qph

d2
ph

− Qpi

d2
pi

))
, (2.39)
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with the triboelectric source conductivity vector, σ
χ
ih, and the triboelectric source phase

coupling coefficient, Dχih, that are defined as

Dχih = npinph

(
mpimph

ΘpiΘph

)3/2

× A∗ε0g0d2
pih

5
√

π

28

[
N1 − 7dpih

57
mpimph

(mpi + mph)

(∇ · Uph

Θph
+ ∇ · Upi

Θpi

)
N5

]
,

(2.40)

σ
χ
ih = npinph

(
mpimph

ΘpiΘph

)3/2

A∗ε0g0d3
pih

5
√

π

168

[[
∇ ln

(
nph

npi

)
+ 3

2
∇ ln

(
Θpi

Θph

)]
N1

+ 3
4

(
mph

∇Θph

Θ2
ph

− mpi
∇Θpi

Θ2
pi

)
N2 + mpimph

2(mpi + mph)2

(
mpi

∇Θph

Θ2
ph

− mph
∇Θpi

Θ2
pi

)
N3

+ mpimph

(mpi + mph)

(
∇Θph

Θ2
ph

+ ∇Θpi

Θ2
pi

)
BN4

]]
. (2.41)

The coefficients Nk (k = 1, . . . , 5) and B in the flux and source terms are listed in table 1.

2.6. Constitutive relations with linear departures from mixture properties
The model derived above has been given under a general form assuming the probability
function to be a Maxwellian distribution with a distinct granular temperature and mean
velocity for each solid phase. These assumptions about the probability function are valid
as long as the flow is nearly elastic and close to equilibrium. To extend the range of
application for the model, it should include a non-Maxwellian distribution (i.e. Galvin
et al. 2005; Garzó et al. 2007b) to take into account the inelastic collisions and their
consequences on the collisional terms as well as the deviation from equilibrium. It is
important to underline that our charge model assumed there is no correlation between
the charge and velocity probability function, therefore analytical derivations of charge
collision integrals given in Appendix A are independent of the hydrodynamic model for
either nearly elastic or inelastic collisions.

In this study, the assessment for the model including the charge transport equation for a
binary mixture is done assuming that the particles are fully elastic and the system deviated
slightly from equilibrium. To be consistent with this underlying assumption, the model
could be simplified with the granular temperature and mean velocity of each solid phase
undergoing a linear variation from the mixture value by following Jenkins & Mancini
(1987). The granular temperature and mean velocity for phase h (h = i, j) can be defined
as

Θph = Θpm + δΘph, Uph = Upm + δUph, (2.42a,b)

where δΘph and δUph are the linear deviations for the granular temperature and mean
velocity, respectively, and the subscript m refers to the mixture property. As these
deviations being small, the coefficients Mk (k = [1, 14]) and Nl (l = [1, 5]) listed in table 1
can be simplified by accounting for the first term only; the higher-order terms being
proportional to the difference between the granular temperature via the coefficient B
can be neglected (B ∝ (δΘpj − δΘpi) ≈ 0). Assuming that the gradient term multiplied by
the linear deviations turns to zero (δΘph∇ ≈ 0), all collisional terms given above can be
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Charge transport equation for bidisperse granular flows

reduced in new expressions as a function of the mixture properties. For the momentum
transport equation, the flux and source expressions become, respectively,

θm
ih = πnpinph(1 + ec)g0

d3
pih

3

[(
Θpm + mpiδΘpj + mphδΘpi

(mpi + mph)

)
I

− 2dpih

5

(
(mpimph)

π(mpi + mph)
Θpm

)1/2

× [((∇Upm)+ (∇Upm)
T)+ ∇ · UpmI

] ]
,

(2.43)

χm
ih = πnpinph(1 + ec)g0

d3
pih

3
Θpm

[
4

dpih
(δUpj − δUpi)

(
mpimph

2π(mpi + mph)Θpm

)1/2

+∇ ln
npi

nph
+ (mph − mpi)

(mpi + mph)
∇ lnΘpm

]
. (2.44)

For the granular temperature transport equation, the flux and source terms are given by

qm
ih = npinph

(mpi + mph)
(1 + ec)g0d4

pihΘpm

[
−2

3

(
2πΘpmmpimph

(mpi + mph)

)1/2

∇ lnΘpm + mph(1 − ec)

×
[

π

6dpih
(δu,h − δu,i)+ 1

4

(
2π(mpi + mph)Θpm

mpimph

)1/2

×
(

2
3
∇ ln

(
npi

nph

)
+ (mph − mpi)

(mpi + mph)
∇ lnΘpm

)]]
, (2.45)

γm
ih = 2npinphg0d2

pih(1 + ec)Θpm

[
2
(δΘ,h − δΘ,i)

Θpm(mpi + mph)

(
2πmpimphΘpm

(mpi + mph)

)1/2

− πdpih(mph − mpi)

10(mpi + mph)
∇ · Upm − mph

(mpi + mph)
(1 − ec)

[(
2π(mpi + mph)Θpm

mpimph

)1/2

−πdpih

2
∇ · Upm

]
+ πdpih

2(mpi + mph)

[
1
5

(
mpi∇ · δu,i − mph∇ · δu,h

)
+ mph

2
(1 − ec)

(∇ · δu,h + ∇ · δu,i
) ] ]

. (2.46)

In addition in our generic model, the collisional terms in the mean charge transport
equation can also be expressed in term of small deviations from the mixture parameter
for the granular temperature and the mean velocity. Following (2.35), the triboelectric
conductivity tensor, diffusivity and phase coupling coefficient in the flux term for unlike
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particles collision expression can be shortened as

σ θm
ih = √

πg0d3
pihnpinphA∗ε0

(
2Θpm

(mpi + mph)

mpimph

)9/10

Γ

(
12
5

)[
− 5

21
I

+ dpih
6

551

(
6mpimph

5(mpi + mph)Θpm

)1/2 [
(∇Upm)+ (∇Upm)

T + ∇ · UpmI
]]
,

(2.47)

κθm
ih = 5

42
√

πg0d4
pihnpinphA∗ε0

(
2Θpm

(mpi + mph)

mpimph

)9/10

Γ

(
12
5

)
, (2.48)

Dθm
ih = 1

14
√

πg0d4
pihnpinphA∗ε0

(
2Θpm

(mpi + mph)

mpimph

)9/10

Γ

(
12
5

)[
5
3
∇ ln

(
nph

npi

)

−11
4
(mph − mpi)

(mpi + mph)
∇ lnΘpm

]
. (2.49)

For similar particle collision (h = i), the triboelectric phase coupling coefficient turns to
zero and the other coefficients become

σ θm
ii = 29/5√πg0d3

pin
2
piA∗ε0

(
Θpm

mpi

)9/10

Γ

(
12
5

)[
− 5

21
I

+ dpi
6

551

(
3mpi

5Θpm

)1/2 [
(∇Upm)+ (∇Upm)

T + ∇ · UpmI
]]
, (2.50)

κθm
ii = 24/5 5

21
√

πg0d4
pin

2
piA∗ε0

(
Θpm

mpi

)9/10

Γ

(
12
5

)
. (2.51)

For the source term, the coefficients in (2.39) for unlike particle collision expression
become

σ
χm
ih = g0A∗ε0npinphd3

pih
5
√

π

21

(
2Θpm

(mpi + mph)

mpimph

)9/10

Γ

(
12
5

)[
∇ ln

(
nph

npi

)

− 9
10
(mph − mpi)

(mpi + mph)
∇ lnΘpm

]
, (2.52)

Dχm
ih = g0A∗ε0npinphd2

pih
10

√
π

7

(
2Θpm

(mpi + mph)

mpimph

)9/10

Γ

(
12
5

)

×
[

1 − 28dpih

57

(
6mpimph

5(mpi + mph)Θpm

)1/2

∇ · Upm

]
. (2.53)

For similar particle collisions, the source term for the mean charge transport equation turns
to zero.

3. Model assessment

We assess the generic models through Lagrangian hard-sphere simulations for three
case studies: (i) spatially homogeneous elastic granular gases with a random initial
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Charge transport equation for bidisperse granular flows

distribution of monodisperse and bidisperse solids with a bimodal charge distribution,
(ii) quasi-one-dimensional bidisperse elastic granular gases with spatial gradients and (iii)
a three-dimensional segregating inelastic bidisperse granular flow with conducting walls.
For these simulations, we varied the particle diameter ratio, Rd = dpj/dpi, the solid volume
fraction ratio, Rα = αpj/αpi, the particle density ratio, Rρ = ρpj/ρpi of phases i and j, and
phase initial charges. Recalling that the proposed model is applicable only for moderately
dense and dense flows where charge transfer is mainly driven by collisions, the model was
assessed for granular flows with the mixture solid volume fraction in a range from 0.2
to 0.4. The readers are referred to Appendix B for details of the Lagrangian hard-sphere
method. Briefly, the Lagrangian hard-sphere solver is based on the time-stepped algorithm
where the predicted locations are computed for each particle to ensure no overlapping
occurs. In the case of overlap between two particles, the positions of these particles are
reversed to the previous time step and the velocities are corrected by following the collision
rule. The new locations of particles are then updated using the corrected velocity. If the
overlapping distance is more than 10 % of the particle radius, the time step is decreased.
The hard-sphere simulations with a mixture volume fraction larger than 0.4 produced
several collisions where the ratio of overlap was greater than 5 % of the particle diameter
even for a very small time step. This was deemed unacceptable, therefore these simulations
were excluded from this study. To compute the electric field at the contact point, we
first map particle charges into the Eulerian cells to compute charge densities and then
solve Poisson’s equation with a spectral method for fully periodic simulations (§§ 3.1 and
3.2). For bounded simulations with conducting walls, we use a finite difference method to
discretize Poisson’s equation with the electric potential set to zero at walls.

As we present hard-sphere simulation results and Eulerian model predictions, we use
the following dimensionless quantities for the phase h (h = i, j):

t∗ = t
dpm

√
Θpm

mpm
, U∗

ph = Uph√
Θpm/mpm

, Θ∗
ph = Θph

Θpm
. (3.1a–c)

The subscript m refers to the mixture quantities defined as

Θpm = npiΘpi + npjΘpj

npi + npj
, (3.2)

mpm = npimpi + npjmpj

npi + npj
, (3.3)

dpm = dpi + dpj

2
, (3.4)

Qpm = npiQpi + npjQpj

npi + npj
. (3.5)

For spatially homogeneous and quasi-one-dimensional granular gas simulations, the mean
charge of the system is set to zero, Qpm = 0. We scale the mean phase charge as

Q∗
ph = Qph

Q0
p
, (3.6)

with a reference charge, Q0
p = 1 fC.

For all simulations below, Poisson’s ratio and Young’s modulus were kept constant (νph
= 0.42 and Yph = 0.5 MPa). The radial distribution function, g0, proposed by Jenkins &
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Case Phase dp ρp 〈αp〉 〈Θp〉×10−10 〈Qp〉 Np nc/Np
(μm) (kg m−3) (−) (kg m2 s−2) (fC)

A i 300 1500 0.1 3.55 −1 6258 ≈51
j 300 1500 0.1 3.55 1 6258

B i 60 1500 0.05 0.028 −1 391 143 ≈132
j 300 1500 0.15 3.55 42.3 9250

C i 100 150 0.05 0.013 −1 84 493 ≈240
j 300 1500 0.15 3.55 9 9351

Table 2. Particle properties and flow parameters for three spatially homogeneous flow configurations. Case-A
refers to a monodisperse case (two solid phase classes with the same particle properties but with opposite
initial charges); Case-B refers to a bidisperse case with a particle diameter ratio of Rd = 5 and the same particle
density; Case-C refers to a bidisperse case with a particle diameter ratio of Rd = 3 and a particle density ratio
of Rρ = 10. For all cases, a bimodal distribution of charge is imposed by following (3.9) with a total charge
equal to zero, Qpm = 0 (electrically neutral condition) and the restitution coefficient is set to unity, ec = 1.

Mancini (1987)

g0 = 1
(1 − μ)

+ 3
(

dpidpj

dpi + dpj

)
ξ

(1 − μ)2
+ 2

(
dpidpj

dpi + dpj

)2
ξ2

(1 − μ)3
, (3.7)

with the coefficients μ and ξ

μ = π

6

(
npid3

pi + npjd3
pj

)
, ξ = π

6

(
npid2

pi + npjd2
pj

)
, (3.8a,b)

was used for the Eulerian predictions in the following sections.

3.1. Spatially homogeneous bidisperse granular gas simulations
We performed hard-sphere simulations of elastic granular gases in a fully periodic cubic
box with a dimension of 32dpj × 32dpj × 32dpj. Here, dpj refers to the larger particle with a
diameter of 300 μm. The particle density and diameter, the domain-averaged solid volume
fraction, the granular temperature, the initial charge, the number of particles (Np) and the
number of collisions per particles (nc/Np) for each phase are listed for three simulation
cases in table 2. For all simulations, the particles were randomly distributed in the domain
and velocities were initialized with a Maxwellian distribution with a zero mean velocity for
each solid phase. The initial charges followed a bimodal distribution imposing a mixture
charge, Qpm, equal to zero. The difference of the work function was set to zero as well.
As the mixture charge was zero all at times, the macroscopic electric field turns to zero,
therefore, there was no electrostatic force acting on particles. For the phase i, we set the
initial mean charge equal to the reference charge, Q0

p, while the initial mean charge for the
phase j was imposed by the ratio of particle number density as

Qpi(x, 0) = Q0
p

Qpj(x, 0) = −npi

npj
Q0

p

⎫⎪⎬
⎪⎭ . (3.9)

For spatially homogeneous flow with elastic collisions (ec = 1) and without mean
convection, the set of equations given in the previous sections will be simplified to ordinary
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differential equations for granular temperature and charge evolution for each phase as

dΘpi

dt
= npj

mpimpj

mpi + mpj

(
mpimpj

ΘpiΘpj

)3/2 √
π

3
g0d2

pijBM7, (3.10)

dΘpj

dt
= −npi

mpimpj

mpi + mpj

(
mpimpj

ΘpiΘpj

)3/2 √
π

3
g0d2

pijBM7, (3.11)

dQpi

dt
= npj

(
mpimpj

ΘpiΘpj

)3/2 A∗
√

π
g0

5d2
pij

14

(
Qpj

d2
pj

− Qpi

d2
pi

)
N1, (3.12)

dQpj

dt
= −npi

(
mpimpj

ΘpiΘpj

)3/2 A∗
√

π
g0

5d2
pij

14

(
Qpj

d2
pj

− Qpi

d2
pi

)
N1. (3.13)

We first started with the monodisperse flow configuration represented by Case-A in table 2
where we had two solid classes with the same particle properties and domain-averaged
solid volume fraction but opposite initial charges. The granular temperature for each phase
was also identical, therefore the charge only evolved due to the mean charge difference
between phases. The total solid volume fraction was set to 〈αp〉 = 0.2 and half of the
particles were assigned initial charge of Qp = −1 fC while the other half were assigned
opposite charge of Qp = 1 fC. The scaled charge evolutions by simulation and model
prediction for each identical phase are shown in figure 1. The orange line shows the
solutions of (3.12) and (3.13) while the symbols show hard-sphere simulation results
for phases i (
 in blue) and j (Δ in blue). The mean charge of each phase follows an
exponential trend in time until they reach the total charge which is equal to zero. In Case-B,
we performed a simulation of bidisperse solid mixtures with a particle diameter ratio of
Rd = 5 and compared results with solutions of an equation set given in (3.10), (3.11), (3.12)
and (3.13). The total solid volume fraction was set to 〈αp〉 = 0.2 with a large-to-small
particle solid volume fraction ratio of Rα = 3. We also imposed different initial granular
temperatures for each phase. The initial mean charges for the phases i and j were equal to
Qpi = −1 fC and Qpj = 42.3 fC, respectively. Granular temperature and charge equations
were coupled with sequential solutions. Figure 2 shows the time evolution of the scaled
granular temperature and the scaled charge for each phase. The granular temperature
for each phase rapidly reaches the equilibrium state (dimensionless granular temperature
which is equal to one) at t∗ = 10 (figure 2a). In contrast, the mean charge goes to zero
with a slower trend (figure 2b). One can argue that the mean charge for the phase i follows
an exponential decay after the granular temperature reaches equilibrium, which is similar
to the monodisperse case (Case-A).

In Case-C, we imposed the particle diameter ratio of Rd = 3 and the particle density
ratio of Rρ = 10 at the same time. The total solid fraction and the large-to-small particle
solid fraction ratio were identical to those of Case-B. The initial mean charges were
Qpi = −1 fC and Qpj = 9 fC. The granular temperature and mean charge evolution are
shown in figure 3. A similar pattern as Case-B was observed with a quick evolution to the
equilibrium temperature and slower evolution for the mean charge. It can be observed that,
before t∗ = 10, the mean charge evolution does not follow the exponential decrease due
to the variation of the granular temperature. The Supplementary Movies 1 and 2 available
at https://doi.org/10.1017/jfm.2021.739 show particle motions and charge evolution by the
hard-sphere simulation for Case-C. For all spatially homogeneous granular gas cases, the
model predictions are in excellent agreement with hard-sphere simulation results.
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Figure 1. Evolution of scaled charge of the phase h (h = i, j) for Case-A. Particle properties and flow
parameters are given in table 2. The orange lines show the solutions of (3.12) and (3.13). Here, 
 in blue:
hard-sphere simulation results for the phase i and Δ in blue: hard-sphere simulation results for the phase j.
Charge was scaled by using (3.6).
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100

101

Θ
∗ ph

 (
–
)

t∗ (–)

0

15

30

45

0 10 20 30 40 50

Q
∗ ph

 (
–
)

t∗ (–)

(b)(a)

Figure 2. Evolution of (a) scaled granular temperature and (b) scaled charge of the phase h (h = i, j) for
Case-B. Particle properties and flow parameters are given in table 2. The orange lines show the solutions of
(3.10), (3.11) in (a) and show the solutions of (3.12) and (3.13) in (b). Here, 
 in blue: hard-sphere simulation
results for the phase i and Δ in blue: hard-sphere simulation results for the phase j. Granular temperature and
charge were scaled by using (3.1a–c) and (3.6), respectively.

These simulation cases also allowed us to probe the truncation terms in M7 and N1 (see
table 1). We computed the mean errors between hard-sphere simulation results and model
predictions for phase granular temperature and phase mean charge for different truncation
orders and truncated the expansion if the mean error is lower than 5 %.

3.2. Quasi-one-dimensional bidisperse granular gas simulations with spatial gradients
As a second assessment benchmark, we performed hard-sphere simulations of bidisperse
elastic granular gases in a fully periodic rectangular box with a dimension of 384 dpj ×
12 dpj × 12 dpj (dpj is the diameter of the larger particle). For these simulations, we
imposed the solid volume fraction for each phase with a step function through the domain
and granular temperature difference between phases to validate gradient terms in the
derived models. Similar to homogeneous granular gas cases, the velocities were initiated
with a Maxwellian distribution with a mean velocity equal to zero for each phase. The total
charge was equal to zero with an initial mean charge of each phase imposed as follows:(

nL
pi + nR

pi

)
Qpi(x, 0)+

(
nL

pj + nR
pj

)
Qpj(x, 0) = 0. (3.14)

Here, nL
ph and nR

ph refer to particle number densities of the phase h for left and right sides
of the domain. If the solid phase is initially charged, the charge follows a Maxwellian
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Figure 3. Evolution of (a) scaled granular temperature and (b) scaled charge of the phase h (h = i, j) for
Case-C. Particle properties and flow parameters are given in table 2. The orange lines show the solutions of
(3.10), (3.11) in (a) and the solutions of (3.12) and (3.13) in (b). Here, 
 in blue: hard-sphere simulation results
for the phase i and Δ in blue: hard-sphere simulation results for the phase j. Granular temperature and charge
were scaled by using (3.1a–c) and (3.6), respectively.

Case dp ρp αL
p αR

p ΘL
p ×10−10 ΘR

p ×10−10 QL
p QR

p Np nc/Np

(μm) (kg m2 s−2) (−) (−) (kg m2 s−2) (kg m2 s−2) (fC) (fC) (−) (−)
D 300 1500 0.1 0.2967 2.1 2.1 −1 0.33764 20 945 ≈57
E 100 1500 0.02 0.06 0.0785 0.0785 −3 1 114 065 ≈206

300 1500 0.2948 0.0992 2.1 2.1 0 0 20 785
F 50 1500 0.005 0.015 0.00971 0.00971 −1 −1 228 099 ≈83

300 1500 0.296 0.099 2.1 2.1 10.94 10.94 20 801
G 100 150 0.02 0.06 0.00786 0.00786 1 1 114 065 ≈206

300 1500 0.2948 0.0992 2.1 2.1 −5.51 −5.51 20 752

Table 3. Particle properties and flow parameters for quasi-one-dimensional granular gas simulations. Case-D
refers to a monodisperse case; Case-E refers to a bidisperse case with a particle diameter ratio of Rd = 3; Case-F
refers to a bidisperse case with a particle diameter ratio of Rd = 6; Case-G refers to a bidisperse case with a
particle diameter ratio of Rd = 3 and a particle density ratio of Rρ = 10. For all cases, a bimodal distribution of
charge is imposed by following (3.9) with a total charge equal to zero, Qpm = 0 (electrically neutral condition)
and the restitution coefficient is set to unity, ec = 1.

distribution with a pre-defined non-zero mean value and varies with a step function in the
domain. The phase charge variance is then equal to a small value Qp/mph = 1 × 10−32 C2.
The simulation campaign for quasi-one-dimensional bidisperse granular gases where we
varied particle properties, domain-averaged solid volume fractions, granular temperatures
and initial mean charges are listed in table 3. For all these cases, the collisions were elastic
(ec = 1) and the electrostatic force was not taken into account.

By following Fox (2014), instead of solving the granular temperature balance equation
for each phase, we solve the total kinetic energy, Eph, for a solid phase h, which is a
conserved quantity. The total kinetic energy tensor for a solid phase h is defined as

Eph = 1
2

(
σ ph + Uph ⊗ Uph

)
, (3.15)

with the fluctuating kinetic energy tensor, σ ph. The granular temperature is given by the
trace of σ ph as

Θph

mph
= 1

3
tr(σ ph). (3.16)
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Hence, the total kinetic energy is given by

Eph = 3
2
Θph

mph
+ 1

2
tr(Uph ⊗ Uph). (3.17)

The complete set of mass, momentum, total kinetic energy and charge transport equation
for a phase h (h = i, j) is written in a conservative form as

∂

∂t
[αph] + ∇ · [αphUph] = 0

∂

∂t
[αphUph] + ∇ ·

⎡
⎣αph

⎛
⎝Uph ⊗ Uph)+ 1

ρph
(Pkin

ph I +
∑
l=i,j

θhl

⎞
⎠
⎤
⎦ = 1

ρph

∑
l=i,j

χhl

∂

∂t
[αphEph] + ∇ ·

⎡
⎣αphEphUph + Uph

ρph
·
⎛
⎝Pkin

ph I +
∑
l=i,j

θhl

⎞
⎠+ 1

ρph

∑
l=i,j

qhl

⎤
⎦

= 1
ρph

∑
l=i,j

(χhl · Uph + γhl)

∂

∂t
[αphQph] + ∇ ·

⎡
⎣αphQphUph + mph

ρph

∑
l=i,j

θ
q
hl

⎤
⎦ = mph

ρph

∑
l=i,j

χ
q
hl

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(3.18)

In the first block of the equation set, we have time derivative terms for the conserved
quantities, αph, αphUph, αphEph and αphQph. In the second block, the spatial fluxes with
the collisional flux terms representing variable exchange within and between phases are
given, as well as the kinetic granular pressure, Pkin

ph , which is defined as (e.g. Gidaspow
1994)

Pkin
ph = αph ρph

Θph

mph
. (3.19)

On the right-hand side, we have non-conservative source terms representing the dissipation
of a quantity between different phases. The phase solid volume fraction, αph, the phase
velocity, Uph, the phase total kinetic energy, Eph, and the phase mean charge, Qph, are then
found from the conserved quantities. The phase granular temperature,Θph, is computed by
(3.17). The given conservative forms can be solved using any finite-volume method. Here,
the time derivatives were discretized with the Euler method whereas the spatial fluxes were
computed with a Lax–Friedrichs scheme with van Albada slope limiter.

We first compared hard-sphere simulation results with the developed model predictions
for a quasi-one-dimensional granular gas simulation of monodisperse particles named
Case-D in table 3. The charge and solid volume fraction were imposed with a step
function and the total charge inside the system was equal to zero. The initial conditions
for hard-sphere simulation with blue dots are shown in figure 4. This figure also shows
the evolution of solid volume fraction, velocity, granular temperature and charge by the
simulation and the model predictions (solid lines) at t∗ = 33.33 (top) and t∗ = 66.6
(bottom). The phase velocity rapidly evolves due to the solid volume fraction gradient
and the wave-like behaviour is seen through the periodic domain in time (figure 4b). The
non-uniform granular temperature profile also develops as a wave-like shape (figure 4c).
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Figure 4. Evolution of (a) phase solid volume fraction, (b) phase scaled velocity, (c) phase scaled granular
temperature and (d) phase scaled mean charge for Case-D at two time instants. Top and bottom figures refer to
the simulation results and the model predictions at t∗ = 33.33 and t∗ = 66.66, respectively. Here, � in blue:
initial conditions for the hard-sphere simulation. black solid line: Eulerian model predictions and � in orange:
hard-sphere simulation results. Variables were scaled by using (3.1a–c), (3.2) and (3.6).

Initially, the granular pressure induces a solid flux that leads to spatial redistribution of the
granular temperature due to the stress production term in the fluctuating energy equation
and ‘thermal’ diffusion. Wave-like solid fluxes from left and right boundaries also lead to
local increases and decreases in granular temperature. As expected, the charge distribution
dissipates and goes to zero (figure 4d). All these behaviours are very well captured by our
model predictions. However, the Eulerian model overestimated the solid volume fraction
and the granular temperature at x/L = 0.2 and t∗ = 33.33 (figure 4a,c). Additionally, the
location of velocity sharp gradient t∗ = 66.66 was slightly mispredicted by the model.

Case-E presents a quasi-one-dimensional simulation case of a bidisperse solid mixture
with a particle diameter ratio of Rd = 3. The total solid volume fraction 〈αp〉 was equal to
0.237 and, initially, only the phase i particles were charged. The simulation results and the
model predictions for the phases i and j at t∗ = 25 and t∗ = 50 are shown in figures 5 and
6, respectively. One can see that both solid phases rapidly reach the mixture mean velocity
and granular temperature. After phases reach the equilibrium state, the flow is mainly
driven by the gradient of solid volume fraction, which is a slow process for this specific
case (figures 5a and 6a). The charge evolution shows the charge repartition between the
solid phases and the phase j picks up a large amount of charge before decreasing towards
zero charge in time (figures 5d and 6d). This second stage is slower as the granular
temperature of each phase has reached the mixture value; the contribution from the electric
field in (2.35) tends to zero and the exchange of charge is driven mainly by the difference
of charge between phases. To conclude, the hard-sphere simulation results are very well
predicted by the Eulerian model.

We compared the simulation results and the model predictions for a larger particle
diameter ratio and the charged particles for both phases in Case-F. The particle diameter
ratio, Rd, was set to 6 and the average solid fraction was slightly less than that of Case-E.
The simulation results and the model predictions for the phases i and j at t∗ = 28.5
and t∗ = 85.5 are shown in figures 7 and 8, respectively. Similar to Case-E, the phase
granular temperatures and the phase velocities quickly saturate to the mixture values.
The predictions of hydrodynamic variables evolution are in very good agreement with the
simulation results. However, there is a discrepancy between the results for charge evolution
and particularly, the phase charges are overestimated at t∗ = 85.5 by the model predictions.
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Figure 5. Evolution of (a) phase solid volume fraction, (b) phase scaled velocity, (c) phase scaled granular
temperature and (d) phase scaled mean charge of the phase h (h = i, j) for Case-E at t∗ = 25. Here, � in blue:
initial conditions for the hard-sphere simulation. black solid line: Eulerian model predictions and � in orange:
hard-sphere simulation results. Variables were scaled by using (3.1a–c), (3.2) and (3.6).
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Figure 6. Evolution of (a) phase solid volume fraction, (b) phase scaled velocity, (c) phase scaled granular
temperature and (d) phase scaled mean charge of the phase h (h = i, j) for Case-E at t∗ = 50. Here, black solid
line: Eulerian model predictions and � in orange: hard-sphere simulation results. Variables were scaled by
using (3.1a–c), (3.2) and (3.6).

This difference might be explained by the self-diffusion of charge with velocity-charge
correlation (Montilla et al. 2020) in the dilute regime which is not modelled for
this case.

In Case-G, we set the particle diameter ratio, Rd, to 3 and set the density ratio, Rρ , to
10. The average solid volume fraction and the number of particles are identical to Case-E.
Each phase is initially charged following (3.14). The simulation results and the model
predictions for Case-G at t∗ = 25 and t∗ = 50 are shown in figures 9 and 10, respectively.
The charge for both phases shows a ‘wavy’ pattern in the domain and these trends are
very well captured with our model. The animation of charge evolution by the hard-sphere
simulation for Case-G is given in Supplementary Movie 3.

3.2.1. Quasi-one-dimensional bidisperse granular gas simulation with a work function
difference

In this short section, we show how the work function difference between phases generates
charge with the Eulerian model. Starting from Case-E given in table 3, the work functions
of 3.9 and 4.2 eV were imposed for the phases i and j, respectively. The Eulerian
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Figure 7. Evolution of (a) phase solid volume fraction, (b) phase scaled velocity, (c) phase scaled granular
temperature and (d) phase scaled mean charge of the phase h (h = i, j) for Case-F at t∗ = 28.5. Here, � in
blue: initial conditions for the hard-sphere simulation. black solid line: Eulerian model predictions and � in
orange: hard-sphere simulation results. Variables were scaled by using (3.1a–c), (3.2) and (3.6).
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Figure 10. Evolution of (a) phase solid volume fraction, (b) phase scaled velocity, (c) phase scaled granular
temperature and (d) phase scaled mean charge of the phase h (h = i, j) for Case-G at t∗ = 50. Here, black solid
line: Eulerian model predictions and � in orange: hard-sphere simulation results. Variables were scaled by
using (3.1a–c), (3.2) and (3.6).

simulation was performed with a negative work function difference �ϕp = ϕpi − ϕpj
for a duration of t∗ = 13 410 (equal to 60 s in physical time). It is worth noting that
the hard-sphere simulation is not computationally affordable for this duration but it is
well established that the charge build-up is a slow process (i.e. it takes more than a
few minutes to reach the saturated charge in the vibrated beds shown by Kolehmainen
et al. 2017b). Therefore, the simulations with longer duration or steady-state solutions
are necessary to have a better understanding of effects of the tribocharging on the
hydrodynamics.

The evolution of hydrodynamic variables and charges for Case-E with a work function
difference by the Eulerian predictions is shown in figure 11. The solid volume fraction
for each phase slowly reaches a flat profile (figure 11a) and the phase velocities dissipate
quickly and become zero at t∗ > 13 410 (figure 11b). The granular temperatures reach
an equilibrium value which is slightly lower than that of Case-E (figure 6c). Due to the
work function difference, a bipolar charge distribution occurs and each phase reaches
an equilibrium value (figure 11d). For this case, we also accounted for the electrostatic
force in the phase momentum equations. After a short duration (t∗ > 223.5), the electric
field became very small in the domain, therefore, the electrostatic force has a limited
effect on the momentum and energy evolution. We also performed the same case with
a positive function difference (not shown here) and obtained a very similar evolution
for hydrodynamic variables with an inverse bipolar charge distribution (the phase i has
a negative charge whereas the phase j has a positive charge).

3.2.2. Knudsen number analysis
We solved the hydrodynamic equations along the x-direction for quasi-one-dimensional
simulations and, here, the validity of these computations in the continuum regime was
tested with a Knudsen number analysis. The Knudsen number, Kn, is defined as

Kn = λ
L
, (3.20)
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Figure 11. Evolution of (a) phase solid volume fraction, (b) phase scaled velocity, (c) phase scaled granular
temperature and (d) phase scaled mean charge of the phase h (h = i, j) for Case-E with a negative work function
difference between phases by the Eulerian predictions at various time instants. Work functions for phases i
and j are 3.9 and 4.2 eV, respectively. Black, blue, red and green lines refer the Eulerian predictions at t∗ =
0, 223.5, 2 235, 13 410, respectively. Variables were scaled by using (3.1a–c), (3.2) and (3.6).

where λ is the mean free path and L is a macroscopic length scale. In a dense granular
fluid, the mean free path is given by Garzó (2005) as

λ = dp

6
√

2αp g0(αp)
. (3.21)

Fullmer et al. (2017) and Wang et al. (2019) chose αp/|∇αp|, Up/|∇Up| andΘp/|∇Θp| for
the characteristic length scale, L. By following these studies, we define the three Knudsen
numbers based on the gradients of solid volume fraction, velocity and granular temperature
for the phase i as follows:

Knαpi = 5

6
√

2

dpi |∇αpi|
α2

pi g0(αpi)
, (3.22)

KnUpi = 5
12

dpi |∇Upi|
αpi g0(αpi)

√
Θpi/mpi

, (3.23)

KnΘpi = 5

6
√

2

dpi |∇Θpi/mpi|
αpi g0(αpi)Θpi/mpi

. (3.24)

For the quasi-one-dimensional simulations, instead of computing a Kn value averaged
over the computation domain that would be misleading, the Knudsen profiles were
computed along the x-direction at various time instants. An example of the profiles of
the three Knudsen numbers defined by (3.22), (3.23) and (3.24) for each phase (i and j)
and the mixture is shown in figure 12 for Case-E at t∗ = 25 (top) and t∗ = 50 (bottom).
One can see that all three Knudsen numbers are in the range of several orders of magnitude
from approximately 10−6 to 10−1. So that, the low Knudsen number assumption is valid
for our simulation cases.

3.3. Wall-bounded segregating bidisperse granular flow
In the previous validation cases, the granular temperature for each phase evolves to
the mixture granular temperature. In this section, we further validate the proposed
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Figure 12. Profiles of Knudsen number based on (a) phase solid volume fraction (3.22), (b) phase velocity
(3.23) and (c) phase granular temperature (3.24), for Case-E at t∗ = 25 (top) and t∗ = 50 (bottom). Blue, red
and green lines refer to hydrodynamic variables of phases i, j and mean, respectively.
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Figure 13. Computational domain of segregating granular flow simulation. Different granular temperatures
were imposed to left (cold – blue) and right (hot – red) surfaces. Both surfaces are conducting wall with an
effective work function difference between particles and walls of 0.001 eV. Electric potential was equal to zero
at walls. Green spheres refer to larger particles while brown particles refer to smaller particles.

model with a three-dimensional steady segregating granular flow simulation where the
non-equipartition of granular temperature persists. Figure 13 shows the computational
domain which is a cubic box with a size of Lx = Ly = Lz = 24 dpj (dpj is the larger particle
diameter, see table 4). A granular temperature gradient along the x-direction is imposed
by left (cold) and right (hot) stationary conducting walls with different constant granular
temperatures.
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Case Phase dp ρp 〈αp〉 Θhot-wall/Θcold-wall Np nc/Np
(μm) (kg m−3) (−) (−) (−)

H i 150 1500 0.04 6 8450 ≈4100
j 300 1500 0.16 6 4028

Table 4. Particle properties and flow parameters for a three-dimensional steady segregating flow configuration.
Case-H refers to a bidisperse case with a particle diameter ratio of Rd = 2 and the same particle density (the
mass ratio is equal 8). Initial charge for each phase is imposed as 1 fC. The restitution coefficient is set to
ec = 0.9.

By following Galvin et al. (2005), for the hard-sphere simulation, we imposed
post-collision velocities of a particle colliding with a wall as

cpost,x =
√

−4
3
Θwall

mpi
ln z1 cos (2πz2), (3.25)

cpost,y =
√

−4
3
Θwall

mpi
ln z3 cos (2πz4), (3.26)

cpost,z =
√

−4
3
Θwall

mpi
ln z5 cos (2πz6), (3.27)

where Θwall is the imposed granular temperature at the wall and z1 − z6 are random
numbers generated from a uniform distribution within the interval of [0, 1]. The
post-collision velocity along the x-direction, cpost,x, is reversed according to the inward
normal vector of the wall. We also imposed the effective work function difference between
particles and conducting walls, ϕw−p, to maintain charge in the domain. Periodic boundary
conditions are imposed in the y- and z-directions. We do not account for any external force,
therefore the time-averaged mean velocity for each phase is equal to zero.

The particle densities and diameters and the domain-averaged solid volume fraction for
each phase are listed for a simulation case (Case-H) in table 4. The granular temperature
ratio between cold and hot walls was set to Θhot-wall/Θcold-wall = 6. The particles were
randomly distributed in the domain and velocities were initialized with a Maxwellian
distribution with a zero mean velocity for each solid phase. The total number of particles
was approximately 12 500. The particle velocities were updated when they contacted walls
based on (3.25), (3.26) and (3.27) and the kinetic energy dissipated through inelastic
collisions between particles (the restitution coefficient, ec, was 0.9). The effective work
function difference between particles and walls was set to�ϕw−p = ϕw − ϕp = 0.001 eV.
The initial charge on particles was equal to Qpi = Qpj = 1 fC.

For the hard-sphere simulation, we monitored the time evolution of domain-averaged
kinetic energy and charge to ensure that the flow reached a statistically steady state. We
computed the Eulerian variables such as granular temperature, mean charge for each
phase and mixture granular temperature for each time step and the time averaging of
these variables were carried out during a duration while an additional 4000 collisions
per particle occurred. To compute the Eulerian variables, we divided the computational
domain into cubic cells with a length of 2 dpj (the mesh configuration is 12 × 12 × 12). As
we determined the length of the unit cell, we ensured that a further mesh refinement had no
effect on the computed variables. The particle Lagrangian quantities such as velocity and
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charge were mapped by using a simple injection method where any Lagrangian properties
were averaged into a cell without using any smoothing function. A further averaging over
periodic directions (y and z) was undertaken to generate the profiles along the x-direction.
The same mesh configuration was also used to solve Poisson’s equation to compute the
electric field at the contact point for charge transfer by a finite difference approach during
the simulation (see Appendix B for the Lagrangian hard-sphere method).

For the charge transfer model, a boundary condition for a conducting wall is necessary.
Following our earlier work (Kolehmainen et al. 2018b), the charge balance for each phase
(h = i, j) at a conducting wall is computed by

σqh,w

(
�ϕw−p

δce
− 2Qph

πε0d2
ph

)
+ κqhnw · ∇Qph − (σqh − σqh,w

)
E · nw = 0. (3.28)

Here, nw is the inward normal unit vector of wall and triboelectric conductivity at the wall,
σqh,w, is given by

σqh,w = ε0αph
(
1 + 2(1 + ew)αphg0

)⎛⎝ 6
10
√

2(1 + ew)d2
ph

(
15 mph(1 − ν2

ph)

8Yph
√

dph

)2/5

Γ

(
9
10

)⎞⎠Θ9/10
ph ,

(3.29)

where ew is the restitution coefficient of wall–particle collisions which is set to the
particle–particle restitution coefficient, ec. The symbols σqh and κph are the triboelectric
conductivity and diffusivity defined in (A34) and (A35), respectively.

Equation (3.30) shows the complete set of the equations simplified for a one-dimensional
steady wall-bounded flow configuration

d
dx

⎛
⎝ 1
ρpi

⎡
⎣Pkin

pi +
∑
l=i,j

θil

⎤
⎦+ 1

ρpj

⎡
⎣Pkin

pj +
∑
l=i,j

θjl

⎤
⎦
⎞
⎠ = 0

d
dx

∑
l=i,j

qhl =
∑
l=i,j

γhl

d
dx

∑
l=i,j

θ
q
hl =

∑
l=i,j

χ
q
hl

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.30)

The first line is the mixture momentum balance for which the flux term and the kinetic
pressure are defined in (2.21) and (3.19). The energy balance for phase h is given in the
second line with the flux and the source terms defined in (2.25) and (2.26). The last line
represents the charge balance for phase h with the flux and source terms defined in (A31)
and (A32). All terms have been simplified for a one-dimensional flow configuration (see
figure 13) where the mean phase velocities are equal to zero.

Figure 14 shows profiles of the phase solid volume fraction, the scaled phase granular
temperature and the scaled phase mean charge for Case-H along the x-direction. The solid
volume fraction distributions (figure 14a,d) show a clear segregation of particles. The
larger particles (the phase j) are mainly located around x/L ≈ 0.3 and very few of them
stay close to the hot wall. The smaller particles (the phase i) tend to group around the larger
particles (x/L ≈ 0.1 and x/L ≈ 0.4) and, similarly to the larger particles, the number of
smaller particles decreases close to the hot wall. The model predictions (black solid line)
of both solid volume fraction profiles are good in agreement with hard-sphere simulation
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Figure 14. Profiles of phase solid volume fractions (a,d), phase scaled granular temperatures (b,e) and phase
scaled mean charges (c, f ) for Case-H. Black solid line: Eulerian model predictions and � in orange: hard
sphere simulation results. Variables were scaled by using Θcold-wall and Qeq,h from (3.31).

results (� in orange). The scaled granular temperature (the granular temperature is divided
by cold wall temperature) for the small particles (figure 14b) has a v-shape profile with a
minimum value at the highest total solid concentration location (x/L ≈ 0.3). The scaled
temperature for the larger particles (figure 14e) has also a v-shape profile up to the half of
the domain but it decreases to zero at x/L > 0.5 due to the absence of the larger particles.
At x/L > 0.5, the model overestimated the granular temperature, which points out the
limitation of the proposed model. It is worth noting that the larger particles are located
away from walls and mainly interacted with small particles. Therefore, the imposed wall
temperatures have a very limited effect on the fluctuating energy of the larger particles and
in the very dilute region (x/L > 0.5). A small number of particles stay nearly still.

Figure 14(c, f ) presents the mean charge profiles scaled by the equilibrium charge for
both phases. The equilibrium charge, Qeq,h, is defined as

Qeq,h = 1
2

π ε0

δc e
�ϕw−pd2

ph. (3.31)

We refer to the equilibrium charge as the maximum charge that a particle can acquire
by interactions of an isolated particle with a wall (without the electric field effect on the
charge transfer) (Kolehmainen et al. 2017a). One can see that the maximum value of the
scaled charge for both phases is smaller than one and this shows how the electric field
hinders the total charge in the domain. As we discussed in previous sections, the proposed
model has been assessed for granular flows with a mixture solid volume fraction between
0.2 and 0.4. For dilute flows (αpi < 0.1), the correlation between charge and velocity, or
namely the self-diffusion of charge, should be accounted for, which is crucial to accurately
predicting the charge distribution at x/L > 0.5 (αpi < 0.05 and αpj < 0.005). By following
Kolehmainen et al. (2018b), an ad hoc model for the self-diffusion of charge has been
included as

κ+
qh = dph

√
Θph/mph

9
√

πg0Vph
, (3.32)
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Figure 15. (a) Phase granular temperatures scaled by the mixture granular temperature, (3.2), with hard-sphere
simulations (b,c) scaled phase mean charges for Case-H. Black solid line: Eulerian model predictions with the
non-equipartition of granular temperature, blue solid line: Eulerian model predictions with the mixture granular
temperature and �: hard-sphere simulation results. Phase mean charges are scaled by (3.31).

where Vph is the volume of a particle within the solid phase h. The proposed model
prediction (black solid line) is in very good agreement with the hard-sphere simulation
results (� in orange) for the larger particles (figure 14 f ), even for dilute region (x/L >
0.5). However, the predicted charge profile for the smaller particles is less accurate and the
total amount of charge is underestimated (figure 14c).

To discuss why the non-equipartition of granular temperature is crucial for the charge
distribution, we computed the mean charge with the proposed model but, instead of using
different granular temperatures for each phase, we used the mixture granular temperature
(3.2) only for the constitutive equations (3.30) by imposing Θpi = Θpj = Θpm (that leads
B = 0). The flux and the source terms in the charge transfer equation are simplified for the
equipartitioning of granular temperature as follows:

θ
q
ih = −npinph

(
mpimph

ΘpiΘph

)3/2
A∗ε0g0

d3
pih

8
5
√

π

21
N1

×
[
−E + dpih

2
1

πε0

[(
Qph

d2
ph

− Qpi

d2
pi

)
× d

dx

(
ln
(

nph

npi

))
+ d

dx

(
Qph

d2
ph

)
+ d

dx

(
Qpi

d2
pi

)]]
, (3.33)

χ
q
ih = npinph

(
mpimph

ΘpiΘph

)3/2
A∗ε0g0d2

pih
5
√

π

28
N1

[
1

πε0

(
Qph

d2
ph

− Qpi

d2
pi

)
− dpih

6
E

d
dx

(
ln
(

nph

npi

))]
.

(3.34)

To emphasize how the non-equipartition of granular temperature takes place, the phase
granular temperature with hard-sphere simulation is scaled by the mixture granular
temperature and shown in figure 15(a). The larger particles contribute a big portion of
the mixture granular temperature at 0.1 < x/L < 0.3 whereas the small particles generate
the mixture granular temperature at x/L > 0.6. Figure 15(b,c) shows profiles of the scaled
mean charge for each phase. One can see that using the mixture granular temperature
leads to a nearly uniform charge distribution. Particularly, the charge conductivity, σ ih, is
overestimated for the larger particles at x/L > 0.6 due to overestimation of the granular
temperature of the phase j (orange dots in figure 15) by using the mixture granular
temperature (dash red line in figure 15), therefore it leads to a smoother distribution with
an underestimation of mean charge. As shown in (3.33)–(3.34), the charge distribution
along the x-direction is driven only by the charge difference between the solid phases
and the gradient of natural logarithm of solid volume fractions for the case with the
equipartition of granular temperature. The underestimation of mean charge further reduces
charge transfer due to the charge differences between phases. The slight variation on the
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Charge transport equation for bidisperse granular flows

left side (0.2 < x/L < 0.4) results from the segregation of particles and the formation of
a band of smaller particles (phase i) around the larger particles (phase j). These results
show that the non-equipartition of fluctuating kinetic energy should be accounted for in
bidisperse granular flows with charged particles such as wall-bounded flows commonly
associated with charged particle transport in powder technology.

4. Conclusion

In this study, we have revisited kinetic-theory-based hydrodynamic equations and derived
charge transport equation for bidisperse granular flows with tribocharging. Each solid
phase has separate mean velocity, total fluctuating kinetic energy, which is the sum
of the granular temperature and the trace of fluctuating kinetic tensor, charge variance
and mean charge. To close mass, momentum, total kinetic energy and mean charge
balance equations, a Maxwellian distribution for particle velocity and charge without a
cross-correlation (an assumption of both velocity and charge being independent variables)
has been used for local averaging of the Boltzmann equation. The constitutive relations of
collisional flux and source terms for momentum, granular temperature and charge balance
equations, which account for the rate of change of the quantities between phases and within
a phase, are then presented. We introduced a finite-volume scheme to discretize and solve
the transport equations and assessed the proposed models through various hard-sphere
simulations of three-dimensional spatially homogeneous and quasi-one-dimensional
spatially inhomogeneous bidisperse granular gases. For these cases, the mixture solid
volume fractions were set into a range from 0.2 to 0.4. However, the hard-sphere
algorithm cannot handle granular flows with mixture solid volume fraction higher than
0.4 due to the time-step limitation. We will improve our hard-sphere time-stepping
algorithm to study these flows in a future study. In these simulations, we varied particle
diameter and density ratios, initial phase charges and phase granular temperatures. The
proposed model predictions were in very good agreement with the hard-sphere simulation
results. Finally, a segregating bidisperse granular flow in a wall-bounded domain where
the non-equipartition of granular temperature persisted was studied with a steady-state
solution of the proposed model and hard-sphere simulation. This steady-state solution had
an acceptable level of accuracy compared with the hard-sphere simulation results. This
case also showed the importance of accounting for the charge-velocity correlation in the
dilute region and the non-equipartition of granular temperature to have an accurate charge
distribution.

In this study, we limited hard-sphere simulations and the proposed model predictions
to elastic granular flows (except the three-dimensional segregating bidisperse flow). For a
further study, we will extend the proposed models by the Chapman–Enskog expansion by
following Iddir & Arastoopour (2005) or couple the revisited Enskog theory (e.g. Garzó
et al. 2007b) with the developed charge transfer models to consider a wider range of
inelastic bidisperse granular flows.

We will also extend the proposed model accounting for the charge-velocity correlation,
which is significant in dilute granular flows (Montilla et al. 2020). In this study, we only
focus on the granular flows without the interstitial fluid effect but the interstitial fluid has
a huge impact on granular material hydrodynamics in particle technology applications
such as fluidized bed and pneumatic conveying applications. Introducing the fluid phase
will be also a topic of a future study. Additionally, the charge variance is assumed to be
a constant throughout this study but, as discussed by Singh & Mazza (2019), the charge
variance plays a role in the agglomeration of particles in homogeneous granular gases. It is
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necessary to develop the transport equation for charge variance and study its effects on the
charge transport properties.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.739.
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Appendix A. Derivations of flux and source terms for charge transport equation

The total collisional operator for the charge transfer given by (2.34) is decomposed into
two parts: same particle-type and different particle-type collisions. In this appendix, the
theoretical development for the different particle-type collision contributions is given. The
interested readers are referred to Kolehmainen et al. (2018b) for the collisions of the same
type of particles. With (2.15) and (2.16), the collisional operator between different particle
phases i and j can be recast as

Cij(qpi) = g0A∗ε0

(
−∇ ·

[
d3

pij

2
θ

q,(1)
ij +

d4
pij

4
θ

q,(2)
ij

]
+ d2

pijχ
q,(1)
ij +

d3
pij

2
χ

q,(2)
ij

)
. (A1)

The superscript (1) refers to the first part in the joint density function given in (2.17) and
the superscript (2) stands for the natural logarithm of the function extension. Each of the
terms given in (A1) is explicitly defined as follows:

θ
q,(1)
ij =

∫
k·w>0

|k · w|9/5k

[
E · k −

(
ϕpi − ϕpj

δce
+ 1

πε0

(
qpj

d2
pj

− qpi

d2
pi

))]
dΓ, (A2)

θ
q,(2)
ij =

∫
k·w>0

|k · w|9/5(k ⊗ k) · ∇
(

ln
fpj

fpi

)[
E · k −

(
ϕpi − ϕpj

δce
+ 1

πε0

(
qpj

d2
pj

− qpi

d2
pi

))]
dΓ, (A3)

χ
q,(1)
ij = −

∫
k·w>0

|k · w|9/5
[

E · k −
(
ϕpi − ϕpj

δce
+ 1

πε0

(
qpj

d2
pj

− qpi

d2
pi

))]
dΓ, (A4)

χ
q,(2)
ij = −

∫
k·w>0

|k · w|9/5k · ∇
(

ln
fpj

fpi

)[
E · k −

(
ϕpi − ϕpj

δce
+ 1

πε0

(
qpj

d2
pj

− qpi

d2
pi

))]
dΓ, (A5)

with dΓ = fpifpj dk dcpi dcpj dqpi dqpj. Let G be the centre of mass velocity and w be the
relative velocity between two colliding particles with masses of mpi and mpj

G = mpi(cpi − Upi)+ mpj(cpj − Upj)

(mpi + mpj)
, (A6)

w = (cpj − Upj)− (cpi − Upi). (A7)
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Charge transport equation for bidisperse granular flows

Then, the infinitesimal phase velocities are

dcpi dcpj = det

∣∣∣∣∣∣∣∣
∂cpi

∂G
∂cpi

∂w
∂cpj

∂G
∂cpj

∂w

∣∣∣∣∣∣∣∣ dG dw = dG dw. (A8)

The Cartesian z-coordinate aligns with the relative velocity w. The following two rotations
and the rotation matrix are used to convert a point from Cartesian coordinates to spherical
coordinates:

R = Rz(φ
′)TRy(θ

′)T =
⎡
⎣ cos(φ′) cos(θ ′) sin(φ′) − cos(φ′) sin(θ ′)

− sin(φ′) cos(θ ′) cos(φ′) sin(φ′) sin(θ ′)
sin(θ ′) 0 cos(θ ′)

⎤
⎦ . (A9)

The symbol k is the unit vector that points from particle j to particle i and is defined with
the angles θ and φ between k and w as

k =
⎡
⎣cos(φ) sin(θ)

sin(φ) sin(θ)
cos(θ),

⎤
⎦ (A10)

and the solid angle is given as dk = sin(θ) dθ dφ. The differentials of the centre of mass
velocity and the relative velocity are defined in the spherical coordinates

dG dw = G2 sin(θ∗) dθ∗ dφ∗ dGw2 sin(θ ′) dθ ′ dφ′ dw, (A11)

where θ∗ and φ∗ are the angles between G and w. For a probable collision, the constraint
is k · w > 0. The integral upper and lower bounds are then defined for both angles as
φ = [0 : 2π] and θ = [0 : π].

The product of the probability density function and the natural logarithm given in
(A2)–(A5) is written in the spherical coordinate system. The velocity contribution in the
product of the probability density function is defined as

fpi,c fpj,c = 1
(2π)3

(
mpimpj

ΘpiΘpj

)3/2

exp
(
−(AG2 + Dw2 + 2BGw cos(θ∗))

)
. (A12)

The definitions of coefficients A, D and B can be found in table 1. We use a Taylor
expansion for the term 2BGw cos(θ∗) (the integral is not defined)

fpi,c fpj,c = 1
(2π)3

(
mpimpj

ΘpiΘpj

)3/2 (
1 − 2BGw cos(θ∗)+ 2(BGw)2(cos(θ∗))2

− 4
3
(BGw)3(cos(θ∗))3 + 2

3
(BGw)4(cos(θ∗))4 + · · ·

)
× exp

(
−(AG2 + Dw2)

)
.

(A13)
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∫
k·w>0

(k · w)9/5 dk = w9/5 ∫ 2π

0

∫ π/2
0 (cos(θ))9/5 sin(θ) dθ dφ

= w9/5 5π

7∫
k·w>0

(k · w)9/5k dk = w9/5 ∫ 2π

0

∫ π/2
0 k(cos(θ))9/5 sin(θ) dθ dφ

= w9/5 10π

19
(0, 0, 1)T∫

k·w>0
(k · w)9/5(k ⊗ k) dk = w9/5 ∫ 2π

0

∫ π/2
0 (k ⊗ k)(cos(θ))9/5 sin(θ) dθ dφ

= w9/5 25π

168

⎡
⎣1 0 0

0 1 0
0 0 14/5

⎤
⎦

∫
k·w>0

(k · w)9/5(k ⊗ k ⊗ k) dk = w9/5 ∫ 2π

0

∫ π/2
0 (k ⊗ k ⊗ k)(cos(θ))9/5 sin(θ) dθ dφ

=
50π

551
w9/5

⎡
⎣[0, 0, 1]T [0, 0, 0]T [1, 0, 0]T

[0, 0, 1]T [0, 1, 0]T

[0, 0, 19
5 ]T

⎤
⎦

Table 5. List of integrals over the unit vector k.

The natural logarithm terms are then written as

∇ ln
(

fpj

fpi

)
= ∇ ln

(
npj

npi

)
+ ∇ ln

(
fpj,c

fpi,c

)
+ ∇ ln

(
fpj,q

fpi,q

)
(A14)

with ∇ ln
(

fpj,c

fpi,c

)
= 3

2
∇ ln

(
Θpi

Θpj

)
+
(

mpj
∇Θpj

2Θ2
pj

− mpi
∇Θpi

2Θ2
pi

)
G2 + mpimpj

2(mpi + mpj)2

×
(

mpi
∇Θpj

Θ2
pj

− mpj
∇Θpi

Θ2
pi

)
w2

− mpimpj

(mpi + mpj)

(
∇Θpj

Θ2
pj

+ ∇Θpi

Θ2
pi

)
Gw cos(θ∗)

+
(

mpj
∇Upj

Θpj
− mpi

∇Upi

Θpi

)
· G − mpimpj

mpi + mpj

(∇Upj

Θpj
+ ∇Upi

Θpi

)
· w.

(A15)

The same procedure is applied for each integral; first, the integral over k is computed (the
derivation functions can be found in table 5). With the help of the rotation matrix, we
transform variables in spherical coordinates to Cartesian coordinates. Due to symmetry,
the integral over rotation turns out to be zero. Finally, we compute the integrals over charge
and velocity spaces.

The first term in (A2) after the integral over k and the rotation is

θ
q,(1)
ij = 20π2

21
(E · I)

∫
w19/5G2 fpi fpj sin(θ∗) dθ∗ dφ∗ dG dw dqpi dqpj. (A16)
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Charge transport equation for bidisperse granular flows

Using the Taylor expansion given in (A13), we compute the integrals over the angles θ∗
and φ∗ and the charges qpi, qpj

θ
q,(1)
ij = 10

21

(
mpimpj

ΘpiΘpj

)3/2

npinpjE
∫ ∞

0

∫ ∞

0
w19/5G2

(
1 + 2

3
(BGw)2 + 2

15
(BGw)4 + · · ·

)

× exp
(
−(AG2 + Dw2)

)
dG dw. (A17)

By solving the last integral, we obtain the first contribution for the flux term with the
coefficients Nk (k=1,. . . ,5) given in table 1

θ
q,(1)
ij = 5

√
π

84
npinpj

(
mpimpj

ΘpiΘpj

)3/2

N1E. (A18)

The derivation of the second contribution to the flux term (A3) starts with the integral over
k

θ
q,(2)
ij = 50π

551
E ·
∫

w19/5G2R

⎡
⎢⎣

R [0, 0, 1]T R [0, 0, 0]T R [1, 0, 0]T

R [0, 0, 1]T R [0, 1, 0]T

R [0, 0,
19
5

]T

⎤
⎥⎦RT · ∇

(
ln

fpj

fpi

)
dΓ ′

︸ ︷︷ ︸
Iθ1

−
∫

w19/5G2

(
ϕpi − ϕpj

δce
+ 1

πε0

(
qpj

d2
pj

− qpi

d2
pi

))
R

⎡
⎣1 0 0

0 1 0
0 0 14/5

⎤
⎦RT · ∇

(
ln

fpj

fpi

)
dΓ ′

︸ ︷︷ ︸
Iθ2

.

(A19)

Here, dΓ ′ is

dΓ ′ = fpifpj sin(θ∗) dθ∗ dφ∗ dG sin(θ ′) dθ ′ dφ′ dw dqpi dqpj. (A20)

For the sake of the clarity, we decompose (A19) into two contributions and start with the
first integral. When applying rotation for the natural logarithm in (A15), only the last term
depending on the mean velocities and the vector w remains, other terms are equal to be
zero due to rotation and symmetry. It remains to evaluate the integrals over the velocity
norms and angles θ∗ and φ∗

Iθ1 = − 3
50π2 npinpj

mpimpj

(mpi + mpj)

(
mpimpj

ΘpiΘpj

)3/2 ∑
k=i,j

[
1
Θpk

(
(∇Upk)+ (∇Upk)

T + ∇ · UpkI
)]

×
∫ 2π

0

∫ π

0

∫ ∞

0

∫ ∞

0
w24/5G2

(
1 − 2BGw cos(θ∗)+ 2(BGw)2(cos(θ∗))2 − 4

3
(BGw)3(cos(θ∗))3

+2
3
(BGw)4(cos(θ∗))4 + · · ·

)
exp
(
−(AG2 + Dw2)

)
dw dG sin(θ∗) dθ∗ dφ∗ (A21)

= − 3
100

√
π

npinpj
mpimpj

(mpi + mpj)

(
mpimpj

ΘpiΘpj

)3/2 ∑
k=i,j

[
1
Θpk

(
(∇Upk)+ (∇Upk)

T + ∇ · UpkI
)]

N5.

(A22)
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For the second integral, Iθ2 , the rotation cancels the last two terms in (A15), and the
contributions from the gradients of granular temperature and charge remain. After that,
the integrals over charges from −∞ to ∞ are computed and this gives

Iθ2 = 32π

5
npinpj

∫ 2π

0

∫ π

0

∫ ∞

0

∫ ∞

0
w19/5G2

([
ϕpi − ϕpj

δce
+ 1

πε0

(
qpj

d2
pj

− qpi

d2
pi

)]

×
[
∇ ln

(
npj

npi

)
+ 3

2
∇ ln

(
Θpi

Θpj

)
+
(

mpj
∇Θpj

2Θ2
pj

− mpi
∇Θpi

2Θ2
pi

)
G2 + mpimpj

2(mpi + mpj)2

×
(

mpi
∇Θpj

Θ2
pj

− mpj
∇Θpi

Θ2
pi

)
w2 − mpimpj

(mpi + mpj)

(
∇Θpj

Θ2
pj

+ ∇Θpi

Θ2
pi

)
Gw cos(θ∗)

]

+ ∇Qpj

πε0d2
pj

+ ∇Qpi

πε0d2
pi

)
fpi,c fpj,c dG dw sin(θ∗) dθ∗ dφ∗. (A23)

On solving the remaining integrals, we obtain

Iθ2 = 2
5
√

π
npinpj

(
mpimpj

ΘpiΘpj

)3/2
[([

ϕpi − ϕpj

δce
+ 1

πε0

(
qpj

d2
pj

− qpi

d2
pi

)]
×
[
∇ ln

(
npj

npi

)

+3
2
∇ ln

(
Θpi

Θpj

)]
+ ∇Qpj

πε0d2
pj

+ ∇Qpi

πε0d2
pi

)
N1 + 3

4

[
ϕpi − ϕpj

δce
+ 1

πε0

(
qpj

d2
pj

− qpi

d2
pi

)]

×
((

mpj
∇Θpj

Θ2
pj

− mpi
∇Θpi

Θ2
pi

)
N2 + mpimpj

2(mpi + mpj)2

×
(

mpi
∇Θpj

Θ2
pj

− mpj
∇Θpi

Θ2
pi

)
N3 + B

mpimpj

(mpi + mpj)

(
∇Θpj

Θ2
pj

+ ∇Θpi

Θ2
pi

)
N4

)]
. (A24)

The source terms are derived by following the same procedure. We start with the first
part of the source term, (A4)

χ
q,(1)
ij = 20π2

7

∫
w19/5G2

(
ϕpi − ϕpj

δce
+ 1

πε0

(
qpj

d2
pj

− qpi

d2
pi

))
fpi fpj sin(θ∗) dθ∗ dφ∗ dG dw dqpi dqpj

= 20π2

7
npinpj

∫
w19/5G2

(
ϕpi − ϕpj

δce
+ 1

πε0

(
Qpj

d2
pj

− Qpi

d2
pi

))
fpi,c fpj,c sin(θ∗) dθ∗ dφ∗ dG dw

= 10
7

npinpj

(
ϕpi − ϕpj

δce
+ 1

πε0

(
Qpj

d2
pj

− Qpi

d2
pi

))(
mpimpj

ΘpiΘpj

)3/2 ∫ ∞

0

∫ ∞

0
w19/5G2

×
(

1 + 2
3
(BGw)2 + 2

15
(BGw)4 + · · ·

)
exp
(
−(AG2 + Dw2)

)
dw dG

= 5
√

π

28
npinpj

(
ϕpi − ϕpj

δce
+ 1

πε0

(
Qpj

d2
pj

− Qpi

d2
pi

))(
mpimpj

ΘpiΘpj

)3/2
N1. (A25)
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Charge transport equation for bidisperse granular flows

For the second part of the source term, (A5), we compute the k integral

χ
q,(2)
ij = 10π

19

∫
w19/5G2R

⎡
⎣0

0
1

⎤
⎦ · ∇

(
ln

fpj

fpi

)(
ϕpi − ϕpj

δce
+ 1

πε0

(
qpj

d2
pj

− qpi

d2
pi

))
dΓ ′

︸ ︷︷ ︸
Iχ1

− 25π

168
E ·
∫

w19/5G2R

⎡
⎣1 0 0

0 1 0
0 0 14/5

⎤
⎦RT · ∇

(
ln

fpj

fpi

)
dΓ ′

︸ ︷︷ ︸
Iχ2

. (A26)

While applying the rotation for the first integral, Iχ1 , only the last term of (A15) remains,
other terms vanish due to rotation

Iχ1 = −4π

3
mpimpj

mpi + mpj

(∇Upj

Θpj
+ ∇Upi

Θpi

)

×
∫

w24/5G2

(
ϕpi − ϕpj

δce
+ 1

πε0

(
qpj

d2
pj

− qpi

d2
pi

))
fpifpj sin(θ∗) dθ∗ dφ∗ dG dw dqpi dqpj

= −4π

3
npinpj

mpimpj

mpi + mpj

(∇Upj

Θpj
+ ∇Upi

Θpi

)(
ϕpi − ϕpj

δce
+ 1

πε0

(
Qpj

d2
pj

− Qpi

d2
pi

))

×
∫

w24/5G2 fpi,c fpj,c sin(θ∗) dθ∗ dφ∗ dG dw

= − npinpj

12
√

π

mpimpj

mpi + mpj

(
mpimpj

ΘpiΘpj

)3/2 (∇Upj

Θpj
+ ∇Upi

Θpi

)(
ϕpi − ϕpj

δce
+ 1

πε0

(
Qpj

d2
pj

− Qpi

d2
pi

))
N5.

(A27)

For Iχ2 , the mean velocity terms in (A15) vanish, leaving all terms with the gradients
of granular temperature and charge contributions. After solving the rotation and charge
integrals, we obtain

Iχ2 = 32π

5
npinpj

∫
w19/5G2

[
∇ ln

(
npi

npj

)
+ 3

2
∇ ln

(
Θpi

Θpj

)
+
(

mpj
∇Θpj

2Θ2
pj

− mpi
∇Θpi

2Θ2
pi

)
G2

+ mpimpj

2(mpi + mpj)2

(
mpi

∇Θpj

Θ2
pj

− mpj
∇Θpi

Θ2
pi

)
w2 − mpimpj

(mpi + mpj)

(
∇Θpj

Θ2
pj

+ ∇Θpi

Θ2
pi

)

×Gw cos(θ∗)
]

fpi,c fpj,c sin(θ∗) dθ∗ dφ∗ dG dw. (A28)

Finally after the last integrals, we obtain

Iχ2 = 2
5
√

π
npinpj

(
mpimpj

ΘpiΘpj

)3/2
[(

∇ ln
(

npi

npj

)
+ 3

2
∇ ln

(
Θpi

Θpj

))
N1 + 3

4

(
mpj

∇Θpj

Θ2
pj

− mpi
∇Θpi

Θ2
pi

)
N2

+ mpimpj

2(mpi + mpj)2

(
mpi

∇Θpj

Θ2
pj

− mpj
∇Θpi

Θ2
pi

)
N3 + mpimpj

(mpi + mpj)

(
∇Θpj

Θ2
pj

+ ∇Θpi

Θ2
pi

)
BN4

]
. (A29)
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We arrange all these terms in (A1) and summarize the complete set of equations for the
collisional term as

C(qpi) =
∑
h=i,j

(−∇ · θ
q
ih(qpi)+ χ

q
ih(qpi)

)
, (A30)

with the flux term, θ
q
ih,

θ
q
ih = −npinph

(
mpimph

ΘpiΘph

)3/2
A∗ε0g0

d3
pih

2

[
−5

√
π

84
EN1 + dpih

8
√

π

×
(

5
21

[(
ϕpi − ϕph

δce
+ 1

πε0

(
Qph

d2
ph

− Qpi

d2
pi

))
×
(

∇ ln
(

nph

npi

)
+ 3

2
∇ ln

(
Θpi

Θph

))
+ ∇Qph

πε0d2
ph

+ ∇Qpi

πε0d2
pi

]
N1 +

(
ϕpi − ϕph

δce
+ 1

πε0

(
Qph

d2
ph

− Qpi

d2
pi

))
×
[

5
28

(
mph

∇Θph

2Θ2
ph

− mpi
∇Θpi

2Θ2
pi

)
N2

+ 5
42

mpimph

(mpi + mph)2

(
mpi

∇Θph

Θ2
ph

− mph
∇Θpi

Θ2
pi

)
N3 + 5

21
B

mpimph

(mpi + mph)

(
∇Θph

Θ2
ph

+ ∇Θpi

Θ2
pi

)
N4

]

+ 3
551

mpimph

(mpi + mph)
N5E ·

∑
l=i,j

[
1
Θpl

(
(∇Upl)+ (∇Upl)

T + ∇ · UplI
)]⎞⎠

⎤
⎦ , (A31)

and the source term, χq
ih,

χ
q
ih = npinph

(
mpimph

ΘpiΘph

)3/2

A∗ε0g0d2
pih

5
√

π

28

[(
ϕpi − ϕph

δce
+ 1

πε0

(
Qph

d2
ph

− Qpi

d2
pi

))
N1

− 7dpih

57
mpimph

(mpi + mph)

(
ϕpi − ϕph

δce
+ 1

πε0

(
Qph

d2
ph

− Qpi

d2
pi

))
×
(∇ · Uph

Θph
+ ∇ · Upi

Θpi

)
N5

− dpih

6
E ·
[[

∇ ln
(

nph

npi

)
+ 3

2
∇ ln

(
Θpi

Θph

)]
N1 + 3

4

(
mph

∇Θph

Θ2
ph

− mpi
∇Θpi

Θ2
pi

)
N2

+ mpimph

2(mpi + mph)2

(
mpi

∇Θph

Θ2
ph

− mph
∇Θpi

Θ2
pi

)
N3 + mpimph

mpi + mph

(
∇Θph

Θ2
ph

+ ∇Θpi

Θ2
pi

)
BN4

]]
.

(A32)

The coefficients Nk (k = 1, . . . , 5) and B are listed in table 1. If we simplify these
terms for a solid phase with uniform size distribution, we obtain the same equations as
Kolehmainen et al. (2018b)

θ
q
ii = σqE − κq∇Qpi, (A33)

with the triboelectric conductivity, σq,

σq = 214/5 5π
√

π

21
n2

pid
3
pig0ε0Γ

(
12
5

)
r∗

p

(
15m∗

p

16Y∗
p
√

r∗
p

)2/5 (
Θpi

mpi

)9/10

, (A34)

and the triboelectric diffusivity, κq,

κq = 214/5 5
√

π

21
n2

pid
2
pig0Γ

(
12
5

)
r∗

p

(
15m∗

p

16Y∗
p
√

r∗
p

)2/5 (
Θpi

mpi

)9/10

. (A35)
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Charge transport equation for bidisperse granular flows

The source term is equal to zero

χ
q
ii = 0. (A36)

Appendix B. Hard-sphere modelling

The hard-sphere model in this study is based on the time-stepped algorithm (Kolehmainen
et al. 2018b). The particles are moved along their trajectories with small steps according
to their velocity

x(n+1)∗
pi = x(n)pi + v

(n)
pi �t, (B1)

where �t is the time step; x(n)pi and v
(n)
pi are the particle position and velocity at time n�t;

and x(n+1)∗
pi is the predicted particle location. With the predicted locations, we ensure that

particles are not overlapping according to their respective radii: ‖x(n+1)∗
pi − x(n+1)∗

pj ‖ >
dpi + dpj. When overlap occurs, the time is reversed for these two particles to the first time
of contact. The velocities of particles are updated according to the hard-sphere model

v
(n+1)
pi = v

(n)
pi + mpi

(mpi + mpj)
(1 + ec)

(
(v
(n)
pj − v

(n)
pi ) · kij

)
kij, (B2)

where kij is unit vector pointing from particle i to particle j, ec is the coefficient of
restitution and mp is the mass of the particle. The predicted locations in (B1) are computed
using the updated velocities due to collision.

During a particle–particle contact, the charge transfer occurs by following (2.30)
and (2.31). The electric field at particle positions is computed by mapping all the
particle charges into the Eulerian cells to compute charge densities ρq. For fully periodic
simulations, the electric field at cell each is resolved with a spectral method as

E(x) = F−1
(F(ρq(x))

‖ –λ‖2
–λ

)
, (B3)

where –λ is the wavenumber vector and F and F−1 refer to Fourier transform and inverse
Fourier transform, respectively. When a collision between a particle and the wall occurs,
the particle velocity is updated following (3.25)–(3.27). During a particle–wall contact,
the transfer of charge is modelled by Kolehmainen et al. (2018b) as

�q = βq

αq
(1 − e−αqAmax), (B4)

where αq is a geometrical factor depending on the type of collision; αq = 2/πd2
p. Here,

Amax is the maximum area of contact defined in (2.32) with the following effective
parameters; Y∗

p = Yp/(1 − ν2
p), r∗

p = dp/2 and m∗
p = mp. Also, βq is defined as

βq = ε0

(
�ϕw−p

δce
− 2qp

ε0πd2
p

− E · k

)
, (B5)

with the first term representing the work function difference between particle and wall,
�ϕw−p, the second term is due to the charge carried by the particle and the last term
is due to the electric field resulting from the charge on surrounding particles. For the
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wall-bounded flow configuration, the electric field is solved by finite difference based
on (2.4) and (2.5). First, the linear system for the electrical potential is solved using a
second-order central difference with the discrete three-dimensional Laplacian matrix L:

Lφ =
ρs

q,cell

ε0
, (B6)

where ρs
q,cell is the interpolated charge density at the surface of the cell. At the walls,

we impose an electric potential equal to zero. Finally, the electric field is then computed
following (2.5) with a first-order finite difference method in each direction.
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