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We have developed a parameter-free, two-phase, volume-averaged approach to predictively
describe the spin-up flow of dilute, cluster-free ferrofluids excited by low-frequency
rotating magnetic fields. Predictive validation of the model was performed through a
thorough comparison with local velocity profile measurements, and it demonstrated its
ability to capture the spin-up flow dynamics without the need for parameter tuning by
carefully delineating the validity domain of the ferrofluid dilutedness conditions. To
gain insight into the underlying flow mechanisms, we performed a systematic parametric
analysis examining the effects of the induced magnetic field, the dipolar interactions
between magnetic nanoparticles and the demagnetizing field. How these mechanisms
shape the flow of dilute ferrofluids excited by low-frequency rotating fields in a standard
spin-up flow geometry has been addressed using probabilistic nanoparticle orientational
dynamics, combining Faxén’s laws and the Smoluchowski equation to describe the
transport of particle magnetic moments. Our findings revealed that the induced magnetic
field is the primary driving force of ferrofluid spin-up flow. The dipole interactions and
demagnetizing field, on the other hand, contribute only as secondary phenomena to the
overall flow behaviour. Furthermore, we have discussed the potential extension of the
two-phase approach, in particular with respect to the formation of chain-like aggregates
under the influence of strong magnetic fields. Overall, our study provides valuable
insights into the complex dynamics of ferrofluid flow and contributes to a comprehensive
understanding of the key mechanisms governing the spin-up flow of dilute ferrofluids
excited by low-frequency rotating magnetic fields.
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1. Introduction

Since Gilbert’s 17th-century seminal treatise ‘De Magnete’, the fascination with
magnetism has never waned. The advent of synthetically stabilized magnetic colloidal
suspensions, known as ferrofluids, has expanded the frontiers of magnetism. Supported
by extensive theoretical studies and experimental validation, ferrofluids have ventured into
unexpected territories, opening up new applications, such as micro/nanofluidics (Varma
et al. 2016; Liu et al. 2020), microdevice mixing (Yi, Qian & Bau 2002; Boroun & Larachi
2016) and biomedical advances (Kose et al. 2009). This widespread interest stems from the
intriguing behaviour of ferrofluids when exposed to a magnetic field. Magnetic particles
naturally align themselves in the direction of the field, creating a uniquely magnetized
collective state. This alignment allows precise control of the ferrofluid and results in unique
flow patterns.

Magnetic fields, both oscillating and rotating, are often used to manipulate ferrofluids.
Oscillating fields lead to phenomena such as magnetoviscous effects (Felderhof 2000),
while rotating fields induce spin-up flows. These flows arise from confining motionless
ferrofluids within cylindrical enclosures, where the magnetic field imparts a torque to
the magnetic entities in the fluid, causing them to spin. This angular momentum is
then converted to linear momentum, resulting in ferrofluid rotation. The pioneering
experimental work of Moskowitz & Rosensweig (1967) was limited to open cylinders,
studying only the air–ferrofluid interface. Later research by Rosensweig, Popplewell
& Johnston (1990) revealed that understanding bulk spin-up flow requires more than
interface measurements due to hydrodynamic interactions between the ferrofluid and
the surrounding air. In particular, the ferrofluid corotates with the magnetic field when
the interface is concave, while it counter-rotates when the interface is convex. Zaitsev
& Shliomis (1969) developed a theory that described the spin-up flow by treating the
ferrofluid as a homogeneous magnetic fluid. This theory was based on the continuum
approach proposed by Condiff & Dahler (1964) for a pseudohomogeneous fluid flow
with molecular rotations as degrees of freedom. It included terms in the Navier–Stokes
equation to account for translational motion, as well as the effects of antisymmetric
stresses and magnetic forces. It also introduced internal spin diffusion, described by
the spin viscosity parameter η′, which forms the basis of spin diffusion theory. Spin
diffusion and antisymmetric stress are the driving forces behind convective flow in
ferrofluids.

Zaitsev & Shliomis (1969) estimated spin viscosity η′ at approximately 10−21 kg m s−1,
according to a proportional relationship with the square of the particle radius, η

′ ∝ R2
p.

Qualitatively, the velocity profile predicted with this value of η′ corresponds to that
obtained experimentally by Rosensweig et al. (1990). However, there are discrepancies in
the prediction of diffusive layer thickness and velocity amplitude, which cast doubt on the
validity of η′. Spin diffusion theory, developed primarily to describe bulk ferrofluid flow,
has limitations in explaining surface-dominated effects, as acknowledged by Rosensweig
et al. (1990). These authors observed that surface effects play a significant role, and spin
diffusion theory alone could not account for these phenomena. In response to earlier
observations, Glazov (1975) provided a theoretical explanation within the framework of
spin diffusion theory, demonstrating that generating spin-up flow with a uniform magnetic
field is impossible. However, in the experimental set-up of Rosensweig et al. (1990) the
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Predictive theory for dilute ferrofluid spin-up flow

magnetic field was kept uniform and local measurements of the velocity field confirmed
the presence of macroscopic flow. Other explanations have explored thermal effects
(Shliomis, Lyubimova & Lyubimov 1988; Pshenichnikov, Lebedev & Shliomis 2000) and
wall-slip boundary conditions of spinning particles (Kaloni 1992) as potential drivers of
the ferrofluid macroscopic flow. However, these hypotheses have yet to be conclusively
validated by direct comparison with experimental data.

Local velocity measurements within the spin-up flow geometry are crucial to validate
the value of η′ proposed by Zaitsev & Shliomis (1969) and to determine the direction
of bulk ferrofluid rotation. Chaves et al. (2006) performed an experiment using an
ultrasound-based technique that allowed them to obtain local measurements of the
azimuthal velocity component generated by a rotating magnetic field in a cylindrical
device. They found that the ferrofluid bulk rotates with the magnetic field, while the
counter-rotation at the interface is due to surface effects. This finding is consistent with
spin diffusion theory, although there are some qualitative differences in the velocity
profile, such as the velocity amplitude and the thickness of the diffusion layer, which
covers approximately 30 % of the tube radius. Consequently, the spin viscosity value
proposed by Zaitsev & Shliomis (1969) would significantly underestimate the presumed
hypothetical numerical value required to accurately predict the experimental velocity
profile measured by Chaves et al. (2006). Building on this observation, Chaves, Zahn &
Rinaldi (2008) performed both an experimental investigation and an asymptotic analysis
of the spin diffusion theory using the regular perturbation method. By adjusting the
spin viscosity, they were able to achieve quantitative agreement between the results
of the asymptotic analysis and the experimental velocity measurements. This analysis
revealed that the value of η′ must be in the range of 10−12 to 10−8 kg m s−1 to
accurately predict the observed velocity profiles. Notably, these η′ values are orders of
magnitude (10 to 12 orders of magnitude) higher than the η′ value proposed by Zaitsev
& Shliomis (1969). In a theoretical study by Finlayson (2013), the influence of the spin
viscosity and the Langevin equation on spin-up flow was thoroughly investigated. Flow
ceases as η′ approaches zero, and in the presence of an inhomogeneous magnetic field,
an irregular flow occurs, which contradicts the experimental results. Shliomis (2021)
conducted a theoretical investigation, expressing the spin viscosity as a function of the
particle moment of inertia, which at a very small value could not explain the bulk
ferrofluid motion. As a result, the spin diffusion theory was linked to the dissipative
effects of rotating particles, resulting in heat dissipation, which generates magnetic field
inhomogeneities, thereby inducing ferrofluid flow. However, the interfacial flow was
explained by assuming η′ = 0. The direction and velocity of ferrofluid rotation were
described as functions of contact angle, meniscus height, magnetic field amplitude and
frequency. Remarkably, the theoretical results were in good agreement with the experiment
performed by Rosensweig et al. (1990). The determination of a physically sound value
of η′ remains a subject of debate since direct measurement of this parameter is not
feasible. For the time being, studies are limited to the empirical determination of this
parameter, which involves its adjustment from experimental results and reduces spin
diffusion theory to a descriptive rather than a predictive method. The lack of fundamental
understanding, due to the absence of a predictive model has limited the studies to
experimental investigations where different experiments, including open and annular
cylindrical settings (Chaves, Torres-Diaz & Rinaldi 2010; Torres-Díaz & Rinaldi 2011) and
spherical configurations (Torres-Díaz et al. 2012), have consistently shown macroscopic
flow within ferrofluids. Of particular interest is the experiment performed by Torres-Diaz
et al. (2014), which focused on very dilute ferrofluids with volumetric concentrations
below 1 %.
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The literature highlights two main issues: the need to assign a physical value to
η′ to explain ferrofluid bulk flow; and the suitability of the Condiff & Dahler (1964)
continuum approach for treating ferrofluid as a pseudohomogeneous fluid, which may
not accurately represent the discrete nature of ferrofluid particles. In this framework, the
particles can transfer their internal angular momentum by a process similar to molecular
diffusion. However, from a phenomenological standpoint, this mechanism is implausible
because the particles form a discrete phase and remain distinctly apart from one another.
Therefore, it becomes imperative to describe the rotational dynamics of the particles
while preserving their discrete nature. Similarly, the magnetization transport equation is
defined for the entire ferrofluid, whereas only the particles are magnetized. Consequently,
a two-phase approach that distinguishes the magnetic particles from the non-magnetic
matrix may provide a more appropriate description. This perspective is consistent with
the colloidal suspension theory, as discussed by Batchelor (1977), which separates the
particle and liquid contributions in the bulk stress analysis. Saintillan & Shelley (2008a,b)
developed a kinetic theory to describe the dynamics of a suspension of self-propelled
particles with active stresslets. In their approach, a homogeneous fluid description was
used for the linear momentum transport in the suspension, while the particles were
characterized by a probability density governed by the Smoluchowski equation, which
includes the relevant mechanisms for the active particles. In summary, reconsidering the
assignment of a physical value to η′ for bulk ferrofluid flow and adopting a two-phase
approach that distinguishes between the magnetic dispersed phase and the non-magnetic
continuous phase may provide a more accurate representation of ferrofluid behaviour.
This change in perspective, viewing the ferrofluid as a colloidal suspension rather than
a pseudohomogeneous fluid, can elucidate the coupling between the dispersed magnetic
particles and the continuous liquid phase.

In this study, we present a two-phase fully predictive model specifically designed for
the flow of a dilute clusterless ferromagnetic colloidal suspension under the influence of
a rotating magnetic field. The model incorporates the equations for the conservation of
mass, linear and angular momentum, and the induced magnetic field at the continuum
scale using the average volume theorem (AVT). In a manner similar to Saintillan & Shelley
(2008a,b) characterization of active stresslets using the second-order (nematic-order)
moment of the Smoluchowski equation, the two-phase equations governing ferrofluid
behaviour are then coupled to an adapted Smoluchowski equation tailored to the context of
ferromagnetic suspensions. This adaptation focuses on the zeroth- and first-order moments
of the Smoluchowski equation, which effectively capture the transport dynamics and the
average orientation of the magnetic moments of the individual magnetic nanoparticles
within the clusterless ferrofluid. The proposed model is applied in the context of spin-up
flow in a cylindrical geometry, aiming to improve our fundamental understanding of the
process and to identify the genuine driving mechanism behind the rotating flow in the
ferrofluid bulk. To establish the model’s validity, it will be compared with the experimental
results obtained by Torres-Diaz et al. (2014). This validation process will help to define
the range of applicability of the model. Furthermore, a comprehensive parametric study
will be performed to quantify the individual contributions of the induced magnetic
field, particle transport, dipole–dipole interactions (DDIs) and the demagnetizing field.
This analysis will allow us to identify the key parameter(s) responsible for the spin-up
flow of the ferrofluid, providing valuable insights into the underlying mechanisms at
play. Finally, we will discuss theoretical results that go beyond the scope of the model,
highlighting potential avenues for further investigation and development of the two-phase
approach. Special attention will be given to non-dilute ferrofluids, where clustering
becomes significant and cannot be ignored.
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Figure 1. Schematic of a ferrofluid spin-up flow geometry in a cylindrical enclosure (a) and a zoomed-in view
of a single magnetic nanoparticle (b) subjected to a magnetic field. Here m refers to the orientation of the
magnetization vector M . Spin-up flow is generated by rotating an external constant modulus magnetic field
perpendicular to the axis of symmetry of the cylindrical cell containing the ferrofluid (see (5.1)).

2. Ferrofluid spin-up flow two-phase formulation

Spin-up flow refers to a macroscopic convective rotational motion elicited in an otherwise
quiescent magnetic nanofluid (ferrofluid) by a rotating external magnetic field. To illustrate
this process, a suspension of magnetic nanoparticles in a Newtonian liquid is confined
in a cylindrical enclosure (radius R, length L) and subjected to a uniform external
magnetic field (frequency f0, intensity H0) applied perpendicular to the z-axis of the
tube (figure 1a). The magnetic inclusions in the suspension have the unique ability
to ‘bodily’ align their permanent magnetic moment vector with the constantly moving
magnetic field. Hydrodynamic interaction with the surrounding liquid prevents the discrete
magnetic inclusions from achieving perfect alignment with the magnetic field. It is this
misalignment, measured as a lag angle, that causes the magnetic inclusions to experience
a driving torque at the origin of the macroscopic flow (figure 1b).

In contrast to the standard ferrohydrodynamic model (Zaitsev & Shliomis 1969;
Rosensweig 2013), which cannot predict spin-up flows (Finlayson 2013; Torres-Diaz
et al. 2014; Shliomis 2021), a comprehensive theoretical representation must account
for the two-phase nature of the magnetic suspension. At the very least, this perspective
must necessarily include the resolution of the linear and angular momentum equations
corresponding to each of the two phases of the magnetic suspension. We propose
to tackle the problem by appealing to the AVT, which has been extensively used to
describe transport phenomena in two-phase flows and in porous media in particular (Gray
1975; Whitaker 1999; Drew & Passman 2006). The AVT approach models transport
phenomena separately in each phase using volume-averaged equations, which are then
coupled by jump conditions at interfaces. This makes it possible to analyse the linear
and angular momentum transport under the proper distribution of the induced magnetic
field within each of the suspension’s phases. A notable practical advantage of this
method is that it provides average values for unknowns, such as the linear and angular
velocities of the magnetic (discrete) phase at each point in the ferrofluid domain. While a
macroscopic two-phase description may suffice for non-colloidal suspensions, colloidal
ferrofluid particles require the incorporation of Brownian motion into the transport
processes, leading to a probabilistic treatment. This coupling can be achieved using the
Smoluchowski equation, focusing on its zeroth- and first-order moments, which take into
account hydrodynamic conditions and the effect of Brownian motion on the average
transport of particles and the orientation of their magnetic moments. Section 4 will go over
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the connection of the two-phase ferrofluid model with the zeroth- and first-order moments
of the Smoluchowski equation.

Consider a two-phase suspension consisting of a liquid, denoted by the subscript l,
and a dispersed magnetic phase (particles), denoted by the subscript p. Figure 2 is a
schematic representation of the ferrofluid system parsed into representative elementary
volumes (REV), over which the transport equations of the two phases are averaged. Such
two phases (l and p) occupy the volumes Vl,Vp, respectively, in the REV volume V ,
whose perimeter is bounded by the surface Γ = Ap−e ∪ Al−e. The interface separating
the two phases inside the REV is denoted by Al−p with the normal orientational unit
vectors nl = −np. Let x be the macroscopic position vector characterizing the centre of
the elementary volume with respect to the macroscopic system, and y the microscopic
position vector on the scale of the REV, defined with respect to its centroid. For example,
consider a scalar field Φl transported in phase l, defined with respect to position x + y.
Using AVT, the mean field 〈Φl〉 with respect to REV is given by (Gray 1975; Whitaker
1999)

〈Φl〉|x = 1
V

∫
V
χlΦl|x+y dV, (2.1)

where χl denotes the phase indicator describing the spatial distribution of phase l in the
REV. The latter is defined by

χl = 1 x + y ∈ Vl ∪ Al−p,

0 elsewhere.

}
(2.2)

Supplementary materials (§ 1) available at https://doi.org/10.1017/jfm.2024.32 contain
the developments according to the AVT approach leading to the formulation of the mean
transport equation for the so-called quantity Φl.

2.1. Ferrofluid phase-specific microscale transport equations
To establish average macroscopic transport equations governing the ferrofluid behaviour
at each macroscopic position x within the REV, one must first formulate microscopic
transport equations for the two suspension phases at each microscopic position y within the
REV. These equations involve the conservation of mass, linear and angular momentum and
the application of Maxwell’s equations to describe the magnetic fields in each ferrofluid
phase.

The microscale equation of the incompressible liquid phase (2.3) represents the mass
conservation equation of the liquid as a continuum:

∇ · (χlvl) = 0. (2.3)

While the liquid phase at the microscale (represented by points y in figure 2) can be
described as a continuum using a microscopic mass conservation equation (see (2.3)), this
approach does not hold for the discrete magnetic phase. To address this, we establish mass
conservation for individual particles within the REV by relying on the mass invariance of
a single particle. Specifically, we relate the mass of an individual particle (i) to its density
ρp, particle volume Vp and phase indicator χ i

p:

mi
p =

∫
Vp

ρp dV = χ i
pρpVp, (2.4)

where Vp is the volume of a single particle.
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Predictive theory for dilute ferrofluid spin-up flow

Phase l

np = −nlΓ = Al−e ∪ Ap−e

V = Vl ∪ Vp

Al−p

Phase p

Figure 2. Schematic description of a REV of a suspension composed of a liquid and rigid spherical particles.

Assuming constant physicochemical properties, the linear momentum conservation
equation for the liquid phase at the microscopic scale is

ρl

(
∂χlvl

∂t
+ ∇ · (χlvl ⊗ vl)

)
= ∇ · T l + F e

l , (2.5)

where T l is the viscous-pressure stress tensor containing the symmetric part characterizing
shear stress. The term F e

l refers to an external volume force.
For a Newtonian and non-polar liquid, the stress tensor, T l, is given by the following

relation:

T l = −χlPI + μ(∇χlvl + (∇χlvl)
t − 2

3∇ · (χlvl)I)+ μb∇ · (χlvl)I, (2.6)

where the dynamic viscosity, μ, of the liquid is assumed constant. μb is the bulk viscosity
associated with expansion (compression) processes.

Taking into account that the bulk viscosity, μb, is often negligible in the case of fluids,
and based on the liquid continuity (2.3) which describes the incompressibility of the fluid
with zero divergence of the velocity field, the stress tensor (2.6), reduces to

T l = −χlPI + μ(∇χlvl + (∇χlvl)
t). (2.7)

By substituting (2.7) in (2.5), the liquid’s linear momentum equation becomes

ρl

(
∂χlvl

∂t
+ ∇ · (χlvl ⊗ vl)

)
= −∇χlP + μ∇ · ∇χlvl + F e

l . (2.8)

It is important to emphasize that at the microscopic scale within the REV, where the
particles are individually spaced and do not form a continuous medium, the equation
governing the angular momentum of the particles does not have a conventional continuum
relationship. Therefore, the force balance on a single particle i is used as a microscopic
equation as a prerequisite to derive a macroscopic continuum equation for all particles in
the REV. The momentum conservation equation for a Brownian particle i, also known as
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the Langevin equation, is expressed as follows:

ρp
dvi

p

dt

∣∣∣∣∣
y=yi

= F lp
i + F pp

i + F e
i , (2.9)

where vi
p(yi) is the velocity of the particle i evaluated at its centre of mass y = yi. Here F i

denotes an external force per unit volume. The subscripts lp, pp refer to the liquid–particle
and particle–particle interaction forces, respectively.

The conservation equation of angular momentum at the microscopic scale is modelled
similarly to the conservation equations of mass and linear momentum of particles by the
angular Langevin equation of a particle i,

Ip
dwi

p

dt

∣∣∣∣∣
y=yi

= Γ
lp
i + Γ

pp
i + Γ e

i , (2.10)

where wi
p(yi) is the angular velocity of the particle i evaluated at y = yi; Ip = 2

5ρpR2
p

is the moment of inertia of the particle i per unit volume of a particle; Γ i denotes the
force moment per unit volume of the particle i; Γ e

i denotes the external moment, per unit
volume, exerted on the particle i; and Γ

lp
i and Γ

pp
i are the force moments of liquid–particle

and particle–particle interactions, respectively.
When an external magnetic field is applied to a ferromagnetic suspension, an induced

magnetic field is created within its constitutive liquid and nanoparticle phases. While
this induced field affects both phases, the magnetization process itself, which involves
the alignment magnetic moments, is exclusive to the ferromagnetic particles. Thus, a
magnetic torque is exerted only on the nanoparticles. Consequently, the microscopic
modelling of the angular momentum considers only the discrete magnetic phase while
explicit modelling of the liquid angular momentum is unnecessary. Assuming that the
ferrofluid consists of non-conducting discrete magnetic inclusions and a liquid, Maxwell’s
equations can be simplified to Maxwell–Ampère and Maxwell-flux equations without
charge displacement or electric current. At the microscopic level, the Maxwell–Ampère
equations for l and p are as follows:

∇ × (χlH l) = 0 ∈ Vl, (2.11)

∇ × (χpHp) = 0 ∈ Vp, (2.12)

where H is the magnetic field vector expressed in A/m and μ0 = 4 × π10−7 N/A−2 is
the vacuum magnetic permeability.

While the Maxwell-flux equations of l and p read as follows:

∇ · (χlBl) = 0 ∈ Vl, (2.13)

∇ · (χpBp) = 0 ∈ Vp, (2.14)

where B is the magnetic induction vector which can be formally expressed in terms of the
magnetization vector, M , by the following relation:

B = μ0(H + M). (2.15)

Liquids constituting ferrofluids are in general linear, homogeneous and isotropic media,
where the magnetization is directly proportional to the magnetic field vector, such as

M l = ϕH l, (2.16)
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where the dimensionless proportionality constant is called magnetic susceptibility. Liquids
are generally weakly magnetized where the value of ϕ is very small. Furthermore, ϕ is
positive if the material is paramagnetic and negative if the material is diamagnetic. Using
the magnetization expression (2.16), the magnetic induction vector Bl in the liquid phase
is written as follows:

Bl = μ0(1 + ϕl)H l. (2.17)

In the case where the liquid is non-magnetic, |ϕl| << 1, the expression for the magnetic
induction reduces to

Bl = μ0H l. (2.18)

Compared with the liquid, the particles are superparamagnetic because they are considered
monodomain with a permanent magnetic moment Mp = Mdm. The magnetic induction
vector of the particles in this case can be written as

Bp = μ0(Hp + Mdm), (2.19)

where Md refers to the domain magnetization of the particles and m denotes the orientation
of particles’ magnetic moments (figure 1b). It should be noted that the model governing the
orientation dynamics of the particles’ magnetic moments, m, with respect to the magnetic
field, H , is described in detail in § 4.

Taking into account the expressions of the induction vectors of both phases (2.18), (2.19),
the Maxwell-flux equations read as follows:

∇ · (χlH l) = 0 ∈ Vl, (2.20)

∇ · χp(Hp + Mdm) = 0 ∈ Vp. (2.21)

2.2. Ferrofluid macroscale two-phase transport equations
To establish the macroscale transport equations for a two-phase ferrofluid, a methodology
similar to that used in the supplementary materials (§ 2) to derive the hypothetical scalar
field transport equationΦl can be applied. This approach involves averaging each transport
equation over the REV and using Gray’s decomposition (Gray 1975). The derivation of the
averaged transport equations is also presented in detail in the supplementary materials.

Applying the AVT to the liquid mass conservation equation at the microscopic scale,
(2.3), yields

∇ · (εl〈vl〉l)+ 1
V

∫
Al−p

vl · nl dA = 0, (2.22)

where εl is the volume fraction of the liquid phase.
The average conservation equation of the mass of the particles, based on the invariability

of the total volume of the particles, is written as

∇ · (εp〈vp〉p)+ 1
V

∫
Al−p

vp · np dA = 0 (2.23)

where εp is the volume fraction of the magnetic nanoparticles.
Likewise, applying AVT to (2.8), which characterizes the liquid’s linear momentum

balance equation at the microscopic scale, yields the following macroscopic liquid linear
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momentum balance equation:

ρl

(
∂〈vl〉
∂t

+ ∇ · (εl〈vl〉l ⊗ 〈vl〉l)+ ∇ · (εl〈v̂l ⊗ v̂l〉l)

)

= −εl∇〈P〉l + μ(εl∇2〈vl〉l + ∇〈vl〉l · ∇εl + 〈vl〉l∇2εl)+ 〈F e
l 〉

+ 1
V

∫
Al−p

(−χlP̂I + μ∇χlv̂l) · nl dA. (2.24)

The Langevin microscale (2.9) and (2.10) once averaged on the REV by the same
approach, allow us to express their counterpart for the macroscale concerning the
conservation of the linear and angular momentum of the discrete magnetic phase,
respectively,

ρp

(
∂〈vp〉
∂t

+ ∇ · (εp〈vp〉p ⊗ 〈vp〉p)+ ∇ · (εp〈v̂p ⊗ v̂p〉p)

)

= 〈F lp〉 + 〈F pp〉 + 〈F e
p〉, (2.25)

Ip

(
∂〈wp〉
∂t

+ ∇ · (εp〈vp〉p ⊗ 〈wp〉p)+ ∇ · εp(〈v̂p ⊗ ŵp〉p)

)

= 〈Γ lp〉 + 〈Γ pp〉 + 〈Γ e
p〉. (2.26)

The average Ampère–Maxwell equations for the liquid and particles on the REV are
written as follows:

∇ × (εl〈H l〉l)+ 1
V

∫
Al−p

χlH l × nl dA = 0, (2.27)

∇ × (εp〈Hp〉p)+ 1
V

∫
Al−p

χpHp × np dA = 0. (2.28)

Combining (2.27) and (2.28) yields

∇ × 〈H〉 + 1
V

∫
Al−p

(χpHp − χlH l)× np dA = 0, (2.29)

where 〈H〉 is the averaged magnetic field over the suspension,

〈H〉 = εl〈H l〉l + εp〈H l〉p. (2.30)

The average Ampère-flux equations, for liquid and particle phases, are written as follows:

∇ · (εl〈H l〉l)+ 1
V

∫
Al−p

χlBl · nl = 0, (2.31)

∇ · (εl〈H l〉p + Md〈m〉)+ 1
V

∫
Al−p

χpBp · np dA = 0. (2.32)

Combining (2.31) and (2.32) similarly yields the average Maxwell-flux equation for the
suspension:

∇ · (〈H〉 + Md〈m〉)+ 1
V

∫
Al−p

(χpBp − χlBl) · np dA = 0. (2.33)

980 A37-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.32


Predictive theory for dilute ferrofluid spin-up flow

3. Closure equations

To transform from the microscopic to the macroscopic formulation using AVT, closure
relations in the form of additional interfacial transfer terms must be determined and
incorporated into (2.24) to (2.26), (2.29) and (2.33) to close the system of equations in
the newly derived macroscopic two-phase ferrohydrodynamic formulation. These relations
depend on local flow conditions, such as phase velocities, volume fractions and interfacial
area. The resulting macroscopic mass, linear and angular momentum equations and
Maxwell’s equations will then be expressed in terms of the average fields, accounting
for the physical phenomena associated with the exchange between the two phases.

3.1. Mass jump conditions
The liquid and particle phases are mutually impermeable. In this case the normal and
tangential velocities of the liquid and the particles at the interfaces must be zero,

vl · np = vp · np = 0,
vl × np = vp × np = 0.

}
(3.1)

Taking into account the jump condition (3.1) and the incompressibility of the two
phases, the mass conservation equations for the liquid and particles can be expressed as
follows:

∇ · 〈vl〉 = 0, (3.2)

∇ · 〈vp〉 = 0. (3.3)

3.2. Liquid linear momentum jump condition
In an investigation by Frank et al. (2003), both experimental and theoretical analyses were
performed to study the behaviour of colloidal suspensions. These authors have shown
that for a dilute suspension (particle volume fraction εp < 0.05), there is no particle
migration when the Péclet numbers are in the range 70 ≤ Pe ≤ 4400 (Pe = 6πμγ̇R3

p/KBT
characterizes the ratio between the characteristic times of particle diffusion under the
effect of Brownian motion and shear in the liquid phase). This lack of particle migration
can be attributed to weak particle–particle hydrodynamic interactions in the dilute regime,
leading to a negligible effect of (εl = 1 − εp) gradients on liquid phase hydrodynamics
(Frank et al. 2003), as the volume fraction of the particles, εp, remains uniform for dilute
suspensions. Furthermore, the non-slip of the liquid on the surface of each particle causes
the perturbation of the liquid velocity field, v̂l. However, the flow around the particles can
be simplified to a Stokes flow (Rep << 1) for dilute colloidal suspensions (Dp < 1 μm),
dwarfing the contribution of the inertial hydrodynamic dispersion term, 〈v̂l ⊗ v̂l〉l in
(2.24). With this assumption, the linear momentum conservation equation of the liquid
(2.24), reduces to

ρl

(
∂〈vl〉
∂t

+ ∇ · (εl〈vl〉l ⊗ 〈vl〉l)

)
= −∇〈P〉 + μ∇2〈vl〉 + 〈F e

l 〉

+ 1
V

∫
Al−p

(−χlP̂I + μ∇χlv̂l) · nl dA. (3.4)

The liquid average linear momentum equation (3.4), which is similar to the
Navier–Stokes equation, requires a closure relation that expresses its last right-hand side
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term as a function of the average field. This specific term refers to surface forces arising
from hydrodynamic interactions between liquid and particles. By adopting the Stokes flow
approximation (Guazzelli, Morris & Pic 2011; Kim & Karrila 2013) and assuming the
absence of contact forces between particles, particularly in dilute regimes, it is possible to
obtain a suitable approximation of the exchange of momentum between the two phases.
This approximation involves evaluating the forces exerted by the liquid phase on individual
particles, then scaling these forces by the particle volume fraction εp,

1
V

∫
Al−p

(−χlP̂I + μ∇χlv̂l) · nl dA = 〈F pl〉 = εp〈F pl
p 〉, (3.5)

where 〈F pl
p 〉 denotes the average force exerted by a particle on a liquid per unit volume and

〈F pl〉 refers to the average force per unit volume exerted by the particles in the REV, which
can be expressed as

〈F pl〉 = 1
V

∫
V

F pl dV. (3.6)

At the microscopic scale, consider a free sphere that is submerged in a flowing liquid
and positioned at y0 within the REV confines. To derive insight into the velocity of the
liquid, vl, at the microscopic position vector y, a Taylor series expansion with respect to
the position y0 is performed. This expansion can be represented as follows (Graham 2018):

vl(y) = vl(y0)+ (y − y0) · (Υ + Λ)+ O(|y − y0|2). (3.7)

Equation (3.7) contains the term (Υ + Λ), which represents the tensorial gradient of
the velocity field. The symmetric portion, Υ , of this tensor characterizes the stresslet,
defined as the resistance of the rigid particle to deformation (Batchelor 1970). The stresslet
accounts for the additional stresses that arise in the liquid phase due to the rigidity of the
suspension particles and exerts a significant influence on the flow behaviour of colloidal
suspensions (figure 3a). The hydrodynamic force expressed in (3.6) includes three distinct
contributions: (i) the first force results from the stresslet as described by Υ (figure 3a);
(ii) the second force relates to the torque force represented by Λ (figure 3b); and (iii) the
last is the drag force (figure 3c). When considering a particle immersed in a flowing liquid
with non-zero curvature (∇2vl /= constant), Faxén’s laws (Jackson 1997; Guazzelli et al.
2011; Kim & Karrila 2013) provide expressions for stresslet S (Batchelor 1970), angular
moment Γrot and the drag force F drag, per unit volume of a particle,

S = 5μΥ , (3.8)

Γrot = 6μ
(

wp − 1
2∇ × vl

)
, (3.9)

F drag = − 9μ
2R2

p

(
vl − vp + R2

p

6
∇2vl

)
, (3.10)

where Γrot is the rotational couple describing the lack of synchrony between liquid vorticity
and particle angular velocity.

980 A37-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.32


Predictive theory for dilute ferrofluid spin-up flow

S ∝ 1
2

(
∇vl + ∇vl

t
)

Γrot ∝ ((∇ × vl/2) − wp)

wp

Fdrag ∝ (vl − vp)

(a) (b)

(c)

Figure 3. Schematic description of Faxén’s laws (3.8) to (3.10), expressing the momentum exchange between
the liquid and particle. (a) The arrows pointing in and out describe the stresslet exerted on the liquid by a
particle in the case of a straining flow. (b) The rotating arrows illustrate the moment exerted by a spinning
particle on the liquid. (c) The arrow describes the drag force exerted by a flowing liquid on a particle.

Using Faxén’s laws (3.8) to (3.10), the particle’s force exerted on the liquid can be
expressed as follows:

F pl = F drag + ∇ × Γrot + ∇ · S. (3.11)

Substituting (3.11) into (3.6) and then into (3.5), the hydrodynamic force describing the
momentum exchange in the two phases can be expressed as follows:

1
V

∫
Al−p

(−χlP̂I + μ∇χlv̂l) · nl dA = −9μεp

2R2
p

(
〈vl〉 − 〈vp〉 + R2

p

6
∇2〈vl〉

)

+ 6μεp

(
∇ × 〈wp〉 − 1

2
∇ × ∇ × 〈vl〉

)
+ 5

2
εpμ∇2〈vl〉. (3.12)

The final form of the linear momentum conservation equation for the liquid is obtained
by replacing the jump condition in (3.4) with (3.12), where

ρl

(
∂〈vl〉
∂t

+ ∇ · (εl〈vl〉l ⊗ 〈vl〉l)

)
= −∇〈P〉
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+ μ

(
1 + 5

2
εp

)
∇2〈vl〉 − 9μεp

2R2
p

(
〈vl〉 − 〈vp〉 + R2

p

6
∇2〈vl〉

)

+ 6μεp

(
∇ × 〈wp〉 − 1

2
∇ × ∇ × 〈vl〉

)
+ 〈F e

l 〉. (3.13)

3.3. Particle linear momentum jump condition
The closure of the average linear particle momentum (2.25) requires the identification
of the forces, 〈F lp〉, 〈F pp〉, 〈F e

p〉, as well as the inertial dispersion term, εp〈v̂p ⊗ v̂p〉p,
as a function of the average fields. In the dilute regime, the particles are sufficiently
separated from each other, so that the particle–particle contact force 〈F pp〉 can be ignored.
Furthermore, given the rigid nature of the particles, it can be inferred that the stresses
occurring within them are zero. For the discrete phase, therefore, the contribution of the
stresslet or, in other words, the force 〈F lp〉 is not relevant. Consequently, this whole set of
forces is reduced to 〈F lp〉 in order to consider only the drag force based on the principle of
action and reaction (Newton’s third law). Given these assumptions, the force 〈F lp〉 can be
written as follows:

〈F lp〉 = −εp〈F drag〉

⇒ 〈F lp〉 = 9μεp

2R2
p

(
〈vl〉 − 〈vp〉 + R2

p

6
∇2〈vl〉

)
. (3.14)

By the same token, the perturbation of the velocity of the particles, v̂p, due to mutual
particle–particle interactions is negligible, and thus the term for the inertial particle
dispersion, εp〈v̂p ⊗ v̂p〉p, is negligible. Considering all previous assumptions, as well as
the expression for the drag force (3.14), the equation for the average linear momentum of
the particles (2.25), reduces to

ρp

(
∂〈vp〉
∂t

+ ∇ · (εp〈vp〉p ⊗ 〈vp〉p)

)
= 9μεp

2R2
p

(
〈vl〉 − 〈vp〉 + R2

p

6
∇2〈vl〉

)
+ 〈F e

p〉.
(3.15)

It is important to note that Brownian particles are neutrally buoyant (Graham 2018).
Therefore, the force expression, 〈F e

p〉, can only take into account the external magnetic
field effect. This expression will be discussed in detail in § 4, as it is related to the average
orientation of the magnetic moment of the particles.

3.4. Particles angular momentum jump condition
Similar to the linear momentum (3.15) for particles, the angular momentum equation also
requires defining moments such as 〈Γ lp〉, 〈Γ pp〉, 〈Γ e

p〉. However, in the case of a dilute
suspension, the rotational moment resulting from particle contact, 〈Γ pp〉, and the inertial
dispersion of angular momentum, εp〈v̂p ⊗ ŵp〉p, can be considered negligible (Jackson
1997).
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Predictive theory for dilute ferrofluid spin-up flow

The rotational moment exerted by the liquid on the particles in the dilute regime can be
related to that of Faxén’s laws (3.9), as follows:

〈Γ lp〉 = −εp〈Γrot〉 = 6μεp

(
1
2∇ × 〈vl〉 − 〈wp〉

)
. (3.16)

Given the above assumptions and the expression for the moment (3.16), the macroscopic
conservation of angular momentum (2.26) is written as follows:

Ip

(
∂〈wp〉
∂t

+ ∇ · (εp〈vp〉p ⊗ 〈wp〉p)

)
= 6μεp

(
1
2
∇ × 〈vl〉 − 〈wp〉

)
+ 〈Γ e

p〉. (3.17)

Like the expression of the external force, 〈F e
p〉, the expression of the moment, 〈Γ e

p〉, is
related to the prevailing magnetic field. The latter will also be discussed in detail in § 4,
since it is also related to the average magnetic moment orientation of the particles.

3.5. Maxwell equations jump conditions
In the presence of an external field, a ferromagnetic particle, due to its inherent
magnetization, does not have an internal magnetic field identical to the external field.
Instead, there is a difference between the external and internal fields known as the
demagnetization field. This field is caused by the flux from the magnetization of the
particle, which reduces the resulting magnetic field. Specifically, for a particle subjected
to a magnetic field propagating in the liquid phase, H l, the expression for the magnetic
field inside the particle, Hp, is given by Joseph & Schlömann (1965), Kuznetsov (2018)
and Kuznetsov et al. (2022),

Hp = H l − κMdm, (3.18)

where κ is the demagnetization factor, which is 1/3 for a spherical particle (Kuznetsov
et al. 2022).

Using the demagnetizing field expression (3.18) as the jump condition, the surface term
in the average Ampère–Maxwell equation (2.29) can be written as follows:

1
V

∫
Al−p

(χpHp − χlH l)× np dA = 1
V

∫
Al−p

κMdnp × χpm dA. (3.19)

Using the following identity (Arfken & Weber 2005):
1
V

∫
Al−p

np × χpm dA = 1
V

∫
V

∇ × χpm dV ≡ ∇ × 〈m〉 , (3.20)

the average Ampère–Maxwell (2.29) becomes

∇ × (〈H〉 + κMd〈m〉) = 0. (3.21)

The superficial term of the average Maxwell-flux equation (2.33) can be modelled using
the induction expressions, Bl and Bp, as well as the demagnetizing field (3.18), as follows:

1
V

∫
Al−p

(χpBp − χlBl) · np dA = (1 − κ)Md
1
V

∫
Al−p

χpm · np dA. (3.22)

Hence, Gauss’ identity applied to (3.22) gives (Arfken & Weber 2005)
1
V

∫
Al−p

(χpBp − χlBl) · np dA

= (1 − κ)Md
1
V

∫
V

∇ · χpm dV ≡ (1 − κ)Md∇ · 〈m〉. (3.23)
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The final form of the Maxwell-flux equation is obtained by substituting the jump condition
(3.23) into (2.33):

∇ · (〈H〉 + (2 − κ)Md〈m〉) = 0. (3.24)

4. Macroscale orientational dynamics of particles

When exploring the complex dynamics of ferrofluids, it becomes clear that the two-phase
approach alone is not sufficient to comprehensively describe the behaviour of these
systems subjected to external magnetic fields. A crucial aspect of these dynamics is the
average orientation of the magnetic moments of the ferromagnetic particles, which is
influenced by magnetic fields as well as by translational and rotational motions resulting
from liquid flow or Brownian motion. These phenomena are particularly pronounced in
different flow contexts, where regions dominated by inertia show a less sensitive response
to the magnetic field, in contrast to regions where liquid shear dominates. To understand
this average orientation of magnetic moments, it is essential to separate the characteristic
time scales governing flow and Brownian motion. From this perspective, the characteristic
time of Brownian motion emerges as the fundamental relaxation time (Graham 2018),
imposing a probabilistic approach to accurately represent particle magnetic moments.
These considerations lay the foundations for our subsequent investigation in § 4, where
the underlying mathematical aspects linking the two-phase model and the Smoluchowski
equation are explored. The equations for the concentration and orientation of particle
magnetic moments become crucial, not only for understanding the dynamics, but also
for the mathematical closure of the two-phase model. It is important to emphasize that the
two-phase model and the Smoluchowski equation are complementary, their foundations
being distinct, but converging towards a comprehensive description of the behaviour of
ferrofluids subjected to external magnetic fields.

Consider a dilute colloidal suspension subjected to an external magnetic field H0. The
presence of particles is defined by a probability density, Ψ (x,u, t), which depends on the
macroscopic position x and an orientation vector u defined on a unit sphere . Integrating
Ψ with respect to all possible orientations on  gives∫



Ψ (x,u, t) du = εp. (4.1)

The particles’ mass conservation requires that the probability density function, denoted
Ψ , satisfies Smoluchowski’s equation (Doi & Edwards 1986), formulated as follows:

∂Ψ

∂t
+ ∇ · (J xΨ )+ Lu · (J uΨ ) = 0, (4.2)

where Lu = u × ((∂/∂θ)eθ + (1/sin(θ))(∂/∂φ)eφ) is the curl surface gradient operator
defined on the unit sphere  (supplementary materials § 3). Here J x and J u denote the
translational and rotational fluxes, respectively. These fluxes are expressed in the dilute
regime as follows:

J x = 〈vp〉 − D
(

∇(ln(Ψ ))+ ∇U
KBT

)
, (4.3)

J u = 〈wp〉 − Du

(
Lu(ln(Ψ ))+ LuU

KBT

)
, (4.4)

where D = KBT/6πμRp and Du = KBT/8πμR3
p denote the translational and rotational

diffusion coefficients, respectively; KB and T refer, respectively, to the Boltzmann constant
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Predictive theory for dilute ferrofluid spin-up flow

and the absolute temperature; U is the potential energy of magnetic particles; α =
μ0MdH0Vp/KBT denotes the Langevin parameter.

In our case, ferromagnetic particles are assumed to be single-domain with negligible
magnetic anisotropy. Each particle in the suspension has a constant magnetization, but its
orientation can be influenced by the magnetic field and thermal energy agitation. The
Zeeman potential can be used to model the interactions of the magnetic moments of
particles with the external field, where

UH = −μ0VpM · 〈H〉, (4.5)

where UH is the Zeeman potential energy of a single particle; M is the particle’s
magnetization vector, defined as domain magnetization Md, which is considered as an
intrinsic property of particles, multiplied by the unit vector u, which describes the
particle’s possible orientations with respect to the unit sphere  . In this case the
expression of the Zeeman potential energy (4.5) is then written as (Jones 2003; Fang 2019;
Kuznetsov et al. 2022)

UH = −KBTαu · 〈H̆〉, (4.6)

where 〈H̆〉 = 〈H〉/H0 is the normalized magnetic field by H0, which refers to the
magnitude of the external magnetic field H0.

In the case of hydrostatic equilibrium, when the suspension is in a state of quiescence
and subjected to a spatially homogeneous, non-rotating magnetic field, the Smoluchowski
equation governing the equilibrium probability density, Ψeq, is formulated under the
assumption of the Zeeman potential (4.6):

∇2
uΨeq − αLu · (ΨeqLu(u · 〈H̆〉)) = 0. (4.7)

Equation (4.7), derived from Smoluchowski (4.2) under the assumption of a hydrostatic
regime, is identical to that obtained by Doi & Edwards (1986) in the case of a dilute
colloidal suspension subjected to an external field of potential U and a purely rotational
diffusion motion.

An analytical solution of (4.7) can be obtained (Jones 2003), where

Ψeq = εp
α

4π sinh(α)
exp(α(u · 〈H̆〉)). (4.8)

Equation (4.8) reveals that the equilibrium particle probability density follows the
well-known Maxwell–Boltzmann distribution. In this context, the average orientation of
particles’ magnetic moments, 〈m〉eq, can be calculated using the first moment of Ψeq, such
that

〈m〉eq =
∫


uΨeq du = εpM(α)〈H̆〉, (4.9)

where M(α) = coth(α)− 1/α refers to the Langevin function.
The magnetic moment of a superparamagnetic particle, under the effect of magnetic

field, can interact with the moments of neighbouring magnetic particles. These interactions
are referred to as DDIs. The strength of the dipolar interactions between ferromagnetic
particles depends on several parameters, such as the interparticle distance, which is
controlled by the concentration of the suspension, the intensity of the magnetic field and
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the magnetic moment of the particles, which is determined by the material properties. The
DDI potential, Udd, of a pair of particles, i and j, is given by (Kuznetsov et al. 2022)

Udd = KBTβ
(

ui · uj

|r̃ij|3 − 3
ui · r̃ijuj · r̃ij

|r̃ij|5
)
, (4.10)

where ui and uj denote the particles i and j possible orientations on the unit sphere  ,
respectively, and r̃ij = rij/Dp refers the vector between the centres of i and j particles,
normalized by the particle’s diameter Dp.

The dimensionless number β = μ0(MdVp)
2/KBT4πD3

p, in (4.10), is the key parameter
controlling the DDI strength, and it represents the ratio of the DDI energy of a pair of
particles to the thermal agitation energy. It is clear from (4.10) that the description of DDIs
by Smoluchowski’s (4.2), by considering the potential Udd (4.10), is impossible using a
single-body approach. To account for this phenomenon, a multibody approach is required,
the tractability of which is currently impossible to achieve on a continuum scale. However,
modelling using approaches such as Langevin dynamics simulations (Berkov, Iskakova &
Zubarev 2009; Kuznetsov 2018; Kuznetsov et al. 2022), Brownian dynamics simulations
(Soto-Aquino & Rinaldi 2015; Zhao & Rinaldi 2018) or molecular dynamics simulations
(Ivanov, Wang & Holm 2004), is possible, but in hydrostatic equilibrium as exemplified in
the following studies. For concentrated suspensions (β ≥ 3 and α > 1), simulations show
the formation of chain-like aggregates (Ivanov et al. 2004; Andreu et al. 2012; Faraudo,
Andreu & Camacho 2013; Zhao & Rinaldi 2018). These cases are indescribable by the
Smoluchowski equation (4.2) in a continuum scale, such as our case. However, if the
suspension is sufficiently dilute with low dipole interaction energy and magnetic field,
β < 1 and α < 1, the Weiss mean-field theory allows for the modelling of DDIs on a
continuum scale. This theory likewise expands the local magnetic field acting on a particle
by an additional term describing the particle’s environment (Pshenichnikov, Mekhonoshin
& Lebedev 1996; Ivanov & Kuznetsova 2001), where

Hdd = εpMd

3
M(α)〈H̆〉. (4.11)

Equation (4.11), known as the Weiss mean dipolar field, is valid for β < 1 and a
sufficiently diluted suspension εp << 1 (Huke & Lücke 2000; Ivanov et al. 2007). Taking
into account the mean dipolar field, the potential Udd is then written as follows:

Udd = −KBTξM(α)u · 〈H̆〉, (4.12)

where ξ = 8εpβ is the initial magnetic susceptibility.
The total potential of the suspension is a linear combination of the Zeeman potential

(4.6), and the mean dipolar field potential (4.12), such that

U = −KBTF(α)u · 〈H̆〉, (4.13)

where F(α) = α + ξM(α).
The Smoluchowski (4.2) with the potential U (4.13) is then written as

∂Ψ

∂t
+ 〈vp〉 · ∇Ψ + 〈wp〉 · LuΨ = D[∇2Ψ − F(α)∇ · (Ψ∇(u · 〈H̆〉))]

+ Du[∇2
uΨ − F(α)Lu · (ΨLu(u · 〈H̆〉))]. (4.14)

It is impossible to obtain an analytical solution for the Smoluchowski’s (4.14) due to
its phase-space dependence on position x and orientation u. Consequently, a numerical
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Predictive theory for dilute ferrofluid spin-up flow

approach is required to solve this equation. Nevertheless, analytical progress has been
made by developing the probability density as a series of its moments (Saintillan & Shelley
2008a,b; Ezhilan & Saintillan 2015; Saintillan & Shelley 2015; Theillard & Saintillan
2019). To define the probability distribution of particles as a function of these moments,
we introduce a set of tensors T k

i1,i2,...,ik equivalent to spherical harmonics. The zeroth
moment represents the scalar field of particle concentration 〈εp(x, t)〉. The first-order
moment of the probability density, Ψ , is a vector field describing the macroscopic
orientation of the magnetic moments of the particles 〈m(x, t)〉. The second-order moment
describes the nematic order characterized by the tensor 〈Q(x, t)〉. The tensors, T k

i1,i2,...,ik ,
are homogeneous polynomials of degree k expressed in terms of the unit vector u and are
fully symmetric in terms of the indices i1, i2, . . . , ik. Each tensor T k is orthogonal to the
others and is normalized by a scalar product defined as

(a, b) = 1


∫


a(u)b(u) du. (4.15)

The first three tensors T k are given by

T 0 = 1,
T 1

i = ui,

T 1
i,j = uiuj − δij

3
.

⎫⎪⎬
⎪⎭ (4.16)

The particles probability density Ψ (x,u, t) admits an exact expansion on the basis of
these tensors (Ahmadi, Marchetti & Liverpool 2006), where

Ψ (x,u, t) =
k∑

k=0

am
i1,...,ik(x, t) · T k

i1,...,ik(u), (4.17)

where am
i1,...,ik(x, t) denotes kth moment of Ψ . The kth moment is a tensor that can

be calculated using the definition of the scalar product of orthogonal bases (4.15). The
application of this scalar product to the expansion of Ψ (4.17) yields

am
j1,...,jk(x, t)

1


∫


T k
j1,...,jk(u)T

k
i1,...,ik(u) du = 1



∫


T k
i1,...,ikΨ (x,u, t) du. (4.18)

The three first moments of Ψ are given by

a0 = 1


∫


Ψ (x,u, t) du = εp(x, t)


, (4.19)

a1 = 3


∫


uΨ (x,u, t) du = 〈m(x, t)〉


, (4.20)

a2 = d(d + 2)
2

∫


(
u ⊗ u − I

3

)
Ψ (x,u, t) du = 〈Q(x, t)〉


, (4.21)

where d denotes the space dimension.
In particular, we focus on the zeroth and first moments, which describe the particle

concentration and the macroscopic orientation of the particle magnetic moments. The
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probability density truncated to first order gives

Ψ (x,u, t) = 1
4π

〈εp(x, t)〉 + 3
4π

u · 〈m(x, t)〉. (4.22)

The zeroth and first moments of the Smoluchowski (4.14), when combined with the
probability density expansion expression (4.22), yield a system of two coupled equations
governing the macroscopic dynamics of particle transport and their magnetic moment
orientation. The supplementary material (§ 4) contains the details of the calculations
involving the use of angular operators in the case where the probability density is
approximated by (4.22). The zeroth moment of (4.14) gives

∂〈εp〉
∂t

+ 〈vp〉 · ∇〈εp〉 = D(∇2〈εp〉 − F(α)∇ · (〈m〉 · ∇〈H̆〉)) (4.23)

and that of the first order yields

∂〈m〉
∂t

+ 〈vp〉 · ∇〈m〉 = D
(

∇2〈m〉 − F(α)
3

∇ · (〈εp〉∇〈H̆〉)
)

+ 〈wp〉 × 〈m〉 + 1
τB
(〈m0〉 − 〈m〉), (4.24)

where τB = 1/2Du denotes the Debye relaxation time, and 〈m0〉 refers to the average
equilibrium orientation which reads as

〈m0〉 = εp
F(α)

3
〈H̆〉. (4.25)

It is important to note that the equations resulting from the expansion of the particle
probability density, in particular (4.23) and (4.24), play an essential role as closure
relations for the two-phase model. These equations are not formulated by an averaging over
the control volume (REV), but result from the expansion of the probability density. Their
presence is crucial for the mathematical closure of the established model. It should also be
noted that although the REV averaging and Smoluchowski approaches are distinct, they are
complementary and cannot be integrated interchangeably in our context. Equation (4.23)
describes particle transport under the effect of magnetophoresis, which is denoted by the
term ∇ · (〈m〉 · ∇〈H̆〉). Equation (4.24) models the transport of the average orientation of
the particles under the effects of the magnetic field, the linear and angular velocity of the
particles, and Brownian relaxation, which is characterized by the Debye relaxation time.

Figure 4 depicts the evolution of the average orientation of the particles in hydrostatic
equilibrium, |〈meq〉|/εp, as a function of α. In terms of the effect of DDI on |〈meq〉|/εp,
the figure shows that for ξ = 0.1, the predictions of (4.9) and (4.27) are almost identical.
In the cases of ξ = 1 and 2, there was a significant increase in the orientation at
equilibrium when compared with the case without the DDI. In the absence of DDI, ξ → 0,
|〈meq〉|/εp tends to α/3, corresponding to a Taylor series development to order 1 of the
Langevin function (4.9). According to the comparison of α/3 and M(α) in figure 4, the
relaxation term, 1/τB(〈m0〉 − 〈m〉), is valid only for a weak magnetic field, where α < 1.
Indeed, this is due to the truncation of the probability density Ψ at the first moment.
The identification of the equilibrium probability density Ψeq (4.8), against the truncated
spherical harmonic expansion to first order (4.22), clearly demonstrates that the average
equilibrium orientation of the particles is limited to the case α < 1, where

Ψeq = εp

4π
+ 3

4π

α

3
(u · 〈H̆〉). (4.26)
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1.0 F(α)/3 with ξ = 0 ≡ α/3

F(α)/3 with ξ = 0.1

F(α)/3 with ξ = 1
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M(α)

|〈m
eq

〉|/
ε p

Figure 4. The evolution of particle orientation in hydrostatic equilibrium, |〈meq〉|/εp, as a function of the
Langevin parameter α. The continuous curve was calculated using (4.9), while the dashed curves were
calculated using (4.25).

Restricting to the case when α < 1, the first-order Taylor series expansion of the average
equilibrium orientation of the particles (4.25) reduces it to

〈m0〉 = εp
F1(α)

3
〈H̆〉 = εp

α

3

(
1 + ξ

3

)
〈H̆〉. (4.27)

In conclusion, the average particle orientation (4.24) is expected to be valid when α < 1.
In this case, the effect of magnetophoresis is negligible, resulting in a uniform particle
concentration field, which a posteriori justifies our depiction of the two-phase ferrofluid
suspension as dilute and clusterless. It is also worth noting that the equilibrium orientation
(4.27), is calculated from the probability density in hydrodynamic equilibrium and for
the case of a static magnetic field. Our case, on the other hand, corresponds to a rotating
magnetic field which is time dependent. Thus, the relaxation term, which involves 〈m0〉,
ignores the influence of the magnetic field’s time dependence as well as the hydrodynamics
of the liquid phase. Therefore, the magnetic field rotation’s characteristic time, τH , must
be greater than that of the Brownian relaxation, τB. In the case τH < τB, the orientation
of the particles fluctuates significantly to the point where the continuum approach is no
longer valid. Consequently, the present theory is necessarily confined solely to τH > τB
(Fang 2019).

The final point required for the mathematical closure of the ferrofluid two-phase model
is the definition of the force and magnetic torque acting on the particles in terms of the
average orientation dynamics of the particles’ magnetic moments. The force and torque per
unit volume, denoted by 〈F e

u〉 and 〈Γ e
u〉, acting on a particle whose position is described

by the probability density, Ψ , are determined as follows:

〈F e
u〉 = − 1

Vp
∇(U)Ψ = KBT

Vp
F1(α)Ψ∇(u · 〈H̆〉), (4.28)

〈Γ e
u〉 = − 1

Vp
Lu(U)Ψ = KBT

Vp
F1(α)ΨLu(u · 〈H̆〉). (4.29)

It is important to note that 〈F e
u〉 and 〈Γ e

u〉 are derived from the total magnetic potential
(4.13), and are multiplied by the particles’ probability density to incorporate the influence
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of Brownian motion as described by the Smoluchowski equation. This force expresses the
interaction between the magnetic field, which attempts to create order, and the disorder
caused by Brownian motion.

The magnetic force and torque expressions, 〈F e
p〉 and 〈Γ e

p〉, required for the closure of
the linear and angular momentum conservation equations of the particles (3.15) and (3.17),
are obtained by averaging the expressions (4.28) and (4.29) over the possible orientations
u in the unit sphere  ,

〈F e
p〉 = 1



∫


〈F e
u〉 du = KBT

Vp
F1(α)〈m〉 · ∇〈H̆〉, (4.30)

〈Γ e
p〉 = 1



∫


〈Γ e
u〉 du = KBT

Vp
F1(α)〈m〉 × 〈H̆〉, (4.31)

where du denotes the infinitesimal surface element of the unit sphere,  .

5. Spin-up flow equations

The derived two-phase model is used for the spin-up flow geometry discussed in § 2. It
is important to emphasize that the model includes continuity equations (3.2) and (3.3),
linear momentum conservation equations (3.13) and (3.15), particle angular momentum
conservation (3.17) and equations governing particle transport and magnetic moment
orientation (4.23) and (4.24). In figure 1(a), the Cartesian representation of the external
magnetic field H0 is shown as follows:

H0 = H0

⎛
⎝H̆x,0

H̆y,0
H̆z,0

⎞
⎠ = H0

⎛
⎝− cos(w0t)

− sin(w0t)
0

⎞
⎠ , (5.1)

where its equivalent in cylindrical coordinates is written as

H0 = H0

⎛
⎝H̆r,0

H̆θ,0
H̆z,0

⎞
⎠ = H0

⎛
⎝− cos(w0t − θ)

sin(w0t − θ)

0

⎞
⎠ . (5.2)

To make the mathematical formulation of the problem easier, all the mean fields denoted
by 〈ψ〉 will be noted ψ . The magnetic field’s characteristic rotation time τH = 1/f0 is
assumed to be greater than the Brownian relaxation time τB. In this case, the inertia
caused by the rotation of the magnetic field can be ignored in the linear liquid and
particles momentum balances (3.13) and (3.15). The volume force in the liquid phase can
be ignored because it is entirely due to gravity. The contribution of the liquid shear term
∇2vl in the drag force of the particles (3.15), which is of the order of O(R2

p), is small
in comparison with that of the rotational moment of the particles, which is of the order
of O(1) >> O(R2

p). In this case, we expect that the particle translation contribution is
insignificant in comparison with the rotational motion. Given the above assumptions, the
linear momentum conservation equations for the liquid and particles (3.13) and (3.15), are
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Predictive theory for dilute ferrofluid spin-up flow

written as

μ

(
1 + 5

2
εp

)
∇2vl − 9μεp

2R2
p

(
vl − vp + R2

p

6
∇2vl

)

+ 6μεp

(
∇ × wp − 1

2
∇ × ∇ × vl

)
− ∇P = 0, (5.3)

9μεp

2R2
p

(
vl − vp + R2

p

6
∇2vl

)
+ KBT

Vp
F1(α)m · ∇H̆ = 0. (5.4)

The particle linear momentum conservation equation (5.4) demonstrates that the drag
term is balanced by the external force applied to the particles by the magnetic field. This
term also exists in the linear momentum of the liquid (5.3), but with an opposite sign.
Because we are interested in the flow of the liquid phase generated by particle rotation,
it would be appropriate to substitute the expression of the drag term of (5.4) in (5.3) to
eliminate the velocity of the particles and obtain an equation governing only the flow of
the liquid phase. Following this modification, (5.3) is written as

μ

(
1 + 5

2
εp

)
∇2vl + 6μεp

(
∇ × wp − 1

2
∇ × ∇ × vl

)

+ KBT
Vp

F1(α)m · ∇H̆ − ∇P = 0. (5.5)

In the absence of flow along the z direction, the liquid velocity field is directed only
along the azimuthal θ direction, where it is easy to show through the continuity equation
of the liquid (3.2),

∇ · vl = 0 ≡ 1
r
∂vl,θ

∂θ
= 0, (5.6)

that vl,θ depends only on the radial coordinate r, such that vl,θ = v(r). In this
configuration, the angular velocity of the particles is directed to the z-axis, resulting in

wp =
⎛
⎝wp,r

wp,θ
wp,z

⎞
⎠ =

⎛
⎝ 0

0
w(r)

⎞
⎠ . (5.7)

Taking into account the radial coordinate dependency of the liquid velocity v as well
as the expression for the angular velocity of the particles (5.7), the equation for the linear
momentum of the liquid (5.5) reduces to

μe

(
d2v

dr2 + 1
r

dv
dr

− v

r2

)
− 6μεp

d
dr
(w −Ω) = 0 0 < r < R, (5.8)

whereμe = μ(1 + 5
2εp) denotes the Einstein viscosity. HereΩ = 1

2 (1/r)(d(rv)/dr) refers
to the vorticity of the liquid along the z direction.
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Equation (5.8) is subject to two boundary conditions. The first, at r = 0, is due to the
pipe’s cylindrical symmetry, such that

v|r=0 = 0 (5.9)

the second, at r = R, is due to the liquid’s adherence to the wall, where

v|r=R = 0. (5.10)

Under the same assumptions, the conservation of particles angular momentum equation
(3.17) reduces to

6μεp(Ω − w)+ KBT
Vp

F1(α)(H̆θmr − H̆rmθ ) = 0 0 ≤ r ≤ R. (5.11)

Taking into account the pipe’s radial symmetry, the equation describing particle
transport (4.23) is written as follows:

∂εp

∂t
= D

(
∂2εp

∂r2 + 1
r
∂εp

∂r
− F1(α)

(
mr
∂2H̆r

∂r2 + 1
r
∂H̆r

∂r
∂(rmr)

∂r

))
0 < r < R. (5.12)

This equation has two boundary conditions as well as an initial condition. The first
boundary condition is due to the pipe’s cylindrical symmetry, which assumes that

∂εp

∂r

∣∣∣∣
r=0

= 0. (5.13)

The second condition, at r = R, can be obtained by considering the wall’s impermeability
to particles. This can be obtained by assuming that the translational flux (4.3) is zero in
the normal direction of the wall,

(J xΨ ) · n = 0, (5.14)

where n is the unit vector normal to the wall.
The zeroth-order moment of (5.14) gives the particle transport condition at r = R, where

∫


(J xΨ · n) du = 0 ⇒ ∂εp

∂r

∣∣∣∣
r=R

= F1(α)

(
mr
∂H̆r

∂r

)∣∣∣∣∣
r=R

. (5.15)

The initial condition is obtained by considering the uniformity of the particle
distribution:

εp(r, t = 0) = εp,0. (5.16)

Because the magnetic field rotates around the z axis, the equations governing the
dynamics of particles orientation only consider the r and θ directions, resulting in

∂mr

∂t
= D

[(
∂

∂r

(
1
r
∂(rmr)

∂r

))
− F1(α)

3

(
εp
∂

∂r

(
1
r
∂(rH̆r)

∂r

)
+ ∂εp

∂r
∂H̆r

∂r

)]

+ 1
τB

(
εp
F1(α)

3
H̆r − mr

)
− wmθ 0 < r < R, (5.17)

∂mθ
∂t

= D

[(
∂

∂r

(
1
r
∂(rmθ )
∂r

))
− F1(α)

3

(
εp
∂

∂r

(
1
r
∂(rH̆θ )
∂r

)
+ ∂εp

∂r
∂H̆θ
∂r

)]

+ 1
τB

(
εp
F1(α)

3
H̆θ − mθ

)
+ wmr 0 < r < R. (5.18)
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Predictive theory for dilute ferrofluid spin-up flow

Each of (5.17) and (5.18), which characterize the components of the orientation vector
mr and mθ , requires two boundary conditions and an initial condition. Two first boundary
conditions can be obtained by considering the cylindrical symmetry of the pipe, at r = 0:

mr|r=0 = 0, (5.19)

mθ |r=0 = 0. (5.20)

Consider the first moment of the particle wall impermeability equation (5.14) at r = R
to obtain the two remaining boundary conditions:

∂mr

∂r

∣∣∣∣
r=R

= F1(α)

3
εp
∂H̆r

∂r

∣∣∣∣∣
r=R

, (5.21)

∂mθ
∂r

∣∣∣∣
r=R

= F1(α)

3
εp
∂H̆θ
∂r

∣∣∣∣∣
r=R

. (5.22)

The two initial conditions on mr and mθ can be obtained by considering an absence of
the magnetic field at t = 0:

mr(r, t = 0) = mθ (r, t = 0) = 0. (5.23)

All of the ferrofluid transport equations are coupled to the induced magnetic field within
the suspension (3.21) and (3.24). By taking into account the pipe’s symmetry and the
direction of the external field H0, these equations reduce to

∂H̆θ
∂r

+ H̆θ
r

+ 1
3

Md

H0

(
∂mθ
∂r

+ mθ
r

)
= 0 0 < r < R, (5.24)

∂H̆r

∂r
+ H̆r

r
+ 5

3
Md

H0

(
∂mr

∂r
+ mr

r

)
= 0 0 < r < R. (5.25)

Each of (5.24) and (5.25) requires the definition of a boundary condition at the wall,
r = R. The integral form of the Maxwell–Ampère equation (3.21)) reads∫

A

(
H + Md

3
m
)

× n dA = 0. (5.26)

When the suspension is assumed to be confined by a non-magnetic and non-conductive
wall, the integral form of the Maxwell–Ampère equation reveals the necessity of a
continuity condition linking the tangential component of H + 5

3 Mdm and that of H0,
where (

H + Md

3
m
)

× n = H0 × n. (5.27)

For the case of (5.24), the condition (5.27) becomes

H̆θ |r=R + 1
3

Md

H0
mθ |r=R = H̆θ,0. (5.28)

Similarly to the Ampère–Maxwell equation, the Maxwell-flux (3.24) in its integral form
can be written as follows: ∫

A

(
H + 5

3
Mdm

)
· n dA = 0, (5.29)
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where it is apparent through this representation that a continuity is necessary between the
wall normal component of H + 5

3 Mdm with that of H0, such that(
H + 5

3 Mdm
)

· n = H0 · n. (5.30)

In the case of (5.25), the continuity of the normal component reduces to

H̆r|r=R + 5
3

Md

H0
mr|r=R = H̆r,0. (5.31)

The solution of the ferrofluid model for the case of a spin up flow geometry can
be obtained by numerically solving (5.8), (5.11), (5.12), (5.17), (5.18), (5.24) and (5.25)
considering the boundary conditions (5.9), (5.10), (5.13), (5.15), (5.19) to (5.22), (5.28)
and (5.31). The stationary solution can be obtained by writing the particles’ concentration
field εp, the orientation of the particles’ magnetic moments m, and the magnetic field H̆
in the following functional form:

εp = Re{εp exp( jw0t)}, (5.32)

m = Re{m exp( jw0t)}, (5.33)

H̆ = Re{H̆ exp( jw0t)}, (5.34)

where εp, m and H̆ are the complex amplitudes of εp, m and H̆ .

6. Results and discussion

This section presents the results of the two-phase ferrofluid model for a cylindrical
spin-up flow configuration. To confirm the suitability of the model within this specific
framework, the relevance of the experimental conditions with respect to the underlying
model assumptions is first examined. Subsequently, the relevant experimental results
are confronted with the model in order to allow a well-founded comparison. Finally, a
parametric analysis is performed to evaluate the different contributions of the phenomena
emphasized by the mathematical model.

6.1. Model confrontation with experimental results for α < 1 and w0τB << 1
Torres-Diaz et al. (2014) performed experimental measurements of the local azimuthal
velocity field using an ultrasonic technique in a cylindrical spin-up flow geometry (tube
with radius R = 24.7 mm and length L = 63.5 mm) induced by a uniform, rotating
external magnetic field. These experimental results were selected for comparison with
the theoretical results because the ferrofluids used have a concentration of less than 1 %,
which is consistent with the dilution limit assumption used in model development. Two
categories of ferrofluids were examined in the experimental study. The first category
included water-based ferrofluids (WBFs) and was further subdivided into three types
(WBF-1, WBF-2, WBF-3), which were distinguished by mean particle diameter (Dp =
14.3, 17.2, 28.9 nm) and particle concentration (εp = 0.00213, 0.00361, 0.00756).
The second category comprised oil-based ferrofluids, including WBGF-1 (Dp =
14.5 nm, εp = 0.00376), GBF-1 (Dp = 12.3 nm, εp = 0.00183) and GBF2 (Dp =
14.4 nm, εp = 0.00753). The measured domain magnetization for both categories of
ferrofluids prepared with cobalt ferrite particles was Md = 425 kA m−1.
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As explained in § 4, despite the dilute nature of the aforementioned ferrofluids, the
equations governing the transport of the particles and the dynamics of their magnetic
moment orientation should be valid only under certain conditions. In particular, they are
applicable only in the presence of a magnetic field whose strength is small enough (α < 1)
to prevent the formation of cluster chains. Furthermore, the equations retain their relevance
when the rotation frequency f0 does not exceed the Brownian relaxation frequency 2Du,
in which case the relaxation orientation m0 would be restricted to the hydrostatic regime.
These conditions can be summed up as the validity ranges of α < 1 and w0τB << 1 for
the proposed model.

Aqueous-based ferrofluids have a significantly shorter Brownian relaxation time, τB,
than oil-based ferrofluids due to the higher viscosity of the latter. Therefore, in the
frequency range of f = 50–200 Hz used in the experiments of Torres-Diaz et al. (2014) it is
only relevant to compare the present model with the aqueous class of ferrofluids due to the
fact that the magnitude of w0τB is less than 1. This condition, even for aqueous ferrofluids,
must be accompanied by a restriction on the nanoparticle diameter or the intensity of the
magnetic field strength to ensure that α < 1. Therefore, with the exception of WBF-3
α > 1, the theoretical predictions of the developed model are only compared with the
experimental results of WBF-1 and WBF-2, which satisfy the assumptions of α < 1 and
w0τB << 1.

Figure 5 shows a comparison of the liquid velocity predictions of the current model
and the experimental results of Torres-Diaz et al. (2014) for WBF-1 and WBF-2. The
liquid bulk corotates with the magnetic field in all cases considered. Furthermore, both
theoretical and experimental results predict the same thickness of the velocity field’s
diffusive layer. This thickness, which measures the distance between the wall and the
extremum point of the velocity profile, is approximately 40 % of the tube’s radius R.
This value remains constant regardless of the type of ferrofluid, WBF-1 or WBF-2, the
magnetic field strength, H0, or the rotation frequency, f0. This result was also observed
experimentally for the case of a concentrated WBF EMG705, εp > 1 %, carried out by
Chaves et al. (2008) in the same configuration considered by Torres-Diaz et al. (2014). This
implies that the parameters of the external magnetic field and the type of ferrofluid do not
affect the thickness of the liquid linear momentum diffusion layer. As mentioned above, in
spin diffusion theory, the thickness of the velocity field diffusion layer is determined by the
spin viscosity η′, since when η

′ → 0, spin diffusion theory predicts no macroscopic flow
in the ferrofluid. The value of η′, that scales as μR2

p, predicts a very thin diffusion layer, of
the same order of magnitude as the radius of a particle, which contradicts the experimental
measurements of Chaves et al. (2008) and Torres-Diaz et al. (2014). According to Chaves
et al. (2008), spin diffusion theory predicts the same diffusion layer only when η′ is
artificially and arbitrarily inflated by 8 to 10 orders of magnitude compared with the
prescription of Zaitsev & Shliomis (1969). The magnitude of such a substantial correction
can only indicate a physical deficiency that is difficult to justify within the standard
pseudohomogeneous ferrohydrodynamic model, and in any case calls into question its
predictive character. It is important to note that despite the fact that the current model is
independent of η′, it still predicts the thickness of the diffusion layer, as shown in figure 5.
Therefore, it can be assumed that the origin of the macroscopic flow in the spin-up flow
geometry does not need to invoke the spin viscosity concept and is independent of η′.
Figure 5(a) shows the influence of the magnetic field strength on the velocity profile for
WBF-1 over the range of the considered magnetic field strength μ0H0 = 3.4–6.8 mT,
corresponding to α � 1. In this figure, the predictions of the developed model and the
experimental results clearly show that increasing the magnetic field intensity increases
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the liquid velocity. Regarding the effect of the rotational frequency of the magnetic field,
figure 5(b) shows the velocity profile of WBF-1 for f0 ranging between 75 and 150 Hz,
w0τB << 1. The experiment and the developed model show that increasing f0 causes an
increase in the liquid velocity. Figure 5(c) shows that for the case of ferrofluid WBF-2, the
experiment and the current model quantitatively predict the same behaviour for the cases
α = 0.62, f = 175 Hz and α = 0.77, f = 125 Hz.

Figure 5 shows that for all cases considered, the model is in global agreement with the
experimental results. It is important to note that the measurement uncertainties recorded
by Torres-Diaz et al. (2014) for the local velocity represent approximately 40 % of the
mean field. For the WBF-1 cases, a maximum mean error of 15 % was recorded, with the
predictions always remaining within the measurement uncertainties, except for the case
α = 1.07, which can be considered outside the model validity range. As for the WBF-2
cases, a maximum mean error of α = 1.07 was recorded, which is significantly lower than
that of WBF-1 and always remains within the measurement uncertainties.

The liquid in corotation with the magnetic field (figure 5) causes shear at the tube surface
at r = R, thereby slowing down its rotation. This is tantamount to a torque exerted on
the tube wall, which is another important hydrodynamic parameter of the ferrofluid in the
spin-up flow geometry. Using the linear momentum equation for the liquid and the angular
momentum equation for the discrete phase (5.8) and (5.11), the torque can be calculated
from the total force exerted by the liquid at r = R as follows:

Lw = 2πR2L
(

KBT
Vp

F1(α)(H̆θmr − H̆rmθ )|r=R − 2μeΩ|r=R

)
. (6.1)

Figure 6 shows a comparison of the experimental torque results of Torres-Diaz et al.
(2014) and those of the theoretical expression (6.1), for the cases WBF-1 and WBF-2. The
experimental and model results show that the torque increases with increasing magnetic
field strength and rotation frequency f0, in the range where α < 1 and w0τB << 1.
Figure 6 also shows that the evolution of Lw appears to be linear with f0 for WBF-1
and WBF-2. However, the evolution with H0 is clearly nonlinear. Regarding the accuracy
of the predictions of the theoretical model in comparison with the experimental results,
a precise evaluation of the error is unfortunately not possible due to the unreported
uncertainty estimation by the experimentalists. However, the model seems to agree with
the experimental results in terms of the behaviour and the order of magnitude of the torque.

6.2. Parametric study of spin-up flow physics under α < 1 and w0τB << 1 conditions
The ability of the two-phase model to capture the basic mechanisms governing the
ferrofluid spin-up flow has been demonstrated by comparing its predictions with the
experiment of Torres-Diaz et al. (2014). However, to gain a comprehensive understanding
of the process within the valid range of the model (α < 1 and w0τB << 1), it is crucial
to quantitatively assess the impact of each of the phenomena inventoried in the model.
Therefore, a careful parametric study is essential to identify the influential factors that
govern the process. The following simulation study will be performed on the same
configuration used by Torres-Diaz et al. (2014), where the dimensions are R = 24.7
and L = 63.5 mm. The ferrofluid used will be water-based, consisting of cobalt ferrite
nanoparticles, with a domain magnetization Md = 425 kA m. The primary objectives
of the parametric study are to investigate the effects of the induced magnetic field, to
evaluate the role of the magnetic Kelvin body force in nanoparticle transport, to analyse
the effects of DDIs, and to investigate the contribution of the demagnetizing field. The
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Figure 5. Comparison of experimental and theoretical predictions for the local velocity field along the
azimuthal direction for the cases of ferrofluids WBF-1 and WBF-2: (a) WBF-1 – f0 = 150 Hz; (b) WBF-1
– μ0H0 = 5.6 mT; (c) WBF-2.
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Figure 6. Comparison of Torres-Diaz et al. (2014) experimental results and model prediction with respect to
the torque Lw (6.1), for WBF-1 and WBF-2 ferrofluids: (a) WBF-1; (b) WBF-2.
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systematic study of these parameters provides a more complete understanding of the
dynamics underlying ferrofluid flow.

Figures 7 and 8 depict the dynamic evolution of the induced magnetic field, H̆ , and
the orientation of magnetic moments of particles, m, in the (r, θ) plane. Due to the
perpendicular orientation of the external field with respect to the z-axis, the components
of H̆ and m along z vanish consistently according to (5.24) and (5.25). Figure 7 highlights
the influence of the intensity of the magnetic field H0, which is encapsulated in the
Langevin parameter α, on the radial profiles of the azimuthal component of the induced
magnetic field and the azimuthal and radial components of the nanoparticles magnetic
moment orientation for a given rotational frequency of the magnetic field. Conversely,
figure 8 demonstrates the impact of the rotational frequency of the external magnetic field
on these same variables. Despite the uniform nature of the external magnetic field, the
induced field exhibits localized gradients in all scenarios presented in figures 7 and 8. The
magnitude of the induced H̆r and H̆θ fields varies monotonically, exhibiting zero values at
r = 0 and reaching their maximum at r = R. These findings underscore the significance
of considering the induced field in the spin-up flow process.

Figures 7(a) and 7(b) show the effect of the external magnetic field strength on H̆θ
and mθ for α = 0.1, 0.5 and 1 when f0 = 100 Hz. These figures show that the induced
magnetic field is the cause for the magnetic moments of the particles to be oriented in
the direction of θ , because in the absence of H̆θ the particles are mostly oriented in the
direction of r. This means that, despite the fact that H̆θ is omnipresent in the external field,
disregarding the induced field does not yield a component mθ due to the uniformity of
the external field. These figures also show that the amplitudes of H̆θ and mθ are affected
by the external magnetic field intensity. Figure 7(b) shows that an increase in α causes
an increase in mθ . However, for H̆θ , figure 7(a) shows that the induced field is almost
insensitive to the external magnetic field strength for α < 1, except in the region close to
the wall, where H̆θ decreases with increasing α due to the effect of the demagnetizing
field. Furthermore, H̆θ also becomes insensitive to α in the absence of the demagnetizing
field, demonstrating that the azimuthally induced magnetic field component is generated
by the rotation of the magnetic field. Figure 7(c) illustrates the impact of α on the evolution
of mr and H̆r. It compares mr with εp(α/3)H̆r to quantify the deviation from the Langevin
relation (4.25). The Langevin relation describes the orientation of particle moments in a
ferrofluid under hydrostatic equilibrium when subjected to a static magnetic field of equal
strength instead of a rotating field. As shown in this figure, mr follows the same trend as H̆r,
where its evolution is nearly linear. Furthermore, the difference caused by f0 between mr
and εp(α/3)H̆r is vanishingly small. As a result, we can conclude that mr obeys Langevin’s
law with a small deviation caused by the hydrodynamic interaction between the liquid and
the particles.

In terms of frequency influence, figure 8 illustrates the effect of f0 on H̆ and m when
α = 0.5 for f0 values of f0 = 50, 100 and 150 Hz. The rotation of the magnetic field
induces a field along θ , and the particles, being ferromagnetic, align with this field,
resulting in a component mθ . Figures 8(a) and 8(b) show that increasing f0 leads to an
increase in the amplitudes of H̆θ and mθ . When there is no rotation of the magnetic
field ( f0 → 0), mθ tends to zero. Under the condition w0τB << 1, the influence of f0
on the radial profiles of mr and εp(α/3)H̆r is negligible (figure 8c). It is worth noting that
according to the current model’s assumption of a uniform external field throughout the
tube, the suppression of the induced field does not generate any flow in the ferrofluid. This

980 A37-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

32
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.32


Predictive theory for dilute ferrofluid spin-up flow

Hθ

mr

α = 0.1

α = 0.5
α = 1

m0 ≡ εp (α/3) Hr (4.25)

0.2 0.4 0.6 0.8 1.0

r/R
0 0.2 0.4 0.6 0.8 1.0

r/R

0

0

1

2

3

4

5

–5

–4

–3

–2

–1

0

mθ

α = 0.1

α = 0.5

α = 1

α = 0.1

α = 0.5

α = 1

(a) (b)

0 0.2 0.4 0.6 0.8 1.0

r/R

–2.5

–3.0

–2.0

–1.5

–1.0

–0.5

0

mr

(×10−4)

(×10−5) (×10−7)

(c)

Figure 7. Effect of an external magnetic field on the evolution of the induced local magnetic field and the
particle magnetic moment orientations in the case of a WBF (εp,0 = 0.001, f0 = 100 Hz, Dp = 15 nm, Md =
425 kA m−1).

can be seen from (5.8), where ∇H̆ → 0 transforms into a Poisson equation, ∇v → 0,
with homogeneous boundary conditions, resulting in a trivial solution. This leads to
the conclusion that the induced field serves as the driving force for the bulk motion of
the ferrofluid, considering the continuity of its components at the tube surface r = R
with the external field H̆0. As mentioned earlier, the rotation of the magnetic field at a
given frequency causes the particles to rotate in the direction of the field, resulting in a
component mθ in the orientation of their magnetic moments. However, due to the viscous
interaction between the particles and the liquid, the rotation of the magnetic moments of
the particles lags behind the rotation of the magnetic field. The following expression can
be used to determine the local lag angle between the direction of the magnetic moments
of the particles and the magnetic field:

Θ = arccos

(
H̆ · m
|H | |m|

)
. (6.2)
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Figure 8. Effect of magnetic field frequency f0, on the evolution of the radial profiles of (a) the (dimensionless)
azimuthally induced magnetic field component and the orientation of the nanoparticle magnetic moment in
terms of the (b) azimuthal and (c) radial components in the case of a WBF (εp,0 = 0.001, Dp = 15 nm, Md =
425 kA m−1, H0 = 2.18 kA m−1). In panel (c), the radial projection of the nanoparticle orientation via the
Langevin equation (4.25) using the induced radial magnetic field is compared with mr.

Figure 9 provides insight into the influence of α (figure 9a) and f0 (figure 9b) on the lag
angle as estimated by (6.2). These figures show that the lag angle is uneven within the pipe
in all cases considered. The maximum value of the lag angle occurs in the centre of the
pipe where the induced field is the weakest. Conversely, the lag angle reaches its minimum
value at the pipe surface, r = R, where the induced field is the strongest. Figure 9(a)
illustrates the effect of α on Θ , showing an increase in the amplitude of Θ with higher
magnetic field strength. Regarding the effect of f0, figure 9(b) shows that an increase in
f0 leads to a larger lag angle. These observations are consistent with expectations since
higher values of α and f0 result in increased viscous friction between the liquid and the
particles. Under the conditions α < 1 and w0τB << 1, the magnitude of Θ remains small
despite the radial gradients of the lag angle. Consequently, the effect of Θ on the spin-up
flow process is negligible. Another factor considered in this model is the magnetic force
acting on the particles, commonly referred to as the Kelvin body force. It is worth noting
that this force drives magnetophoresis, which causes particle transport within the tube,
as described by the zeroth moment of the Smoluchowski (4.14). The components of the
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Figure 9. The effect of magnetic field intensity and rotation frequency on the lag angle in the case of a WBF
(εp,0 = 0.001, Dp = 15 nm, Md = 425 kA m−1): (a) f0 = 100 Hz; (b) α = 0.8.

Kelvin body force are expressed along r and θ :

F p = KBT
Vp

F1(α)

⎛
⎜⎜⎜⎜⎝

mr
dH̆r

dr
− m̆θ H̆θ

r

mr
dH̆θ
dr

+ m̆θ H̆r

r
0

⎞
⎟⎟⎟⎟⎠ . (6.3)

Figures 10(a) and 10(b) illustrate the evolution of the Kelvin force local components
Fp,r and Fp,θ for α values of 0.1, 0.5 and 1. Notably, both figures clearly demonstrate the
absence of magnetic field forces acting on the particles, indicating no translation of the
particles within the tube. Consequently, particle transport within the tube is negligible, as
depicted in figure 10(c), where no gradient of εp is observed for the three considered α
values (α = 0.1, 0.5, 1). Therefore, both the particle transport and the Kelvin body force
can be considered negligible in the spin-up flow process. However, unlike the Kelvin body
force, it is important to emphasize that the torque exerted on the particles is not negligible.
In the presence of the induced field, this torque introduces an asynchrony between the
particle spin, w, and the liquid’s vorticity, Ω , resulting in an antisymmetric stress. This
antisymmetric stress is then converted into a linear momentum that drives the ferrofluid’s
movement (Zaitsev & Shliomis 1969; Rosensweig 2013). It is critical to note that ignoring
the induced field results in the absence of asynchrony between the spin and vorticity of
the fluid, effectively suppressing macroscopic flow within the ferrofluid. The magnetic
torque can be calculated based on the net particle spin, w −Ω . By employing (5.11), the
net particle spin, w∗ = (w −Ω)/w0, normalized with respect to the rotational pulsation
of the magnetic field, w0, can be expressed as

w∗ = KBT
6μεpw0Vp

F1(α)(H̆θmr − H̆rmθ ). (6.4)

Figure 11 shows the effect of α and f0 on the net dimensionless spin of the particles,
w∗. It is evident that the particle spin in the centre of the tube tends to zero for all cases
shown in this figure. This behaviour can be explained by referring to (6.4) which states
that w∗ → 0 when r = 0, due to the rotational symmetry of the tube and the cancellation
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Figure 10. Effect of magnetic field intensity on the Kelvin body force and particle transport, for f0 = 100 Hz,
in the case of WBF (εp,0 = 0.001, Dp = 15 nm, Md = 425 kA m−1).

of the induced field at the centre. However, this does not imply that the particle spin is
completely zero in this region, but rather indicates a synchronization between the particle
spin and the vorticity of the liquid. The maximum value of w∗, which represents the peak
asynchrony between w and Ω , is observed near the wall where the induced field is at its
maximum.

To solve the conservation of angular momentum equation (5.11), no a priori knowledge
of the wall boundary condition is required, as can be seen from the range 0 ≤ r < R in
figure 11 where w∗ is plotted. Mathematically, this equation does not require boundary
conditions, as it is an algebraic equation that effectively bypasses the knowledge of
any wall effect on w. From a phenomenological perspective, predicting the interactions
between spinning particles and the wall at the continuum scale is challenging. Spin
diffusion theory (Zaitsev & Shliomis 1969; Rosensweig 2013) considers a non-slip
condition for w, that generates spin diffusion through the spin viscosity η′. Thus, Kaloni
(1992) suggests describing w at the wall with a non-slip condition that relates w to the
vorticityΩ using a correction factor. In the present model, the antisymmetric stress caused
by w −Ω /= 0 is modelled by Faxén’s laws (3.16), where the factor 6μεp represents the
vortex viscosity in spin diffusion theory (Zaitsev & Shliomis 1969; Rosensweig 2013).
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Figure 11. Effect of frequency and magnetic field on the net dimensionless particles spin w∗ in the case of a
WBF (εp = 0.001, Dp = 15 nm, Md = 425 kA m−1): (a) f0 = 100 Hz; (b) α = 0.5.

Leach et al. (2009) performed an experimental study of the translational and rotational
motion of a microsphere near a wall, highlighting the need for corrections to Faxén’s
laws to account for particle–wall interactions. However, these corrections depend on
the particle–wall distance, which is difficult to predict. Despite uncertainties regarding
particle slip or non-slip on walls, the present model accurately predicts the hydrodynamic
behaviour of the ferrofluid, as demonstrated in § 6.1. In addition, since the ferrofluid
is assumed to be dilute, the microrheological behaviour has a negligible influence on
the hydrodynamic behaviour, allowing the wall effect to be omitted in the angular
momentum balance. Lukaszewicz (1999) has also explored boundary condition issues in
the context of polar fluid theory as a promising approach to the treatment of fluid flow with
microrotational degrees of freedom. This approach deserves to be revisited in the future
in the context of two-phase ferrofluid treatments of spin-wall boundary conditions, in
order to assess its contribution to the understanding of wall–particle interaction boundary
conditions, particularly in intense magnetic fields where chain-like aggregates can form.
Indeed, the hydrodynamic interactions of these chain-like aggregates with the wall can be
significant, depending on their size.

The parameterization of the magnetic field frequency on w∗ radial profiles results in a
collapse to a single master curve (figure 11b) for f0 = 50, 100 and 150 Hz. This observation
indicates that w0 serves as a relevant scaling coefficient for w −Ω , implying that 6εpw0R
acts as a velocity scaling factor in the linear momentum equation (5.8), as shown in
figure 12(a). The convergence of the velocity profiles to a single master curve for the
three frequency values considered (figure 12a) demonstrates the importance of 6εpw0R
as a velocity scaling factor in terms of frequency influence. The influence of α on w∗
is illustrated in figure 11(a), which clearly shows that an increase in the magnetic field
leads to an increase in the antisymmetric stress. This effect is further emphasized in
figure 12(b), which illustrates the effect of α on the velocity profile. As α increases, the
increase in antisymmetric stress leads to an increase in linear momentum, resulting in an
increase in velocity. For α = 0.1, a tiny fraction close to zero of the rotational pulsation
of the external field, w0, is converted into antisymmetric stress, resulting in a velocity
field close to zero. For α = 0.5 and 1, approximately 4 % and 14 %, respectively, of w0
is converted to antisymmetric stress. This conversion manifests itself as an increase in
velocity (figure 12b). However, the scaling factor 6εpw0R fails to unify the velocity profiles
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Figure 12. Effect of frequency and magnetic field on the velocity profile in the case of a WBF (εp = 0.001,
Dp = 15 nm, Md = 425 kA m−1): (a) α = 0.5; (b) f0 = 100 Hz.

for the three α values considered (figure 12b). This discrepancy arises because the scaling
factor does not account for α. In addition, unlike frequency, the nonlinear dependence
between v and α makes it difficult to identify a scaling factor that characterizes their
nonlinear relationship.

Figure 13 depicts the influence of DDIs on the liquid velocity profile. The comparison
between velocity profiles with and without DDI is performed for a WBF to highlight its
quantitative effect on the spin-up flow process. It is clear from all cases shown in the
figure that the DDI contributes to the advective flow of the liquid rather than serving
as a fundamental parameter to trigger the spin-up flow process. This observation can be
attributed to the fact that the model consistently predicts macroscopic flow even in the
absence of DDIs. The inclusion of DDIs in our model is achieved through mean field
theory, which accounts for the influence of the dipolar interaction energy through the
initial magnetic susceptibility ξ , as explained in § 4. Notably, this parameter is influenced
by the mean particle distance, which is determined by the ferrofluid concentration εp
and the average particle diameter Dp. Figure 13(a) illustrates the effect of particle
concentration on the liquid velocity profiles in the presence and absence of DDI for
particles with a diameter of Dp = 10 nm. For εp = 0.001 and 0.002, the effect of DDI
is negligible, except for a slight increase in velocity observed for εp = 0.005. The weak
influence of DDI for particles with a diameter of 10 nm can be attributed to the fact
that as the particle size decreases, the average distance between the particles increases,
resulting in a weakening of the dipolar interaction energy. This weakening of the DDI
is evident in the low initial magnetic susceptibility values of ξ = 0.0096, 0.019 and
0.048, corresponding to concentration values of εp = 0.001, 0.002 and 0.005, respectively.
Therefore, for ferrofluids with small particle diameters, DDIs are typically negligible,
except in the case of highly concentrated suspensions εp > 1 %, which fall outside the
validity range of the present model. The DDI has a greater effect when the particle
diameter is Dp = 20 nm (figure 13b). As the particle concentration increases, the increase
in the velocity field with DDI is more pronounced. Due to the increase in particle diameter,
the initial magnetic susceptibility values increase, ξ = 0.077, 0.15, 0.39, compared with
the case where Dp = 10 nm. Therefore, as the particle diameter increases, the average
distance decreases, which increases the dipolar interaction energy.

The last effect to be studied on the spin-up flow process is the demagnetizing field
in terms of particle diameter and concentration (figure 14). It should be noted that the
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Figure 13. Effect of DDI on the velocity profile for α = 0.8 and f0 = 100 Hz in the case of water based
ferrofluid (Md = 425 kA m−): (a) Dp = 10 nm; (b) Dp = 20 nm.

demagnetizing field is controlled by the geometrical parameter κ , which tends to 1/3 for
spherical particles. In the literature, the demagnetizing field is often pointed out as the
physical phenomenon behind the spin-up flow process (Chaves et al. 2008; Torres-Díaz
et al. 2012; Finlayson 2013). However, figure 14 demonstrates that even in the absence
of the demagnetizing field κ → 0, the present model still predicts a macroscopic flow in
rotating magnetic fields. This indicates that the demagnetizing field, together with DDIs,
contributes to the spin-up flow process rather than being the main driving parameter. The
demagnetizing field tends to slow down the spin-up flow, leading to a reduction in the
liquid velocity. This can be attributed to the decrease in the induced magnetic field caused
by the magnetic moments at the particle surface (Joseph & Schlömann 1965). Regarding
the influence of the concentration of the ferrofluid suspension on the demagnetizing field,
the velocity profiles show an insensitivity to this phenomenon for a diameter Dp = 10 nm
(figure 14a,c,e). However, for Dp = 20 nm (figure 14b,d, f ), where the velocity field is
reduced, the effect of the demagnetizing field becomes more pronounced. This reduction
in the velocity profile is particularly significant for high εp. The analysis of figure 14 reveals
that the demagnetizing field is a volume-dependent process, where the reduction of the
induced field leading to a reduction of the flow velocity is proportional to the particle
volume. Therefore, it can be concluded that the demagnetizing field has a significant effect
on particles with larger diameters.

6.3. Cases when α > 1 and w0τB ∼ 1
As mentioned above, the validity of the model lies in the range where α < 1 and
w0τB << 1. However, in order to gain a comprehensive understanding of the physical
phenomena involved, it is also necessary to investigate the behaviour of the model outside
its range of validity. To achieve this, a comparison should be made between the velocity
profiles predicted by the present model and those obtained from the experiment of
Torres-Diaz et al. (2014) for cases where α > 1 and w0τB ∼ 1. The experiment performed
by Torres-Diaz et al. (2014) on the WBF-1 ferrofluid showed that the velocity field
increases with increasing α, which is consistent with the theoretical predictions of our
model. However, for α > 1, a saturation of the velocity increase was observed, suggesting
that the velocity tends to reach a limit. It has been observed that when the magnetic field is
intense, the ferromagnetic suspension can form chain-like aggregates (Ivanov et al. 2004;
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Figure 14. Effect of particles’ demagnetization on the velocity profile for, f0 = 100 Hz, in the case of WBF
(Md = 425 kA m−1): (a) εp = 0.001 and Dp = 10 nm; (b) εp = 0.001 and Dp = 20 nm; (c) εp = 0.005 and
Dp = 10 nm; (d) εp = 0.005 and Dp = 20 nm; (e) εp = 0.01 and Dp = 10 nm; ( f ) εp = 0.01 and Dp = 20 nm.

Andreu et al. 2012; Faraudo et al. 2013; Zhao & Rinaldi 2018), which reduce the Brownian
relaxation time and the magnetic torque exerted on the chains due to their increased length.
Consequently, this effect is believed to be the cause of the velocity saturation observed for
α > 1 in the experiment of Torres-Diaz et al. (2014).

When chain-like aggregates form, Faxén’s laws, (3.8) to (3.10), are no longer valid
because they are based on the single-particle view. More precisely, (3.9) includes the term
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Figure 15. Comparison of the present model with the experimental results of Torres-Diaz et al. (2014) for
α > 1 and w0τB ∼ 1: (a) WBF1; (b) WGBF.

6μεp, which expresses the antisymmetric stress resulting from the asynchrony of the spin
and the vorticity of the liquid, which, as discussed in § 6.2, is essential for the generation
of the spin-up flow. This relation is similar to the vortex viscosity in spin diffusion theory.
Consequently, a modification of this relation to account for chain formation is required to
describe the macroscopic flow for α > 1. Thus, it can be concluded that this model does
not account for the effect of chain formation because its constitutive equations are based
on the single-particle (or single-body) view. Accordingly, for α > 1, figure 15(a) shows
an overestimation of the experimental results by the theoretical predictions. However, it
is important to note that the two-phase view used in the present model may provide a
potential opportunity for investigation and development in cases where α > 1. By studying
the liquid and the discrete magnetic inclusions separately, it may be possible to model
cause and effect separately. For example, this approach provides a particle transport
equation with negligible effects for α < 1, but it can be improved for α > 1 by using a
multibody approach to predict chain formation. Regarding the effect of frequency f0 in
cases where w0τB ∼ 1, figure 15(b) shows that the model overestimates the experimental
results, as expected. This is due to the fact that the orientation of the magnetic moments at
equilibrium has been modelled in the case of hydrostatic equilibrium. At high frequencies,
however, the inertia of the fluid can affect the relaxation, and hydrostatic equilibrium is no
longer valid.

7. Concluding remarks

We have developed a two-phase, parameter-free, volume-averaged macroscopic approach
to predictively describe the spin-up flow of dilute, cluster-free ferrofluids excited by
low-frequency rotating magnetic fields. In contrast to the standard ferrohydrodynamic
model, which treats the ferrofluid as a pseudohomogeneous phase, the proposed approach
takes a different perspective, recognizing from the outset the inherent heterogeneity
of two-phase colloidal magnetic suspensions by emphasizing the discrete nature of
nanoparticles. Two fundamental aspects of the particle angular momentum equation
have therefore been re-examined. First, spin diffusion, associated with a continuum-type
molecular diffusion process, is excluded because the particles that make up the ferrofluid
are very far apart, even on a microscopic scale. Second, the boundary condition of the
standard ferrohydrodynamic model for the angular velocity of particles at the wall, which
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assumes a continuum-like non-slip condition on questionable grounds, was reconsidered.
The two-phase approach revealed that the wall region must be treated with a slip condition
in which nanoparticles can rotate close to the wall. This is due to the size of the particles,
significantly larger than at the molecular scale, which phenomenologically invalidates the
application of a no-slip boundary condition. The induced magnetic fields in the ferrofluid
have a pronounced effect on the orientation of the magnetic moments and, consequently,
have been treated inclusively by coupling using the Maxwell–Ampère and Maxwell-flux
equations, taking into account the continuity of the normal and tangential components of
the external field at the wall.

To account for the Brownian motion of nanoparticles, we combined macroscale
two-phase transport equations with the Smoluchowski equation. This allowed us to
derive two key equations: one describing the transport of the particle concentration
field and another describing the transport of the average orientation of their magnetic
moments. Notably, the resulting average orientation transport equation differs from the
classical magnetization transport equation in the standard ferrohydrodynamic model,
which completely neglects the need for a particle transport equation. In the case of
dilute clusterless spin-up flow α < 1, we observed limited spatial gradients in the particle
concentration fields due to weak magnetophoresis resulting from the Kelvin body magnetic
force. It is important to note that the mean orientation transport equation is only valid when
α < 1, since it relies on the truncated first-order expansion of the probability density.
However, attempting to increase the order of the probability density expansion beyond
the first moment is impractical for predicting spin-up flow when α > 1. In such cases,
the literature clearly shows the formation of cluster chains in the suspension. Therefore,
outside the limit α < 1, neither the Faxén nor the Smoluchowski equations, formulated
under the assumption of suspensions consisting of single nanoparticles, are applicable for
predicting the spin-up flow.

The proposed model was then used to simulate dilute ferrofluid flow in a cylindrical
spin-up flow geometry induced by a rotating magnetic field. We first compared the model
predictions with the experimental results of Torres-Diaz et al. (2014). The comparison
showed that the theoretical predictions are in good agreement with the experimental
results for the case of a weak magnetic field, where α < 1, and a rotation frequency much
lower than the Brownian motion, where w0τB << 1. An in-depth parametric study within
the validity domain of the model was conducted to quantify and compare the relative
weights of the different mechanisms highlighted by the model. This comparative study
revealed that the induced field is the mechanism responsible for the process spin-up flow.
The magnetic field gradients, combined with the torque generated by the asynchrony of
the spinning particles and the liquid vorticity, produce an antisymmetric stress that is
converted into linear momentum. In contrast, the DDIs and the demagnetizing field seem
to play secondary roles rather than being the primary mechanisms prompting the spin-up
flow. It has also been shown that the influence of the magnetic force is negligible compared
with the magnetic torque acting on the particles. As a result, there are no significant
particle transport or concentration gradients induced by magnetophoresis.

The parametric study demonstrated the importance of phase separation by using a
two-phase approach at the continuum scale. When the magnetic field is rotating, the
particles’ motion is triggered in the first place by the magnetic field excitation, since the
liquid is not magnetic. On the other hand, the transition from a rotational to a linear motion
for the liquid phase is a purely hydrodynamic process, obviously related to the effect of
the induced magnetic field. A comparison of the experimental results outside the validity
range of the model, where α > 1 and w0τB ∼ 1, has also been carried out. The differences
between the model predictions and the experimental results were also discussed. Two
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main points have been raised: the formation of chain-like aggregates in strong magnetic
fields and the restriction of the relaxation to the hydrostatic regime. The importance of
using a multiphase approach to describe the flow for α > 1 has been emphasized in this
discussion. This can be achieved by adopting a multibody approach using the particle
transport equation, which is derived from the zeroth-order moment of the Smoluchowski
equation, and by extending Faxén’s laws to incorporate chain formations.
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