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Abstract

We extend an uncertainty principle due to Cowling and Price to threadlike nilpotent Lie groups. This
uncertainty principle is a generalization of a classical result due to Hardy. We are thus extending earlier
work on K" and Heisenberg groups.
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Introduction

A classical theorem of Hardy [6] on Fourier transform pairs says that a non zero

function / on the real line R and its Fourier transform / cannot both be very rapidly

decreasing. More precisely, let the Fourier transform be defined by

= ff(y)= f(x)e'27"xydx, yeR.

Hardy's theorem says that if \f (x)\ < Ce~anxL for all x e R and \f(y)\ < Ce'^1

for all y e R with aft > 1 then / — 0 a.e. For a proof see [6] or [4, Theorem 3.2].

The following is a generalization of this theorem due to Cowling and Price [3].
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THEOREM (Cowling and Price). Let f : K -> C be measurable and

0) \\eJ\\L>») < °°>
00 \\ebf\\m<H) < oo,

where a, b > 0, ek(x) = eknx~ and 1 < min(p,q) < oo. If ab > 1, then f = 0
almost everywhere. If ab < 1, f/ẑ n f/i£re ex/rt infinitely many linearly independent
functions satisfying (i) and (ii).

An analogue of the Cowling-Price Theorem has been proved in [1] for Euclidean
spaces, the Heisenberg group Hn and the Euclidean motion group of the plane. In this
paper we concern ourselves with results of this kind on certain nilpotent Lie groups,
thereby considerably extending the results for W and Un.

Threadlike nilpotent Lie groups

For n > 3, let g,, be the n-dimensional real nilpotent Lie algebra with basis
XUX2, ... ,Xn and non trivial Lie brackets [Xn, Xn_i] = Xn_2, • • •, [Xn, X2] = Xx.
Here gn is a (n — l)-step nilpotent and is a semi-direct product of KXn and the abelian
ideal YljZl ^-Xj • Note that g3 is the Heisenberg Lie algebra. Let Gn = expgn.

For £ = YllZl %jX* e 9^' m e coadjoint action of Gn is given by

where, for 1 < j < n — 1, Pj (^, t) is the polynomial in t defined by

k=\

The orbit of ^ is generic with respect to the basis {X*, X£ , . . . , X*} if and only if
£i ^ 0, and the jumping indices are 2 to n; see [2] for details. The cross section X^
for the set of generic orbits is given by

Xtl = |? = (f,, 0, f3, • • • • &-1.0) : £ e U , ? , / 0}.

For ^ 6 g*, let 7r? denote the irreducible representation of Gn associated with £.
Then the mapping £ —> ^ is bijection of Xfl and the set of all generic irreducible
representations. Plancherel measure on Gn is supported by these n$.

Denoting by & the Fourier transform on \S&"~\ it follows that the Hilbert-Schmidt
norm of the operator Jt((f),f e L ' n L2{Gn) is given by
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(for details see [2] and [5]).
Given a function/ : Gn -» C and y = (y2,..., yn) € R"~\ l e t / , , / ; : R -* C

be defined by

and/ ; (* , )=/ , ( -* , ) .
The following lemma is proved in [7, Section 2 and Section 3].

LEMMA 1. Letf : Gn -> C be a measurable function such that \f (x)\ <
for some a, c> 0 and all x 6 Gn. Let g : R —*• C be defined by

= / fy*fy*(x1)dy.

Then \g(xl)\ < Ce-""^12 for some C > Oandallxx 6 K and

THEOREM 2. Let a, b and q be real numbers such that a, b > 0 and q > 2. Let
f : Gn -> C be a measurable function and suppose that f satisfies:

(i) 1/ (•*) I < Ce-a*M2 for some C > 0 and all x e Gn.

(ii) /R,,.2 |$, |e*"««2 | |TT4(/-) | |J , s^, df3 • • • rff-i < oo.

Tften the following hold:

(1) Ifq = 2andab>l,thenf=0a.e.
(2) //<? >2andab> 1, f/ien/ = 0 a.e.

PROOF. For a e R, let ea : R ->• K denote the function ea(r) = eay"2. Let
g : R -> C be defined as in Lemma 1. We apply the Cowling-Price Theorem [3] to
conclude that g = 0. Then Lemma 1 shows that n^(f) = 0 for almost all £ e R"~\
whence / = 0 a.e.

For 9 = 2 by hypothesis (ii),

= f\\e2bg\\i= / e2(,(^i) / |^ | | |7rf(/") | |w s^3---^n_i J ^ i < oo.
JK. V^R"-' /

Since \g(x\)\ < Ce~a"x2/2 by Lemma 1 and ab > 1 so the Cowling-Price Theorem
yields g = 0.
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For q > 2 and ab > 1, choose e > 0 such that ab' > 1, b' — b — e. Then for
£' = (£3, . . . , £„-,), we have

= !
q

(y '

= I
Jut

q

Applying Holder's inequality with 9/2 and <//(# — 2) we obtain

<

(7
<oo,

for certain positive constants K\ and AT. Thus g = 0 by the Cowling-Price Theorem.

•

REMARK 3. If the formula (*) in Lemma 1 reduces to g(?i) = l?illl^(/")ll«j f° r

some Gn, then for 1 < q < 2 and ab > 2 along with the hypothesis in Theorem 2
implies t h a t / = 0 a.e. The proof can be given as in [1, Theorem 2.1]. The above
condition is satisfied if Gn = Gi, Gsj, G5 3 and G56; see [9] for the definitions and
structure of these groups.

THEOREM 4. Let a and b be positive real numbers and 1 < min(p,<:/) < oo.
Suppose that f e Ll(Gn) fl L2(Gn) satisfies the following conditions:

(i) fCne"a"^2\f(x)\"dx <oo,

(ii) /„."-: ^""i^ttTTtifnls^ < OO.

lfq>2 and ab > 1 then f = 0 a.e.
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PROOF. Easy computations show that when, as before, identifying Gn as a set
with R", the product of two elements y = (yi,... ,yn) and x — (x{> • • • , xn) of Gn

is given by yx = y +x + E J l f d / j OyJ(*;+i, • • • , * « - i , 0 , . . . , 0). For ||JC|| > 1, this
implies

n-2 j / «-2 \

J2-\yn\
j > \\x\\ 11 - \\y\\ - £-llyll ' •

j = \ J ' \ j=\J" /

\\yx\\ >

Define <p : (0, oo) - . R by V(e) = 1 - e - T."^/j!). Thus ||yx|| >
whenever ||JC|| > 1 and ||v|| < e.

Let g be a continuous function on Gn such that g(y) = g(y~') for all y € Gn and
g(y) = 0 for all y such that ||y|| > e. Since Gn is unimodular, for x e Gn such that

11*11 > 1,

(\g\*ea]f\)(.x)= f \g(y)\ea(\\yx\\)\f(yx)\dy

> f l«(y)k-(ll* 11 (̂0)1/"(y-1*
JGn

= ea(\\x\\(p{€M\g\*\f\)(.x).

By (0 ea\f I is an Lp-function and |g| is an Lp' function (1/p + 1/p' = 1), so g * en|
is an L°° function. Thus with C = |||g| * ea\f |||oo < oo, we have

\8*f(x)\ <\g\*\f

for all x € Gn such that ||x|| > 1. Since g *f is continuous, it follows that for some
constant C > 0, \g *f{x)\ < Ce^a{\\x\\(p(e)) for all* e Gn. In addition,

HS

and hence, by hypothesis

f
Now for € > 0 sufficiently small, ab<p(e) > 1 so by Theorem 2 it follows that
g * / = 0 . Taking for g an approximate identity, we conclude that / = 0 a.e. •

The following result follows from Theorem 2, Remark 3 and Theorem 4.

THEOREM 5. //Gn = G3, G5,i, G53 or G5,6 and a, b > 0. Suppose that p and q
are such that 1 < min(p, q) < oo a/u// € L1 D L2(Gn) satisfies
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(i) /„„ e
pa*Ml\f (x)\pdx <ooifp<oo and \f (x)\ < Ce'""^ ifp = oo,

(ii) /„„_, \^\eb""ml\\TzH{f)\\q
HSd^ < oo ifq < oo and \\irt<f)\\HS < Ce^^ if

q = oo.

Then the following hold:

(1) Ifq > 2 and ab > 1, then / = 0 a.e.
(2) Ifl<q<2 and ab > 2, then f = 0 a.e.

Let G = exp g be a simply connected nilpotent Lie group. Let U denote the Zariski
open subset of g* consisting of all elements in generic orbits with respect to the basis
{X*, . . . . X*} [2, Section 3.1, Theorem 3.1.9]. Let S be the set of jump indices, and
set T = {1, 2 , . . . , n) \ S and g* = £jeT R X*.

Then X = UH q*T is a cross-section for the generic orbits and (n^ : % e X] supports
the Plancherel measure on G.

The following is a generalization of Morgan's Theorem [8] which can be proved
using [7, Lemma 2].

THEOREM 6. Let G = expg be a simply connected nilpotent Lie group. Let a, fi
and C be positive real numbers and suppose thatf : G -+ Cisa measurable function
such that

(i) \f(x)\ < Ce-a"M",

(ii) \\^(f)\\Hs < Ce-W for allS = (£,, fc, . . . , £„) € X,
where p > 2, l/p + \/q = 1. ifiapyiP^q)1"1 > 2 thenf = 0 a.e.
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