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Abstract

Gauss' Theorema Egregium produces a partial differential equation which relates the Gaus-
sian curvature K to components of the metric tensor and its derivatives. Well-known
partial differential equations (PDEs) such as the Schrodinger equation and the sine-Gordon
equation can be derived from Gauss' equation for specific choices of K and coordinate
systems. In this paper we consider a class of Backlund Transformations which corresponds
to coordinate transformations on surfaces with a given Gaussian curvature. These Backlund
Transformations lead to the construction of solutions to certain classes of non-linear second
order PDEs of hyperbolic type by identifying these PDEs as the Gauss equation in some
coordinate system. The possibility of solving the Cauchy Problem has also been explored
for these classes of equations.

1. Introduction

In this paper we develop a method for solving certain types of PDEs based on finding
Backlund Transformations [10]. The PDE from Gauss' Theorema Egregium [1], the
Gauss equation, plays a central role in this method. The basic idea is that, if a PDE can
be interpreted as the Gauss equation in a particular coordinate system for a surface of
known Gaussian curvature, then a solution may be obtainable by the use of Backlund
Transformations which, in essence, can be interpreted as coordinate transformations
on surfaces having the same Gaussian curvature.

Many nonlinear and some linear PDEs of interest correspond to the Gauss equation.
Konopelchenko [6] showed that the Schrodinger equation

= 0,
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where r/r and K are both functions of x and y, corresponds to the Gauss equation for
surfaces of Gaussian curvature K in geodesic coordinates. The sine-Gordon equation
corresponds to Gauss' equation for a pseudosphere in a Tchebychef net [11, 12]
coordinate system.

Given a nonlinear PDE, it may be possible to interpret it as a statement of Gauss'
Theorema Egregium for some K, which is known in terms of the given coordinates
and possibly the unknown function. If this PDE is the Gauss equation in disguise, then
a coordinate transformation to geodesic coordinates yields the Schrodinger equation
(which may be easier to solve than the given PDE).

We use this technique to solve a class of second-order quasi-linear partial differential
equations of the hyperbolic type. As an example, we obtain a family of solutions for
the sine-Gordon equation.

Finally, solutions to the Cauchy problem are discussed and the sine-Gordon equa-
tion is used as an example.

2. Solving a class of second-order quasi-linear PDEs

The Gauss equation, in terms of E, F and G, the coefficients of the first fundamental
form on a surface with local coordinates u and v, is

where K is the Gaussian curvature and H2 = EG — F2. Suppose E, F and G are
of the form E(<f>), F(<j>) and G(<f>). Here <f> is some function of u and v. Under this
assumption (1) becomes

G^uu - 2Ft<t>uv + Etfn + 2KH2 + ®(u, v, <j>, <pu, <f>v) = 0, (2)

where

0(M, V, <t>, <pu, 4>v) = © l ( « , V, <fi)(<t>u)
2 + ©2(M, V, 0 ) (&, ) 2 + 0 3 ( « , V, <t>)4>u(f>v

and

6 2 ( K , v, <p) = ^ - ^ -

@3(u,v,<p) =
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Equation (2) is of the form

A<f>uu + 2B<t>m + C<f>m + D = 0, (3)

which is the general form for a second-order quasi-linear PDE with coefficients A, B
and C depending on u, v and 4> and D depending on u, v, <f>, 4>u and <pv.

If B2 — AC does not change sign, (3) can be classified into one of three types:
hyperbolic, parabolic or elliptic, corresponding to B2 — AC > 0, B2 — AC = 0, ox
B2 — A C < 0 respectively. We shall focus on the hyperbolic case.

3. Equations of hyperbolic type

Consider a second-order quasi-linear hyperbolic PDE of the type

Equation (2) will be of this form if F0 ^ 0 and either

(a) Ef = G+ = 0 or
(b) G<t><j>uu + E<l><t>vv = Q.

In this paper we shall consider only the first case and find the conditions under
which (4) can be solved by our method. In this case E = constant and G = constant.

By an appropriate scaling of the coordinates u and v we can put E and G equal
and without loss of generality we thus take E = 1 and G = 1. This choice of E and
G corresponds to a Tchebychef net coordinate system and (2) reduces to

Equation (5) is of the form

<j>uv = M(<t>) + A(<t>)<l>u<t>v, ( 6 )

w h e r e

and
—1 f FCFA2 1

(8)

The above arguments indicate that a given second-order quasi-linear hyperbolic
PDE of the form (6) can be identified as the Gauss equation, where the (u, v) coordinate
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system corresponds to a Tchebychef net (E = 1, G = 1 and F = F(<p)), on a surface
of curvature

where the function F can be determined from (8).
The angle x between the coordinate lines on a surface described by r(u, v) is given

by
rH.rv

———— = cos v
Dr.llllr.ll

where x depends on <p; thus
F = cosX(0) . (9)

Substituting (9) into (8) and solving for x yields

* + *!, (10)

where X and Xi are arbitrary constants. We can thus identify the PDE given by (6)
with a surface denned intrinsically by the quantities

£ = 1, F = cosX(0), G = l and K =—^-X'{<t>)- (H)

Note that if A (<t>) = 0, then

F = cos(.X<(> + A.O. (12)

From (6) and (10) we obtain

Xu» = M,0f), (13)
where

We can thus reduce a PDE of the form (6) to an equation of the form (13) by using
a transformation denned by (10). It is therefore sufficient to investigate the case when
A(<f>) = 0. For this case (6) reduces to

tf» = A/WO (14)
and from (10) and (11) we have

£ = 1, F = c o s ( ^ + Xi), G = \ and K =
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The constants k and ki correspond to the magnification and the shift of the angle
between the characteristics respectively. If we choose A. = 1 and ki = 0 men we can
identify a PDE of the form (14) as Gauss' equation on a surface E with

M(d>)
E = l, F = cos<f>, G = 1 and K = — ^ - . (16)

sin/>

Next we derive a transformation on E from a geodesic coordinate system (x, y) to
the («, v) coordinate system (Tchebychef net). Let E, F and G be the coefficients of
the first fundamental form in the geodesic coordinate system; thus, E = 1 and F = 0.
Moreover, the Gauss equation reduces to the Schrodinger equation

Hxx + K(x,y)H=0, (17)

where H2 = EG - F2 = G.
A solution to (14) can be obtained provided:

(i) a coordinate transfonnation between geodesic coordinates and Tchebychef net
coordinates can be determined;

(ii) the Schrodinger equation can be solved.

The metric tensor transformation properties yield the following relations between
the coordinates:

xl + H2y2
u = \, (18)

xuxv + H2yuyv = F = costf>, (19)

x2
v + A2y2

v = 1. (20)

One solution to the above system of equations can be determined under the assumption
that

and yH
2=yu

2 = l, (21)

provided that yu ^ yv. Using (21) we can define a transformation implicitly by

(22)

and

y-u-v, (23)

where/ (u) satisfies
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Clearly this transformation is non-singular since the Jacobian is non-zero. We also
note that H < 1 unless K = 0, that is, M (<f>) - 0.

Equations (19) and (21) imply that

(24)

Substituting (24) into the Schrodinger equation (17) yields

<t>xx - - tan ^-(4>x)
2 = M(<f>) s ec 2 y . (25)

The above equation is essentially a second-order ordinary differential equation which
can be reduced to a first-order equation (using a Priifer substitution) which in turn can
be solved. Equation (25) thus yields the relation

x = - / — J:J~L TT»d4> + c2(y), (26)

where cx(y) and c2(y) are arbitrary functions of y.
Now (26) defines an implicit relationship

A(x,y,<f>) = 0 (27)

between x, y and 0. Under the assumption that one set of values x0, yo, <fo can be
found to satisfy (27) and that, near (x0, yo, 4>o), A and its first partial derivatives are
continuous and 3 A / 3 0 ^ 0, the implicit function theorem [8] implies that in a region
of the xy plane containing (x0, yo), there is precisely one differentiable function

4> = a(x,y) (28)

which reduces (27) to an identity and is such that <p0 = a(x0, yo)- Under these
assumptions (21) gives, using (23), (24) and (28),

xu =xv =cos(a(x,u-v)), (29)

where, by (26), a(x, y) contains the two arbitrary functions ct(y) and Ci(y). Hence
we have determined a coordinate transformation

y = « — v.

Note that the Jacobian d(x, y)/d(u, v) ^ 0, so that this transformation is invertible.
The general solution to the given PDE (6) is

<p = a(x, y) = a(P(u, v), u - v) = <t>(u, v). (31)
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Example: The sine-Gordon equation The sine-Gordon equation

(32)

is of the form (14) with M(<f>) = sin# and K — - 1 . For this choice of M (26)
becomes

cos(4>/2)
d<p + c2(y), (33)

_ l [ cos(4>
2J {— cos<f> +

where ci(y) and c2(y) are arbitrary functions of y.
Integrating (33) and solving for <f>(x, y) yields

<t>(x, y) = 2SU1-1 [y/(Cl(y) - l)/2 sinh{* - c2(y)}} ; (34)

hence (24) implies that

H = {V(ciO0 - D/2 sinh{^ - c2Cv)}J , (35)

which is a solution to the Schrodinger equation Hxx — H = 0. Equations (21) and
(35) imply that

xu = xv = {1 - ((d(>0 - l)/2) sinh2(^ - c2(y))}1/2. (36)

From (36) it follows that

u + p(v) = (k/2)F (a, k) = (Jfc/2) sn"1 (sina, k), (37)

where p(v) depends upon the arbitrary functions C\ and c2,

a = sin"1 {(1/i) tanhCc - c2(y))} (38)

and

k = ^ / (cOO+l ) . (39)

Here, F denotes an elliptic Junction of the first kind [3, 7]. Equations (37) and (38)
indicate that

x = tanh"1 {itsn ((2/k)(u + p(v)), k)} + c2(y), (40)

where y = u — v. Using (34), (39) and (40) (after some algebraic manipulations) we
thus obtain the family of solutions to the sine-Gordon equation:

(*» -2*r-I ((2AM-+ , ( „ ) ) , * ) | (41 )

(*>/(l - t ')) cnH(2/«(«

where & is an arbitrary function of u — v and /o(u) is an arbitrary function of v.
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4. The Cauchy Problem for the sine-Gordon equation

The Cauchy Problem [5] for (6) consists of solving this PDE for given initial data
along a non-characteristic curve. Let Q be a smooth non-intersecting curve denned in
the plane in parametric form by u = U(t) and v = V(t). Let

<f>u - p a n d <f>v = q

and suppose that, on $2, the Cauchy data are

<(> = <t>(t), p = P(t) and q=Q(t). (42)

For compatibility it is required that

where • denotes differentiation with respect to t. The following system of equations
must therefore be satisfied along J2:

= P{t),
and

U(t)<t>uv + V(t)4>m = Q{t).

The Cauchy data are non-characteristic if

U ^ 0 and V # 0.

To solve the Cauchy problem for the sine-Gordon equation (32), we shall take <f>
as in (34) (using (x, y) geodesic coordinates) rather than as in (41) which uses the
Tchebychef net (u, v), as the calculations for <pu and 4>v are easier this way. Equation
(34) implies that

<pu + <t>v — 4y/(ci(y) — l)/2cosh(x — c2(y))

and
{—4((ci(j) — l)/2)cosh(x — c2(y))c2(y) + sinh(x — c2

<f>u — <Pv = ~ 1/2-l)/2)smh2(x-c2(y))}

Suppose now that the initial conditions in the (u, v) coordinate system (Tchebychef
net) <f>u = P(t) and <f>v = Q(t) are transformed to Pt(t) and Qi(t) in the (x,y)
(geodesic) coordinate system. The last two expressions indicate that

Pi + Qx = 4V(c,Cyo)-l)/2cosh(jc0 - c2(y0)) (43)
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and

p_ = | - 4 ( ( c i (y 0 ) - l)/2)cosh(^o-c2(yo))c/
2(yo)+sinh(jco-c2(y0))c;(yo)}

V(c,(yo) - D/2 {1 - ((c,(y0) - l)/2)sinh2(jc0 - c2(y0))}1/2

(44)

where xo(t) and yo(t) correspond to the initial curve in the (JC, y) geodesic coordinate
system. Solving the above expression for c'jO'o) yields the first order differential
equation

c'jO'o) = A {1 - (B - c ^ o ) ) 2 } 1 * , (45)
where

2V2

In principle, the differential equation (45) can be solved for CjOo) in terms of
). Equation (43) can then be used to determine c2(yd)- The Cauchy Problem for

the sine-Gordon equation can thus be reduced to a problem involving the solution of
a nonlinear first order ODE and inversions.

For a concrete example, suppose that J2 is parametrized in the Tchebychef net
coordinate system by

u + v — cb constant, (47)

and on £2,

<j> = * 0 , p =P0 and q = Qo, (48)

where 4>o, Po and go are constants. It can be shown using (31) that the initial
conditions given in (48), when transformed to the geodesic (JC, y) coordinates, are of
the same form, that is,

4> = <!>!, p = Pj and q = fii, (49)

where <!>i, Pi and Q\ are constants. Now the quantities A and B (given in (46)) are
also constants and (45) thus has the solution

where the constant of integration is given by

C = sin"1 {2 sin2 {^x/2) - 1} - Ay0.

https://doi.org/10.1017/S1446181100011962 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011962


[10] Second-order quasi-linear PDEs and the Gauss equation 321

Generally,

and, by (43),

c,00 = B - sin(Ay + Q

C2OO =x0 — cosh- 1 B

(50)

(51)
(5 - 1) - sin(Ay + Q

Hence a solution for the Cauchy Problem of the sine-Gordon equation in geodesic
coordinates is given by (34), where ci(y) and c2(y) are defined by (50) and (51)
respectively. To get a solution in terms of the original coordinates we can use (23)
and (26) to express x and y in terms of u and v.

FIGURE 1. Beltrami surface in the (X, Y) coordinate system

Though perhaps not obvious, this solution corresponds to a Beltrami surface [9]
(see Figure 1). Recall that the Beltrami surface is a surface of revolution described by

r(X, Y) = (sin X cos Y, sin X sin Y, cos X + In tan(X/2)),

where the (X, Y) coordinates correspond to the lines of curvature.
The coefficients E, F and G of the first fundamental form and the Gaussian

curvature K in this coordinate system are

F = 0, G = sin2X and K = - 1 ,
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and thus H = y/EG- F2 = cosX.
A transformation between the {X, Y) coordinate system and the Tchebychef net

(K, v) coordinate system is defined by the system

r2sin2X = l, (52)

XUXV cot2 X + Yu Yv sin2 X = F = cos </>, (53)

X2
vcoeX + Ylsin2X = l, (54)

and a solution to this system can be determined under the assumption that

Y2 = Y2 = 1

Choosing

Y = u-v, (55)

(52) and (54) give Xu = Xv — sin X. A suitable transformation is defined by (55) and

M + u = l n | c s c X - c o t X | . (56)

Equation (53) implies

<f> = IX; (57)

further,

4>u = 4>xXu + 4>yYu = 2sinX, 0, = 2sinX (58)

and consequently

<f>uv = 2sinX cosX = sin2X = si

which is the sine-Gordon equation.
Any curve corresponding to X — constant is a non-characteristic curve on the

pseudosphere. Using the transformation equation (56), we have that

u + v = CQ (constant). ' (59)

This non-characteristic curve in («, v) coordinates (Tchebychef net) can be taken as
the initial curve for the Cauchy Problem of the sine-Gordon equation. Also using (57)
and (58) we see that

<p = cu 4>u=C2 and 4>v = c3, (60)

where cu c2 and C3 are constants.
The last two equations are the same initial conditions as in (47) and (48). Since

the Cauchy data are analytic the Cauchy-Kowalewski theorem [2] guarantees a unique
solution. Thus the solution which we had for the Cauchy problem of the sine-Gordon
equation corresponds to the Beltrami surface; the surface representation of this Cauchy
Problem is now evident.
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5. Conclusions

The purpose of this paper is to use classical differential geometry in order to
find Backlund Transformations and hence solve certain classes of non-linear partial
differential equations. If a PDE can be interpreted as a statement of Gauss' theorem
for some known coordinate system, then it may be possible to use some coordinate
transformations to convert the PDE into one which is easier to solve. In this paper we
have focused on a simple, specific case and used the sine-Gordon equation to illustrate
the ideas. It is clear, however, that more complicated nonlinear PDEs can be attacked
in this manner and that initial value problems can be reduced to problems involving
inversions, quadratures and the solution of a first-order ODE.
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