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Abstract

One major statistical and methodological challenge in Judgment and Decision Making research is the reliable iden-
tification of individual decision strategies by selection of diagnostic tasks, that is, tasks for which predictions of the
strategies differ sufficiently. The more strategies are considered, and the larger the number of dependent measures si-
multaneously taken into account in strategy classification (e.g., choices, decision time, confidence ratings; Glöckner,
2009), the more complex the selection of the most diagnostic tasks becomes. We suggest the Euclidian Diagnostic Task
Selection (EDTS) method as a standardized solution for the problem. According to EDTS, experimental tasks are se-
lected that maximize the average difference between strategy predictions for any multidimensional prediction space. In
a comprehensive model recovery simulation, we evaluate and quantify the influence of diagnostic task selection on iden-
tification rates in strategy classification. Strategy classification with EDTS shows superior performance in comparison
to less diagnostic task selection algorithms such as representative sampling. The advantage of EDTS is particularly large
if only few dependent measures are considered. We also provide an easy-to-use function in the free software package R
that allows generating predictions for the most commonly considered strategies for a specified set of tasks and evaluating
the diagnosticity of those tasks via EDTS; thus, to apply EDTS, no prior programming knowledge is necessary.

Keywords: Comparative model fitting; strategy classification; diagnostic task selection.

1 Introduction

The identification of individuals’ decision strategies has
always challenged behavioral decision research. There
are at least three traditional approaches. Structural
modeling applies a regression based approach to iden-
tify the relation between the distal criterion variable,
proximal cues, and peoples’ judgments (e.g., Brehmer,
1994; Brunswik, 1955; Doherty & Kurz, 1996; see
Karelaia & Hogarth, 2008, for a meta-analysis); process
tracing methods, for example, record information search
(e.g., Payne, Bettman, & Johnson, 1988) or use think
aloud protocols (e.g., Montgomery & Svenson, 1989;
Russo, Johnson, & Stephens, 1989) to trace the decision
process (see Schulte-Mecklenbeck, Kuehberger, & Ran-
yard, 2011, for a review); whereas comparative model fit-
ting approaches investigate the fit of data and predictions
of different models to determine the model or decision
strategy employed (e.g., Bröder, 2010; Bröder & Schif-
fer, 2003; see also Pitt & Myung, 2002).
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Comparative model fitting in particular has gained
popularity in recent Judgment and Decision Making
(JDM) research. In this paper, we discuss the problem of
diagnostic task selection when using this strategy classifi-
cation method. We suggest the Euclidian Diagnostic Task
Selection (EDTS) method as a standardized solution. We
report results from a comprehensive model recovery sim-
ulation that investigates the effects of different task selec-
tion procedures, number of dependent measures and their
interaction on the reliability of strategy classification in
multiple-cue probabilistic inference tasks.

2 Task selection in strategy clas-
sification based on comparative
model fitting

The principle of strategy classification based on compara-
tive model fitting (referred to in the following as strategy
classification) is comparing a vector of choice data Da

consisting of n choices for person a to a set of predictions
Pa of a set of strategies S. The strategy that “explains”
the data vector best is selected. Strategies in set S have to
be sufficiently specified to allow the definition of a com-
plete vector of predictions Pa. Vector Pa can consist of
sub-vectors for predictions on different dependent mea-
sures. Some strategies have free parameters to capture
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individual differences. Aspects that have to be considered
to achieve a reliable strategy classification are: a) that all
relevant strategies are included in the strategy set (e.g.,
Bröder & Schiffer, 2003), b) that overfitting due to model
flexibility is avoided (e.g., Bröder & Schiffer, 2003), c)
that appropriate model selection criteria are used (e.g.,
Hilbig, 2010; Hilbig, Erdfelder, & Pohl, 2010; Pitt &
Myung, 2002; Pitt, Myung, & Zhang, 2002), and d) that
diagnostic tasks are selected that allow differentiating be-
tween strategies (e.g., Glöckner & Betsch, 2008a). In the
current paper, we investigate the influence of a more or
less diagnostic task selection in more detail.

We are particularly interested in the consequences of
representative sampling as opposed to diagnostic task se-
lection. Tasks are to a varying degree representative of
the environment and/or they are more or less diagnostic
with respect to strategy identification (Gigerenzer, 2006).
Representative sampling means that experimental tasks
are sampled based on the probability of them occurring in
the environment to which results should be generalized to
(Brunswik, 1955).1 Representative sampling is important
with respect to external validity for at least two reasons.
First, if one wants to generalize findings on rationality
or accuracy of people’s predictive decisions from an ex-
periment to the real world, it is essential to draw a rep-
resentative and hence generalizable sample.2 One could,
for instance, not claim that the calibration of a person‘s
confidence judgments is bad if this conclusion is based
on a set of “trick questions” that in fact are more difficult
than they seem and that rarely appear in the real world
(Gigerenzer, Hoffrage, & Kleinbölting, 1991).3 A sec-
ond aspect concerns interactions between task selection
and strategy use. If the selection of tasks disadvantages
the use of certain strategies (i.e., in contrast to its applica-
tion in the real world), people are less likely to employ it,
which leads to a general underestimation of its frequency
of application.4

1Dhami, Hertwig, and Hoffrage (2004) equate representative sam-
pling with “probability sampling, in which each stimulus has an equal
probability of being selected” (p. 962, emphasis original; see also Hof-
frage & Hertwig, 2006). Although it can be questioned whether equal
probability sampling is a sound implementation of Brunswik’s represen-
tative sampling at all (i.e., the probability of a task to appear in a study
should match the probability of the task to appear in the real world), we
use equal probability sampling for matters of convenience and lack of
knowledge of the “true” sampling probabilities for the tasks used in the
simulation reported below.

2See the correspondence criterion of rationality (Todd & Gigerenzer,
2000).

3Note that the frequency of an event in an environment is not per se
an index of its significance. That is, rare events that lead to irrational be-
havior can be highly significant due to their consequences (e.g., severe
punishment for not solving “trick questions”) or due to selective over-
sampling of these—then no longer—“rare” events (e.g., oversampling
of “trick questions” to take advantage of irrational behavior).

4The same is of course true for methodological approaches that
hinder the application of certain strategies. It has, for instance, been

On the contrary, in diagnostic sampling, tasks are se-
lected that differentiate best between strategies, that is,
for which the considered strategies make sufficiently dif-
ferent predictions. Diagnostic task selection has not been
given sufficient attention in some previous work. For
example, the priority heuristic as a non-compensatory
model for risky choices (Brandstätter, Gigerenzer, &
Hertwig, 2006) was introduced based on a compara-
tive model test. In 89 percent of the choice tasks used
in the study, the priority heuristic made the same pre-
diction as one of the established models (i.e., cumula-
tive prospect theory with parameters estimated by Erev,
Roth, Slonim, & Barron, 2002). Subsequent analy-
ses showed that the performance of the heuristic dra-
matically drops when more tasks are implemented, for
which the heuristic and prospect theory make differ-
ent predictions (Glöckner & Betsch, 2008a). More re-
search showed that conclusions about the heuristic be-
ing a reasonable process model for the majority of peo-
ple were premature (Ayal & Hochman, 2009; Fiedler,
2010; Glöckner & Herbold, 2011; Hilbig, 2008; Johnson,
Schulte-Mecklenbeck, & Willemsen, 2008). To circum-
vent such problems in future, diagnostic task selection
should be given more attention. However, diagnostic task
selection becomes a complex problem if multiple strate-
gies and multiple dependent measures are considered si-
multaneously as described in the next section. Afterwards
we suggest and evaluate a standardized method that al-
lows selecting a set of very diagnostic tasks from all pos-
sible tasks based on a simple Euclidian distance calcula-
tion in a multi-dimensional prediction space.

3 Strategy classification based on
multiple measures

Strategy classification methods were commonly based
on choices only. However, strategies are often capa-
ble of perfectly mimicking each others’ choices. Non-
compensatory heuristics, for example, are submodels of
the weighted additive strategy with specific restrictions
of cue weights. This problem is even more apparent
when, in addition, strategies are considered that do not
assume deliberate stepwise calculations (Payne, et al.,
1988). Recent findings on automatic processes in de-
cision making (Glöckner & Betsch, 2008c; Glöckner &
Herbold, 2011) suggest also taking into account cogni-
tive models assuming partially automatic-intuitive pro-
cesses (Glöckner & Witteman, 2010). Important classes
of models are evidence accumulation models (Busemeyer
& Johnson, 2004; Busemeyer & Townsend, 1993; Roe,

shown that in some situations the classic mouselab paradigm hinders the
application of weighted compensatory strategies (Glöckner & Betsch,
2008c).
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Busemeyer, & Townsend, 2001), multi-trace memory
models (Dougherty, Gettys, & Ogden, 1999; Thomas,
Dougherty, Sprenger, & Harbison, 2008), and parallel
constraint satisfaction (PCS) models (Betsch & Glöck-
ner, 2010; Glöckner & Betsch, 2008b; Holyoak & Simon,
1999; Simon, Krawczyk, Bleicher, & Holyoak, 2008;
Thagard & Millgram, 1995). As an example, we include
a PCS strategy in our simulation.

Based on the idea that multiple measures can im-
prove differentiation, the multiple-measure maximum-
likelihood (MM-ML) strategy classification method
(Glöckner, 2009, 2010; Jekel, Nicklisch, & Glöckner,
2010) was developed. MM-ML simultaneously takes into
account predictions concerning choices, decision time,
and confidence. MM-ML defines probability distribu-
tions for the data-generating process of multiple depen-
dent measures (e.g., choices, decision times and confi-
dence) and determines the (maximum) likelihood for the
data vector Da given the application of each strategy in
the set S and multiple further assumptions (for details,
see Appendix A).

It was shown that the MM-ML method leads to more
reliable strategy classification than the choice based
method (Glöckner 2009).5 It has, for instance, been suc-
cessfully applied to detect strategies in probabilistic infer-
ence tasks (Glöckner, 2010) and tasks involving recogni-
tion information (Glöckner & Bröder, 2011).

4 Simulation

We used a model recovery simulation approach to inves-
tigate the effects of task diagnosticity, numbers of depen-
dent measures, and the interaction of the two on the re-
liability of strategy classification. We thereby simulated
data vectors for hypothetical strategy users with varying
noise rates and tried to recover their strategies employ-
ing the MM-ML method. In accordance with Glöckner
(2009), we simulated probabilistic inferences for six dif-
ferent cue patterns (i.e., a specific constellation of cue
predictions in the comparison of two options; see Figure
1, right), which are repeated ten times each resulting in a
total of 60 tasks per simulated person.6 The choice of the
cue patterns was manipulated to test our predictions with
respect to representative sampling and diagnostic task se-
lection based on a standardized method. In practice, the
selection of the most diagnostic cue patterns for a set

5MM-ML has been implemented as an easy-to-use function in the
open-source statistical package R (Jekel et al., 2010) and in a function
for STATA (Glöckner, 2009). The most recent implementations are pro-
vided on request by the authors of this paper.

6Completing 60 tasks takes about 5–15 minutes, which allows mix-
ing them with sufficient distractors to avoid interactions of task selection
and strategy use mentioned in section 2.

of strategies is not trivial and to the best of our knowl-
edge no standard procedures are available. We suggest
a method to determine the cue patterns that differentiate
best between any given set of strategies and test whether
the method increases reliability in strategy classification.

4.1 Design
We generated data based on five strategies in probabilis-
tic inference tasks with two options and four binary cues.
We varied the validity of the cues in the environment, the
degree of noise in the data generating process, the num-
ber of dependent measures included in the model classi-
fication, and the diagnosticity of cue patterns that were
used. As dependent variables, we calculated the propor-
tion of correct classifications—the identification rate—
and the posterior probability of the data-generating strat-
egy.7 Ties and misclassifications were counted as failed
identification. This results in a 5 (data generating strat-
egy) × 3 (environment) × 4 (error rates for choices) × 3
(noise level for decision times and confidence judgments)
× 3 (number of dependent measures) × 4 (diagnosticity
of tasks) design. For each condition, we simulated 252
participants, resulting in 544,320 data points in total.

4.1.1 Data-generating strategies

For simplicity, we rely on the same data-generating
strategies used in previous simulations (Glöckner, 2009)
namely: parallel constraint satisfaction (PCS), take-the-
best (TTB), equal weight (EQW), weighted additive
(WADDcorr), and random (RAND) strategy, which are de-
scribed in Table 1.

4.1.2 Environments

We used three environments: a typical non-compensatory
environment with one cue clearly dominating the others
(cue validities = [.90 .63 .60 .57]),8 a compensatory en-
vironment with high cue dispersion (cue validities = [.80
.70 .60 .55]), and a compensatory environment with low
cue dispersion (cue validities = [.80 .77 .74 .71]).

4.1.3 Error rates for choices and noise level for con-
fidence and time

For each simulated participant, a data vector Da was gen-
erated, based on the prediction of the respective data-

7The posterior probability of the data-generating strategy can be cal-
culated from the BIC values as described in Equation 3 in Appendix A
(Wagenmakers, 2007).

8The environment is non-compensatory because the most valid cue
can never be overruled by less valid cues if compensatory strategies
such as WADDcorr that takes (chance corrected) validities into account
or PCS are applied.
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Figure 1: Prediction for 40 qualified cue patterns generated from five strategies (black = PCS, blue = TTB, red =
EQW, green = WADDcorr, purple = RAND) in the rescaled prediction space with the three dependent measures (i.e.,
choices, decision times, confidence judgments) as coordinate axes. The size of the dots is (logarithmically) related to
the number of predictions (i.e., density) at the respective coordinates. The five stars represent the predictions of the
strategies for the (exemplary) cue pattern shown in the right side of Figure 1.
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Table 1: Description of the strategies used in the simulation.

Strategies Description

PCS People construct a mental representation of the task (modeled as connectionist net-
work; see Glöckner & Betsch, 2008b) based on the constellation of available and
salient cues and their subjective estimation of validities. Spreading activation mech-
anisms accentuate initial advantages of one option over the other and make this op-
tion appear more attractive in that cues favoring it are highlighted and cues speaking
against it are devalued. The most attractive option (i.e., option with the highest acti-
vation) is chosen.

TTB Cues are searched sequentially by means of validity. The search is stopped when a
cue discriminates between options. The option that is indicated by the discriminating
cue is chosen.

EQW The cue values for both options are added up. The option with the higher sum is
chosen.

WADDcorr The weighted sum of cue values is computed with cue validities for both options being
corrected for chance level (i.e., validities – .5). The option with the highest weighted
sum is chosen.

RAND One option is chosen at random.

Note. We used PCS with fixed parameters and a quadratic cue transformation function: decay = .10;
wo1−o2 = −.20; wc−o = .01/ − .01 [positive vs. negative prediction]; wv = ((v − .50) × 2)2,
stability criterion = 10−6; floor = −1; ceiling = 1 (see Glöckner, 2010, for details).
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generating strategy plus noise. The vector consisted of
a sub-vector for choices, decision times, and confidence.
For the choice vector, (exact) error rates were manipu-
lated from 10% to 25% at 5%-intervals. For example, an
error rate of 10% leads to 6 out of 60 choices that are
inconsistent with the predictions of the strategy. It was
randomly determined which six choices were flipped to
the alternative choice for each simulated participant.9

Normally distributed noise was added to the predic-
tions of the strategies for the decision time and confidence
vectors (normalized to a mean of 0 and a range of 1).
The three levels of noise on both vectors differed with re-
spect to the standard deviation of the noise distribution
σerror = [1.33 1 0.75], which is equivalent to a manip-
ulation of the effect size of d = [0.75 1 1.33]. Note that
adding normally distributed noise N(µ = 0, σerror) to a
normalized prediction vector leads to a maximum (pop-
ulation) effect size of d = µmax−µmin

σpooled
= 1

σpooled
. Note

also that the term µmax−µmin is the difference between
the means of the most distant populations from which
realizations of the dependent measures are sampled and
which reduces to 1 due to normalizing prediction vec-
tors. The pooled standard deviation of those populations
is equal to the standard deviation of the noise distribution
(i.e., σpooled = σerror) because random noise is the only
source of variance within each population. Thus, a stan-
dard deviation of (e.g.) σerror = σpooled = 1.33 leads to
a maximum effect size of d = 1

1.33 ≈ 0.75 between the
most distant populations of the dependent measures.

4.1.4 Number of dependent measures

The strategy classification using MM-ML was based
on varying numbers of dependent measures including
(a) choices only, (b) choices and decision times, or (c)
choices, decision times and confidence judgments.

4.1.5 Diagnosticity in Cue Patterns

We manipulated the diagnosticity of cue patterns used
in strategy classification by using a) the Euclidian Di-
agnostic Task Selection (EDTS) method that determines
the most diagnostic tasks given a set of strategies and the
number of dependent measures considered, b) two vari-
ants of this method that generate medium and low di-
agnostic tasks, and c) representative (equal probability)
sampling of tasks.

9Note that some strategies predict guessing for some (or all) types
of tasks (e.g., RAND). The choices of a simulated participant apply-
ing (e.g.) RAND were determined probabilistically in a first step—with
choice A vs. B being equally likely. A choice was flipped to the alter-
native option if it was randomly selected for an error application in a
second step.

Probabilistic inference tasks with two options and four
binary cues (i.e., [+ –]) allow for 240 distinct cue pat-
terns. To prepare task selection, the set was reduced
to a qualified set of 40 cue patterns by excluding all
option-reversed versions (n = 120) and versions that
were equivalent except for the sign of non-discriminating
cues (i.e., [– –] vs. [+ +]). Then, strategy predictions for
each of the three dependent measures were generated and
rescaled to the range of 0 to 1 (for details, see Appendix
B). The rescaled prediction weights for each strategy and
each qualified task are plotted in the three-dimensional
space that is spanned by the three dependent measures
(Figure 1).

EDTS (Table 2) is based on the idea of cue pat-
terns being diagnostic if predictions for strategies dif-
fer as much as possible. The pairwise diagnosticity is
thereby measured as Euclidian distances between the pre-
dictions of two strategies for each cue pattern in the three-
dimensional prediction space (Figure 1). The main crite-
rion for cue pattern selection is the average diagnosticity
of a cue pattern which is the mean of its Euclidian dis-
tances across all possible pairwise strategy comparisons
in the space (i.e., PCS vs. TTB, PCS vs. EQW, . . . ). For
statistical details, see Appendix C, and for a discussion of
EDTS-related questions, see Appendix E.

For the high diagnosticity condition, we selected six
cue patterns according to the EDTS procedure. For the
medium and low diagnosticity condition, we selected cue
patterns from the middle and lower part of the by diag-
nosticity sorted list of cue patterns generated in step 4 of
EDTS. Cue patterns were sampled uniformly at random
for the representative sampling condition.10

4.1.6 EDTS function in R

We have implemented EDTS as an easy-to-use function
in the free software package R (2011). You can specify
your own environment (i.e., number of cues and validities
of cues), generate the set of unique pairwise comparisons
between cue patterns for your environment (as described
in 4.1.5), derive predictions for all strategies on choices,
decision times, and confidence judgments for those tasks
(as described in 4.1.1), and apply EDTS to calculate the
diagnosticity of each task (as described in 4.1.5); see Ap-
pendix D and F for a detailed description of the EDTS
function.

By applying the EDTS function, you can find the most
diagnostic tasks from a specified environment, set of

10The ordering of cue patterns in EDTS dependends on the number of
dependent measures taken into account. For the conditions with differ-
ent numbers of dependent measures the Euclidian distances were cal-
culated in the respective P -dimensional space (e.g., two-dimensional
space if choices and decision times were included).
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Table 2: Euclidian Diagnostic Task Selection (EDTS).

Steps Description

1 Determine all predictions of all strategies and all distinct cue patterns and rescale them—
except for choices—to a range from 0 to 1 (per strategy).

2 Determine pairwise Euclidian distances in the P -dimensional prediction space (P = number
of dependent measures) between all strategy predictions for each cue pattern.11 Rescale dis-
tances for each pairwise comparison to a range from 0 to 1, resulting in diagnosticity scores
for each cue pattern.

3 Calculate the average diagnosticity of each cue pattern as its mean Euclidian distance across
all pairwise strategy comparisons.

4 Sort cue patterns by their average diagnosticity and select n cue patterns from the top of this
list (in our example n = 6).

5 Double-Check: Identify the maximum of diagnosticity scores for each pairwise comparison
of strategies across n cue patterns. Compare the maximum to a threshold. If one maximum
is below the aspired threshold, replace the last cue pattern(s) with one of the following cue
patterns until the threshold is reached for all strategy comparisons. If no such cue pattern is
found, repeat the procedure with a lower threshold.

strategies, and set of measures for future studies. You
can also (systematically) alternate the number and validi-
ties of cues to find the environment that produces tasks
that optimally distinguish between a set of strategies. Fi-
nally, you can also use the EDTS function to evaluate the
diagnosticity of tasks, thus the reliability of strategy com-
parisons, and thus the reliability of conclusions from past
studies.

4.2 Hypotheses

Based on previous simulations (Glöckner, 2009), we pre-
dict that additional dependent measures for MM-ML lead
to higher identification rates and posterior probabilities
for the data-generating strategy. We further expect that
less diagnostic cue patterns lead to lower identification
rates and posterior probabilities. We also hypothesize an
interaction effect between diagnosticity and the number
of dependent measures, that is, less diagnostic cue pat-
terns benefit more from adding further dependent mea-
sures. For practical purposes, we are particulary inter-
ested in the size of the effect of each manipulation to
assess the extent to which common practices influence
results.

11Note that the selection mechanism is not limited to three dependent
measures; the dimensionality of the space can be expanded (reduced) by
adding (subtracting) dependent measures. Each pair of strategies must
make different predictions on at least one dependent measure to disen-
tangle strategies. Note also that it is possible to weight each dimension
differently in order to scale the impact of each measure on the diagnos-
ticity score (see Appendix E and wdp in formula 6, Step 2, Appendix C
for details).

5 Results

5.1 Identification Rate

The overall identification rates for each type of task se-
lection averaged across all environments and all strate-
gies based on choices only are displayed in Figure 2
(left). As expected, cue patterns with high diagnostic-
ity selected according to EDTS lead to the highest iden-
tification followed by representative sampling; cue pat-
terns with medium and low diagnosticity were consis-
tently even worse in identification. (see Figure 2, mid-
dle) or close (left and right) in identification. All types of
task selection benefit from adding a second (see Figure 2,
middle) and a third (see Figure 2, right) dependent mea-
sure. Representative sampling and the conditions with
low and medium diagnosticity benefit most from adding
a third dependent measure.12

Hence, results are descriptively in line with our hy-
potheses. For a statistical test of the hypotheses, we con-
ducted a logistic regression predicting identification (1 =
identified, 0 = not identified) by number of dependent
measures, diagnosticity of tasks, environment, generating
strategy, epsilon rate for choices, effect size for decision
times, and confidence judgments (Table 3, first model).13

12We checked that the pattern of average identification rates dis-
played in Figure 2 is not driven by a single strategy (e.g., RAND) or
only some of the strategies.

13The interpretation of p-values in the model is not warranted: the
number of participants and therefore the test power can be arbitrar-
ily varied. On the contrary, effect sizes can be interpreted in order to
identify the relative importance (i.e., incremental explained variance)
of each variable when all other variables are controlled for. Addition-
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Figure 2: Identification rates for each type of task selection averaged across strategies and environments based on a)
choices (left), b) choices and decision time (middle), and c) choices, decision time, and confidence (right).
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Results of the logistic regression indicate changes in
the ratio of the odds for a successful strategy identifica-
tion. For example, the odds ratio for the first dummy vari-
able indicating that two dependent measures were used
(i.e., choices and decision times), as compared to choices
only (i.e., control group), is 7.39. This implies that the
odds for identification increase by the factor 7.39 from
using choices alone to using choices and decision times.14

Adding decision time and confidence increases the odds
ratio for identification by a factor of 20.91 (compared to

ally, the sign of the predictors can be interpreted in order to identify the
relation between the proposed factors and the dependent variables (i.e.,
identification and posterior probability).

14If the odds for correct identification with choices only was
.761/.239 = 3.18 (see Table 4), the odds for correct identification with
choices and decision time would be 3.18×7.39 = 23.50, which trans-
lates into an odds ratio of .959/.041. Odds ratios below 1 indicate a
reduction of the odds. The magnitude of the effects can be compared by
calculating the inverse value for odds ratios below 1 (i.e., 1/odds ratio).

choices only).
The odds for identification decrease by the factor of

0.29 (i.e., reduction to less than one third; see Footnote
14) when using representative sampling instead of high
diagnostic sampling according to EDTS. The reduction
from high to medium and low diagnostic sampling is even
more pronounced.

Finally, less diagnostic pattern selection mechanisms
benefit more from adding further dependent variables, as
indicated by the odds ratios for the interaction terms be-
tween number of dependent measures and task diagnos-
ticity. In particular, when all three dependent measures
are considered, identification dramatically increases for
representative sampling as well as medium and low di-
agnostic tasks, so that the disadvantage of representative
sampling decreases to 3% (Table 4).

Hence, in line with our hypothesis, we replicate the
finding that identification increases with number of de-
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Table 3: Logistic regression predicting successful identification in strategy classification (Model 1) and linear regres-
sion predicting posterior probability of the data generating strategy (Model 2).

Model 1 Model 2
Identification Posterior probability

Independent variables Odds ratios B Incr. R2

Intercept .718
# of Dependent Measures (control = 1 [choices only]) .193
2 [Choices and decision times] (1 = yes) 7.39 .199
3 [Choices, decision times,
and confidence judgments] (1 = yes) 20.91 .323

Task Diagnosticity (control = high diagnosticity) .169
Representative sampling (1=yes) 0.29 –.123
Medium diagnosticity (1=yes) 0.08 –.260
Low diagnosticity (1=yes) 0.05 –.320

Environment (control = comp. & high dispersion) .004
Noncompensatory (1=yes) 0.53 –.051
Compensatory & low dispers. (1=yes) 0.69 –.031

Generating Strategy (control = PCS) .075
TTB (1= yes) 1.12 .026
EQW (1= yes) 0.95 –.019
WADDcorr (1= yes) 0.30 –.139
RAND (1= yes) 18.85 –.185
Error in Choices (ε) (control = low [.10]) .003
Medium (.15) 0.94 –.010
High (.20) 0.89 –.025
Highest (.25) 0.82 –.043

Maximum Effect Size for Decision Times and Confidence
(control = highest [1.33]) .007

Medium (1) 0.83 –.028
Lower (.75) 0.62 –.063

Interaction: # of Dependent Measures × Task Diagnosticity .020
Two dependent measures ×
Representative Sampling 1.68 .034

Two dependent measures ×
Medium Diagn. 3.43 .151

Two dependent measures ×
Low Diagn. 0.74 -.027

Three dependent measures ×
Representative Sampling 3.95 .119

Three dependent measures ×
Medium Diagn. 9.42 .190

Three dependent measures ×
Low Diagn. 10.25 .188

Note. Variables are dummy-coded and compared against the control condition. Variables for which interactions
are calculated are centered. Nagelkerke’s R2 = .547 for identification rates; Adj. R2 = .474 for posterior proba-
bilities (N = 544,320, p < .001). p < .001 for all predictors and model comparisons (full vs. reduced models).
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Table 4: Identification rates for the number of dependent measures and task selection vs. representative sampling.

Number of dependent measures High
diagnosticity

Representative
sampling

Medium
diagnosticity

Low
diagnosticity

One 76.1% 41.6% 18.4% 18.4%
Two 93.4% 80.5% 63.6% 35.5%
Three 92.9% 89.3% 79.4% 80.7%

Note. Averaged over strategies, ε rates for choices, effect sizes for decision times and confidence judg-
ments, and environments.

pendent measures. High-diagnosticity task-sampling ac-
cording to EDTS leads to superior identification rates.
The disadvantage of representative sampling decreases
when more dependent measures are included.

5.2 Posterior probabilities for the data gen-
erating strategy

To analyze the effects of our manipulations further, we
regressed posterior probabilities on the same factors de-
scribed above (Table 3, Model 2). As expected, given that
identification and posterior probabilities are both calcu-
lated from Bayesian Information Criterion (see Appendix
A, Equation 2) values, the hypothesized effects of the ma-
nipulations are replicated. The independent variables of
the linear model explain 47.4% of the variance in pos-
terior probabilities. The number of dependent measures
and task diagnosticity explain most of the unique vari-
ance15 in posterior probabilities (19.3% and 16.9%). In
comparison to classification based on choices only, two
and three dependent measures lead to an increase of .199
and .323 in posterior probabilities. In comparison to high
diagnostic cue patterns selected according to EDTS, pos-
terior probabilities are reduced by –.260 and –.320 for cue
patterns with medium and low diagnosticity, and by –.123
for representative sampling. Thus, cue pattern selection
according to EDTS leads to considerably higher posterior
probabilities of the data generating strategies than repre-
sentative sampling.

6 Discussion and conclusion
Individual level strategy classification in judgment and
decision-making is a statistical and a methodological
challenge. There was a lack of standard solutions to the
complex problem of diagnostic task selection in multi-
dimensional prediction spaces. In the current paper, we

15Unique variance is determined by the reduction in variance from
the full linear model to the model reduced by the respective factor(s).

suggest Euclidian diagnostic task selection (EDTS) as a
simple method to select highly diagnostic tasks and show
that EDTS increases identification dramatically. Further-
more, we replicate the increase in identification rates
by employing multiple dependent measures in multiple-
measure maximum likelihood (MM-ML) strategy classi-
fication method (Glöckner, 2009, 2010). We find that,
under the conditions considered in our simulation, rep-
resentative task-sampling reduces the odds for successful
strategy classification by more than factor 1/3 compared
to EDTS. This disadvantage, however, reduces if multiple
dependent measures are used. Hence, if representative
sampling is advisable for other methodological reasons
(see section 2), multiple measures should be used. Unfor-
tunately, this is not possible for all models because many
models predict choices only (i.e., paramorphic models of
decision making).

Our findings highlight that the issue of diagnosticity
in task selection in comparative model fitting should be
taken very seriously. To avoid ad-hoc criteria, we sug-
gest using the EDTS method introduced in this article.
Furthermore it would be advisable to report average di-
agnosticity scores for each selected cue pattern to be able
to evaluate results better.

Robin Horton (1967a, 1967b, 1993)16, who inves-
tigated the differences between religious and scientific
thinking within the framework of Popper’s critical ratio-
nalism, stated (1967b, p. 172) that “[f]or the essence
of experiment is that the holder of a pet theory does not
just wait for events to come along and show whether or
not it has a good predictive performance.”—an approach
that might be equated with representative sampling—“He
bombards it with artificially produced events in such a
way that its merits or defects will show up as immediately
and as clearly as possible.” We hope that EDTS may help
to find those events in a more systematic fashion in future
research.

16We thank Jonathan Baron for making us aware of this work.
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Appendices

Appendix A: The Multiple-Measure Max-
imum Likelihood strategy classification
method (MM-ML)
Appendix A describes the basic math of the MM-ML
method; see Glöckner (2009, 2010) and Jekel, Nicklisch,
and Glöckner (2010) for a more thorough description of
the method, tools, and tutorials on how to apply MM-ML.

To apply MM-ML in probabilistic decision making, it
is necessary to select a set of strategies, a set of depen-
dent measures, and a set of cue patterns. For each depen-
dent measure, assumptions have to be made concerning
the probability function of the data-generating process.
In our simulation study, we use choices, decision times,
and confidence judgments as dependent measures and as-
sume choices for six cue patterns which are repeated ten
times each. The number of choices in line with a strategy
prediction is assumed to be binomially distributed with a
constant error rate for each cue patter; (log transformed
and order corrected) decision times and confidence judg-
ments are assumed to be drawn from normal distributions
around rescaled prediction weights with constant stan-
dard deviation per measure.

Given a contrast weight tTi for the decision time and
tCi for the confidence judgment of task i, further observ-
ing a data vector D consisting of a subvector for choices
with njk

being the number of choices of type of tasks j
congruent to strategy k and consisting of subvectors for
decision time xTi and confidence judgment xCi for task i,
it is possible to calculate the likelihood Ltotal for the ob-
served data vector under the assumption of an application
of strategy k (and the supplementary assumptions men-
tioned above) for a participant according to (Glöckner,
2009, Equation 8, p. 191):

Ltotal =
p(njk, ~xT , ~xC |k, εk, µT , σT , RT , µC , σC , RC) =

J∏

j=1

(
nj

njk

)
(1− εk)njkε

(nj−njk)
k ×

I∏

i=1

1√
2πσ2

T

e
− (xTi

−(µT +tTi
RT ))2

2σ2
T ×

I∏

i=1

1√
2πσ2

C

e
− (xCi

−(µC+tCi
RC ))2

2σ2
C . (1)

The error rate for choices, εk, the overall mean and
standard deviation for decision times (µT , σT ) and confi-

dence judgments (µC , σC) as well as the rescaling factor
RT and RC (RT , RC ≥ 0) for decision times and con-
fidence judgments that minimize the log-likelihood func-
tion are estimated.

The Bayesian Information Criterion (BIC, Schwarz,
1978) is calculated to account for different numbers of
parameter (numbers vary because some strategies do not
predict differences on all dependent measures or assume
a fixed error rate of .50) according to:

BIC = −2 ln(L) + ln(Nobs)Np. (2)

Nobs represents the number of task types (i.e., six in
the simulations) and Np the number of parameters that
need to be estimated for the likelihood. Thus, a strategy
with more free variables is punished for its flexibility.

Finally, the posterior probability Pr for a specific strat-
egy k, i.e., the probability of the strategy k as the data-
generating mechanism under consideration of the ob-
served data D and under the assumption of equal prior
probabilities for all (i.e., K) considered strategies, can be
calculated based on the BIC values according to (com-
pare with Wagenmakers, 2007, Equation 11, p. 797):

PrBIC(sk|Da) =
e[− 1

2×BICsk
]

∑K
o=1 e[− 1

2×BICso ]
. (3)

Appendix B: Strategy predictions
Predictions of strategies are derived by assuming that
TTB, EQW, and WADDcorr are applied in a stepwise
manner according to the classic elementary information
processes approach (e.g., Payne, et al., 1988). For PCS,
predictions are derived from a standard network simula-
tion (Glöckner & Betsch, 2008b; Glöckner, Betsch, &
Schindler, 2010; Glöckner & Bröder, 2011; Glöckner &
Hodges, 2011) using the parameters mentioned in the
Note of Table 1. Table 5 shows the predictions for the
cue patterns selected for the high diagnosticity condition
in the environment with cue validities of .80, .70, .60, and
.55 as an example.

Choices. Choice predictions are determined according
to the mechanisms described in Table 1.

Decision times. For TTB, EQW, and WADDcorr, the
number of computational steps necessary to apply the
strategy is used as time prediction. For PCS, the num-
ber of iterations of the network necessary to find a stable
solution is used as an indicator for decision time.17

17Note in Table 5 that (e.g.) EQW and WADDcorr have the same
set of contrast weights for decision time predictions (i.e., zeroes). This
does not mean that the application of both strategies takes the same
time (WADDcorr should take longer due to the additional weighting of
cues with validities). The application of both strategies is independent
of the type of tasks (i.e., all cues are always investigated); thus, con-
trast predictions do not differ between types of tasks and are set to 0
(i.e., decision times are supposed to stem from a single distribution for
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Table 5: Highly diagnostic cue patterns for three dependent measures in a compensatory environment (validities = [.80
.70 .60 .55]) and predictions for each strategy and dependent measure.

Types of decision tasks

1 2 3 4 5 6
A B A B A B A B A B A B

Cue 1 (v = .80) – + – + – + + + – + + –
Cue 2 (v = .70) + – + – + – + + + + + –
Cue 3 (v = .60) + – + – + + + + + – + –
Cue 4 (v = .55) + – + + + – + – + – + +

Choice Predictions

PCS A B B A B A
TTB B B B A B A
EQW A A A A A A
WADDcorr A A:B B A B A
RAND A:B A:B A:B A:B A:B A:B

Time Predictions (contrasts)

PCS 0.340 0.326 0.026 0.240 −0.273 −0.659
TTB −0.167 −0.167 −0.167 0.833 −0.167 −0.167
EQW 0 0 0 0 0 0
WADDcorr 0 0 0 0 0 0
RAND 0 0 0 0 0 0

Confidence Predictions (contrasts)

PCS −0.050 −0.322 −0.159 −0.217 0.072 0.677
TTB 0.167 0.167 0.167 −0.833 0.167 0.167
EQW 0.250 −0.250 −0.250 −0.250 −0.250 0.750
WADDcorr −0.167 −0.250 −0.167 −0.167 0 0.750
RAND 0 0 0 0 0 0

Note. Positive cue values are indicated by +, negative cue values by −. A:B represents guessing between
options.

Confidence judgments. For TTB, the validity of the
discriminating cues is used as a predictor to confidence
(Gigerenzer, et al., 1991). For EQW and WADDcorr, the
difference in the (un)weighted sum of cue values for each
option is used instead. For PCS, the difference in activa-
tions of the options is used as a predictor for confidence
judgments.

all tasks); see also Glöckner (2009, 2010) and Jekel, Nicklisch, and
Glöckner (2010) for details.

Appendix C: Euclidian Diagnostic Task Se-
lection (EDTS)

Step 1: Generate standardized prediction vectors

Define a set of K strategies s to be tested, a set of P
dependent measures d used for MM-ML, and a set of
I qualified cue patterns c (i.e., excluding identical pat-
terns). Calculate prediction vectors for each strategy (see
Appendix B) and rescale them to a range of 0 to 1 per
strategy. Note that dependent measures of probabilities
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(e.g., choices) should not be rescaled.18 The goal is to
choose n cue patterns highest in diagnosticity from the
set of the I cue patterns. Assume the following notation
for raw (indicated by superscript R) contrast weights cw:

cwR
skdp

=
[
cwR

skdpc1
cwR

skdpc2
. . . cwR

skdpcI

]
. (4)

Each contrast vector is calculated from the raw values
to fit the range from 0 to 1. Contrast weights are rescaled
by:

cwskdpci
=

cwR
skdpci

−min(cwR
skdp·)

max(cwR
skdp·)−min(cwR

skdp·)
. (5)

Step 2: Calculate diagnosticity scores for strategy
comparisons

Compute the diagnosticity scores for each task as the Eu-
clidian distances ED for each strategy comparison and
each cue pattern within the space spanned by the vec-
tors of the P dependent measures that are weighted by
wdp . Following this, standardize these distances to a
range from 0 to 1. ED between strategy k and o (k 6= o)
for cue pattern i are calculated by:

EDR
sksoci

=√√√√
P∑

p=1

(wdp × (cwskdpci − cwsodpci))2. (6)

For each comparison of strategy k and o, rescale
EDR

skso
across all I cue patterns to fit the range from

0 to 1 by:

EDsksoci =
EDR

sksoci
−min(EDR

skso·)
max(EDR

skso·)−min(EDR
skso·)

. (7)

[Rationale for rescaling: Euclidian distances for each
strategy comparison should have the same range to avoid
overweighting (resp. underweighting) of strategy com-
parisons with a high variance (resp. low variance) in Eu-
clidian distances.]

Step 3: Calculate the average diagnosticity scores

Calculate the means for each row of the matrix contain-
ing the rescaled Euclidian distances EDci to receive the
average diagnosticity AD score for each cue pattern by:

ADci =
2× (K − 2)!

K!
×

K−1∑

k=1

K∑

o=k+1

EDsksoci . (8)

18Otherwise, predicted guessing (i.e., p(A) = .5) is erroneously re-
coded as predicted choice for option A (i.e., p(A) = 1) if a strategy
predicts choices for option B (i.e., p(A) = 0) and guessing only.

Step 4: Sort cue patters by average diagnosticity
scores and select cue patterns

The set of I cue patterns can be easily sorted by their
AD score. The n cue patterns with the highest AD score
would be selected.

Step 5: Refine selection

Investigate if the maximum of diagnosticity scores for
each strategy comparison is above a threshold tmin. To
find an appropriate set of cue patterns, the threshold
should increase with the number of dependent measures
used and decrease with the number of pairwise compar-
isons. In the simulations, we used a threshold value of
tmin = .75. If a maximum is below the aspired threshold,
replace the last cue pattern(s) by one of the following cue
patterns until the threshold is reached for all comparisons.
If no such cue pattern is found, repeat the procedure with
a lower threshold.

[Rationale: A high mean of rescaled Euclidian dis-
tances for a cue pattern can be produced by a single high
distance for one of the strategy comparisons. Apply step
5 to ensure that there is at least one diagnostic cue pattern
for each strategy comparison in the subset (as defined by
the threshold).]

Appendix D: Implementation of EDTS as a
function in R
EDTS is implemented as an easy-to-use function in R.
R (2011) is a software for statistical analysis under the
GNU general public license, e.g., it is free of any charge.
R is available for Windows, Mac, and UNIX systems.
To download R, visit the Comprehensive R Archive Net-
work (http://cran.r-project.org/). To learn more about R,
we propose the free introduction to R by Paradis (2005);
however, to apply EDTS in R, no sophisticated prior ex-
perience with the R syntax is required.

You can download the EDTS.zip folder19 from
http://journal.sjdm.org/vol6.8.html, listed with this ar-
ticle. In the folder EDTS, there are two files—
mainFunction.r and taskGenerator.r—and an additional
folder strategies containing six further R files. In the
current version of the EDTS function, it is possible to
generate all possible unique pattern comparisons for two-
alternative decision tasks with binary cue values (i.e., 1
or –1), to derive predictions for all tasks and a set of de-
fault strategies, and to calculate the diagnosticity index
for each task as proposed in the article.

To use the EDTS function, you need to copy and paste
(or submit) the code provided in the file mainFunction.r,

19Software to extract the folder is included in most operating systems
or is available as open source software (e.g., 7-zip from http://www.7-
zip.org/ for Windows systems).
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i.e., you can open mainFunction.r in a standard text edi-
tor, copy the entire code, and paste the code in the open
R console. To call the function afterwards, type the com-
mand:

EDTS (setWorkingDirectory, validities,
measures, rescaleMeasures,
weightingMeasures, strategies, generateTasks,
derivePredictions, reduceSetOfTasks,
printStatus, saveFiles, setOfTasks,
distanceMetric, PCSdecay, PCSfloor,
PCSceiling, PCSstability, PCSsubtrahendResc,
PCSfactorResc, PCSexponentResc)

in the open R console and hit Enter. If an argument of
the function is left blank, the default is applied. Argu-
ments, descriptions, valid values, examples and defaults
are listed in Appendix F. In the following, we give an ex-
ample for illustrative purposes.

Example

Assume you want to test which of (e.g.) the four
strategies—PCS, TTB, EQW, or RAND—describes hu-
man decision making best in a six-cue environment with
the cue validities v = [.90 .85 .78 .75 .70 .60] (compare
with Rieskamp & Otto, 2006). Your goal is to select the
most diagnostic tasks from all possible tasks for an op-
timal comparison of strategies. Assume further that you
will assess choices and decision times as dependent vari-
ables in your study; thus, you only need to rescale deci-
sion times (see Appendix C). For all the remaining argu-
ments, you want to keep the defaults of the function.

To apply EDTS, you put the unzipped EDTS folder un-
der C:\, open the file mainFunction.r with a text editor,
copy the entire text and paste it in the open R console.
Following, you type in:

EDTS(validities = c(.90, .85, .78, .75, .70, .60),
measures = c(“choice”, “time”) ,
rescaleMeasures = c(0, 1), strategies =
c(“PCS”, “TTB”, “EQW”, “RAND”))

and hit Enter. Three .csv files are created: (1) tasks.csv
includes all qualified patterns for a pairwise comparisons
with six cues (i.e., 364 tasks), (2) predictions.csv includes
choice and decision time predictions for all strategies
(i.e., PCS, TTB, EQW and RAND) and all tasks listed
in tasks.csv, (3) outputEDTS.csv includes the average di-
agnosticity score (AD), the minimum, maximum, and
median diagnosticity of all strategy comparisons. Ad-
ditionally, “raw” diagnosticity scores for each task and
each strategy are provided. Based on the AD scores, you
finally select the most diagnostic tasks for the strategy
comparisons in a six-cue environment (see Table 2, step
5).

Generalizations

We added two further strategies as default strategies:
(1) WADDuncorr (Rieskamp & Hoffrage, 1999) has been
extensively used in past studies and thus can serve as
an interesting competitor. WADDuncorr is identical to
WADDcorr but does not correct validities for chance level
(e.g., .5 for pairwise comparisons). (2) RAT (Lee &
Cummins, 2004) is the rational choice model based on
Bayesian inference. It has been included as a further
strategy in order to allow comparisons between heuristic
models and the rational solution in probabilistic decision
making.

Additionally, it is also possible to extend the set of
default strategies with your own strategies. To do so,
you open the file predictions.csv and include a predic-
tion column for each measure and for each task for your
own strategies (as defined in tasks.csv). The labels of
the new columns need to fit the form NameOfYourStrat-
egy.Measure. Additionally, the order and number of
columns (i.e., the order of predictions for each measure)
need to follow the order of the measures of the other
strategies included (i.e., choice, time, and confidence for
the default measures).20 To apply EDTS for your own
specified set of strategies, you then include the names of
your strategies in the argument strategies of the EDTS
function and set the argument derivePredictions = 0 (i.e.,
predictions are not derived and the data matrix defined in
predictions.csv with your set of strategies is loaded into
the program instead).

It is also possible to add further dependent measures.
Similar to adding strategies, you insert a further column
for each strategy following the form Strategy.Measure for
the labeling in the first row of the data matrix. For exam-
ple, if you want to compare PCS and TTB on choices, de-
cision times, and (e.g.) arousal (Hochman, Ayal & Glöck-
ner, 2010), the file predictions.csv consists of 7 columns.
In the first column, the number of the task is coded. From
the second to the third column, PCS predictions are in-
serted with the labels PCS.choice, PCS.time, PCS.arousal
in the first row of the data matrix. From the fifth to sev-
enth column, TTB predictions are inserted with the labels
TTB.choice, TTB.time, TTB.arousal. Thus, predictions
for each measure are inserted by strategy and for each
strategy the measures are in the same order.

In general, the EDTS function is thus applicable to any
strategy for which quantitative predictions on each mea-
sure can be derived for a set of tasks. The function can
also be applied to tasks differing from the default char-
acteristics (e.g., probabilistic decision-making between
three options and/or continuous cues) or from the de-
fault type (e.g., preference decisions between gambles)

20Note that labels need to be put in double quotation marks (i.e., “”)
and values are separated by comma in all .csv files.
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by inserting the predictions for each strategy and mea-
sure in the file predictions.csv as described above. Thus,
the method is not limited to the strategies and tasks used
and implemented as defaults in the EDTS function. The
experienced R user can thus implement her strategies as
R code. To simplify coding, the main EDTS function and
strategies are coded in separate files (see folder strate-
gies), and strategies are also coded as functions that are
similar in structure (same input variables, etc.).21

Appendix E: Open questions and future re-
search

This short Appendix is supposed to make you aware of
some open questions. For those researchers who are in-
terested in applying EDTS, this section may sensitize you
to critical aspects of EDTS. For those researchers who are
interested in optimizing EDTS, the following open ques-
tions can be a hint for future studies; the EDTS function
provided (see Appendix D and F) may further facilitate
this process.22

There are alternative selection criteria (e.g., maximum
or median) that may be used for task selection instead
of the mean proposed and validated in the current study.
For example, strategy comparisons may be more effec-
tive if the most discriminating task for each comparison
(= maximum) is selected. However, there are two oppos-
ing forces at work: the number of tasks increases rapidly
if the set of strategies increases (i.e., 5 strategies = 10
tasks, 6 strategies = 15 tasks, 7 strategies = 21 tasks,
etc.). This can lead to less repetition of the selected tasks
if the number of tasks that can be presented in a study
is limited. Less repetition can then lead to a less reli-
able strategy classification dependent on the error rate. It
is therefore an open question if the gain of diagnosticity
for single comparisons outweighs the loss of reliability
due to less repetition of the tasks. To facilitate compari-
son between several diagnosticity statistics, the output of
the EDTS function includes several diagnosticity statis-
tics (mean, median, maximum, and minimum) and the
“raw” diagnosticity scores for each strategy comparison
and each task.

There is no need to restrict EDTS to Euclidian dis-
tances as the metric for diagnosticity scores. It is an
open question if other metrics lead to reliable strategy
classification as well (or even better ones). We have
implemented the option to calculate diagnosticity scores
based on Taxicab/Cityblock metrics (Krause, 1987) in the

21We are happy to collect further strategies programmed by other
users to extend the set of strategies implemented in the EDTS func-
tion; please send your files to the first author (jekel@coll.mpg.de). We
plan to provide future extensions to the EDTS function as a download
from a website that will be announced via the JDM-society mailing list.

22We thank our reviewers for making us aware of these issues.

EDTS function as well.
Finally, there may be reasons to weight the impact of

each dependent measure on the diagnosticity score differ-
ently. For example, it may be reasonable to reduce the im-
pact of dependent measures that are less reliable and thus
favor more reliable measures in diagnostic task selection.
It is an open question if different weighting schemes (e.g.,
weighting of each measure relative to a reliability index)
lead to higher identification rates. We have implemented
the option to weight measures differently in the EDTS
function.
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Appendix F: EDTS() function in R
Arguments, descriptions, valid values, examples, and defaults.

Argument23 Description Valid Values Example Default

setWorking-
Directory

indicate the directory of the
EDTS folder

platform specific
requirements

“C:/Files/EDTS/”
(be aware of “”) “C:/EDTS/”

validities

set the validities of the cues
(note: the software extracts the
number of the cues
automatically from the number
of validities specified)

any numeric value
between .5 and 1

c(.9, .85, .80)
(be aware of c()) c(.80, .70, .60, .55)

measures set the measures used for EDTS any character(s) c(“choice”, “time”)
(be aware of “”)

c(“choice”, “time”,
“confidence”)

rescale-
Measures

indicate which measure to be
rescaled to a range from 0 to 1
for EDTS (see Appendix C,
formula 5)

rescale measure?
1 = yes, 0 = no

c(0, 1)
(be aware of c()) c(0, 1, 1)

weighting-
Measures

weighting of measures before
calculating Euclidian distances
(see wdp in formula 6)

any numeric value c(1, 1, 1)
(be aware of c()) c(1, 1, 1)

strategies set the strategies for EDTS any character(s)
c(“PCS”, “TTB”,
“EQW”)
(be aware of “”)

c(“PCS”, “TTB”,
“EQW”,
“WADDcorr”,
“RAND”, “RAT”,
“WADDuncorr”)

generateTasks
indicate if all possible unique
tasks should be generated

generate all unique
tasks?
1 = yes, 0 = no

1 1

reduceSet-
OfTasks

remove all tasks that only differ
in the sign for
non-discriminating cues (i.e., –
– vs. + +)

reduce the set of
tasks?
1 = yes, 0 = no

1 1

derive-
Predictions

indictate if predictions are to be
derived for strategies and tasks

derive predictions?
1 = yes, 0 = no 1 1

printStatus
indicate if the current status of
the EDTS function is to be
printed

print the current
status of the
function?
1 = yes, 0 = no

0 1

saveFiles

indicate if the the data created
by the EDTS function (i.e.,
tasks, predictions, EDTS
output) is to be saved as .csv
files

create files?
1 = yes, 0 = no 0 1

...
(table continued on next page)
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(table continued from last page)
...

setOfTasks

the set of tasks for which
predictions and diagnosticity
scores are to be derived can be
inserted directly into the
function within the R
environment

first column (task
number)
= 1, 2, 3, . . . n,
second and third
column (cue
pattern) = 1 or −1

cbind(c(1, 1, 1, 1,
2, 2, 2, 2),
c(1,−1, 1,−1,
1, 1, 1, 1),
c(1, 1,−1, 1,
1,−1, 1, 1))
(be aware of
cbind() for binding
vectors columnwise
and c() for creating
vectors)

“none”

distance-
Metric

define the metric for EDTS
calculations; this is an
experimental (!) option to
simplify further validation
studies on different distance
metrics for EDTS

“Euclidian” or
“Taxicab”

“Euclidian”
(be aware of “”) “Euclidian”

PCS specific options (see Glöckner & Betsch, 2008b; Glöckner & Bröder, 2011)

PCSdecay decay of node activation any positive
numeric value .05 .1

PCSfloor minimum node activation any numeric value −1 −1
PCSceiling maximum node activation any numeric value 1 1

PCSstability

specifiy (decimal point)
sensitivity for a stable PCS
solution; higher values result in
more iterations (i.e., sensitivity
is the inverse of the specified
value)

any numeric value 10ˆ6 10ˆ6

PCSsub-
trahendResc

rescaling of the validities v:
wv = ((v – PCSsubtrahendResc)
× PCSfactorResc)PCSexponentResc

any numeric value 0 .5

PCSfactor-
Resc

see description
PCSsubtrahendResc any numeric value 1 2

PCSexponent-
Resc

see description
PCSsubtrahendResc any numeric value 1.9 2

23Note that hyphens within arguments (i.e., -) are included only for reasons of limited space in the table.
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