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Abstract

We prove certain L p estimates (1< p <∞) for nonisotropic singular integrals along surfaces of
revolution. The singular integrals are defined by rough kernels. As an application we obtain L p

boundedness of the singular integrals under a sharp size condition on their kernels. We also prove a
certain estimate for a trigonometric integral, which is useful in studying nonisotropic singular integrals.
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1. Introduction

Let P be an n × n real matrix whose eigenvalues have positive real parts. Let
γ = traceP . Define a dilation group {At }t>0 on Rn by At = t P

= exp((log t)P).
We assume that n ≥ 2. There is a nonnegative function r on Rn associated with
{At }t>0. The function r is continuous on Rn and infinitely differentiable in Rn

\ {0}.
Furthermore, it satisfies the following conditions.

(1) r(At x)= tr(x) for all t > 0 and x ∈ Rn .
(2) r(x + y)≤ C(r(x)+ r(y)) for some C > 0.
(3) If 6 = {x ∈ Rn

| r(x)= 1}, then 6 = {θ ∈ Rn
| 〈Bθ, θ〉 = 1} for a positive

symmetric matrix B, where 〈·, ·〉 denotes the inner product in Rn .

Also dx = tγ−1 dσ dt , that is,∫
Rn

f (x) dx =
∫
∞

0

∫
6

f (Atθ)t
γ−1 dσ(θ) dt

for appropriate functions f , where dσ is a C∞ measure on6. See [2, 13, 17] for more
details.
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Let � be locally integrable in Rn
\ {0} and homogeneous of degree 0 with respect

to the dilation group {At }, that is, �(At x)=�(x) for x 6= 0. We assume that∫
6

�(θ) dσ(θ)= 0.

For s ≥ 1, let1s denote the collection of measurable functions h on R+ = {t ∈ R | t >
0} satisfying

‖h‖1s = sup
j∈Z

(∫ 2 j+1

2 j
|h(t)|s dt/t

)1/s

<∞,

where Z denotes the set of integers. We define ‖h‖1∞ as usual (‖h‖1∞ = ‖h‖L∞(R+)).
Let 0 : [0,∞)→ Rm be a continuous mapping satisfying 0(0)= 0. We define a

singular integral operator along the surface (y, 0(r(y))) by

T f (x, z) = p.v.
∫

Rn
f (x − y, z − 0(r(y)))K (y) dy

= lim
ε→0

∫
r(y)>ε

f (x − y, z − 0(r(y)))K (y) dy, (1.1)

where K (y)= h(r(y))�(y′)r(y)−γ , y′ = Ar(y)−1 y and h ∈11. We assume that the
principal value integral in (1.1) exists for all (x, z) ∈ Rn

× Rm and f ∈ S(Rn
× Rm)

(the Schwartz class).
We denote by L log L(6) the Zygmund class of all those functions � on 6 which

satisfy ∫
6

|�(θ)| log(2+ |�(θ)|) dσ(θ) <∞.

Also, we consider the Lq(6) spaces and write ‖�‖q = (
∫
6
|�(θ)|q dσ(θ))1/q for

� ∈ Lq(6) (‖�‖∞ is defined as usual).
Let

M0g(z)= sup
R>0

R−1
∫ R

0
|g(z − 0(t))| dt.

We assume that the maximal operator M0 is bounded on L p(Rm) for all p > 1.
See [15, 17] for examples of such functions 0.

In this note we prove the following theorems.

THEOREM 1.1. Let T be as in (1.1). Suppose that � ∈ Lq(6) for some q ∈ (1, 2]
and h ∈1s for some s > 1. Then

‖T f ‖L p(Rn+m) ≤ C p(q − 1)−1
‖�‖q‖h‖1s‖ f ‖L p(Rn+m)

if |1/p − 1/2|<min(1/s′, 1/2), where 1/s′ + 1/s = 1 and the constant C p is
independent of q and �.
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THEOREM 1.2. Suppose that � ∈ L log L(6) and h ∈1s for some s > 1. Then T is
bounded on L p(Rn+m) if |1/p − 1/2|<min(1/s′, 1/2).

Theorem 1.2 follows from Theorem 1.1 by an extrapolation method. When r(x)= |x |
(the Euclidean norm), m = 1 and 0 is a C2, convex, increasing function, Theorem 1.2
was proved in Al-Salman and Pan [1] (see [1, Theorem 4.1] and also [10] for a related
result). In [1], it is noted that the estimates as q→ 1 of Theorem 1.1 (in their setting)
can be used through extrapolation to prove the L p boundedness of [1, Theorem 4.1],
although such estimates are yet to be proved. In this note, we are able to prove
Theorem 1.1 and apply it to prove Theorem 1.2.

If 0 ≡ 0 (0 is identically 0), then T essentially reduces to the lower-dimensional
singular integral

S f (x)= p.v.
∫

Rn
f (x − y)K (y) dy. (1.2)

For this singular integral we have the following theorem.

THEOREM 1.3. Let � ∈ Lq(6) and h ∈1s for some q, s ∈ (1, 2]. Then

‖S f ‖L p(Rn) ≤ C p(q − 1)−1(s − 1)−1
‖�‖q‖h‖1s‖ f ‖L p(Rn)

for all p ∈ (1,∞), where the constant C p is independent of q, s, � and h.

For a > 0, let

La(h)= sup
j∈Z

∫ 2 j+1

2 j
|h(r)|(log(2+ |h(r)|))a dr/r.

We define a class La to be the space of all those measurable functions h on R+ which
satisfy La(h) <∞.

By Theorem 1.3 and an extrapolation we have the following result.

THEOREM 1.4. Suppose that � ∈ L log L(6) and h ∈La for some a > 2. Then S is
bounded on L p(Rn) for all p ∈ (1,∞).

It is noted in [5] that S is bounded on L p , 1< p <∞, if � ∈ Lq for some q > 1
and h ∈12 (see [5, Corollary 4.5]). Theorem 1.4 improves that result. See [13, 16] for
nonisotropic singular integrals S with h ≡ 1 and also [3, 7, 9, 12] for related results.

In Section 2, we prove Theorems 1.1 and 1.3. The proofs are based on the method
of [5]. As in [14], a key idea of the proof of Theorem 1.1 is to use a Littlewood–
Paley decomposition depending on q for which � ∈ Lq . Theorem 1.3 is proved in
a similar fashion. Applying an extrapolation argument, we can prove Theorems 1.2
and 1.4 from Theorems 1.1 and 1.3, respectively. We give a proof of Theorem 1.4 in
Section 3. In Section 4, we prove an estimate for a trigonometric integral, a corollary
of which is used in proving Theorems 1.1 and 1.3.

Throughout this note, the letter C will be used to denote nonnegative constants
which may be different in different occurrences.
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2. Proofs of Theorems 1.1 and 1.3

Let A∗ denote the adjoint of a matrix A. Then A∗t = exp((log t)P∗). We write
A∗t = Bt . We can define a nonnegative function s from {Bt } in exactly the same way
as we define r from {At }.

There are positive constants c1, c2, c3, c4, α1, α2, β1 and β2 such that

c1|x |α1 < r(x) < c2|x |α2 if r(x)≥ 1,
c3|x |β1 < r(x) < c4|x |β2 if 0< r(x)≤ 1.

Also,

d1|ξ |
a1 < s(ξ) < d2|ξ |

a2 if s(ξ)≥ 1,
d3|ξ |

b1 < s(ξ) < d4|ξ |
b2 if 0< s(ξ)≤ 1,

for some positive numbers d1, d2, d3, d4, a1, a2, b1 and b2 (see [17]). These estimates
are useful in the following.

We consider the singular integral operator T defined in (1.1). Let E j = {x ∈ Rn
|

β j < r(x)≤ β j+1
}, where β ≥ 2 and j ∈ Z. We define a sequence of Borel measures

{σ j } on Rn
× Rm by

σ̂ j (ξ, η)=

∫
E j

exp(−2π i〈y, ξ 〉) exp(−2π i〈0(r(y)), η〉)K (y) dy,

where σ̂ j denotes the Fourier transform of σ j defined by

σ̂ j (ξ, η)=

∫
exp(−2π i〈(x, z), (ξ, η)〉) dσ j (x, z).

Then T f (x)=
∑
∞

−∞
σk ∗ f (x).

Let µk = |σk |, where |σk | denotes the total variation of σk . Let � ∈ Lq , h ∈1s ,
q, s ∈ (1, 2]. We prove the following estimates:

‖σk‖ ≤ C(log β)‖�‖1‖h‖11 ≤ C(log β)‖�‖q‖h‖1s , (2.1)

where ‖σk‖ = |σk |(Rn+m);

|σ̂k(ξ, η)| ≤ C‖�‖q‖h‖1s (β
k+ds(ξ))1/b1, (2.2)

where d = b1/α1;

|σ̂k(ξ, η)| ≤ C(log β)‖�‖q‖h‖1s (β
ks(ξ))−ε0/(q ′s′) (2.3)

for some ε0 > 0;

|µ̂k(ξ, η)| ≤ C(log β)‖�‖q‖h‖1s (β
ks(ξ))−ε0/(q ′s′), (2.4)
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where ε0 is as in (2.3); and

|µ̂k(ξ, η)− µ̂k(0, η)| ≤ C‖�‖q‖h‖1s (β
k+ds(ξ))1/b1, (2.5)

where d is as in (2.2).
First, we see that

‖σk‖1 =

∫ βk+1

βk
|h(r)|‖�‖1 dr/r ≤ C(log β)‖�‖1‖h‖11 . (2.6)

From this, (2.1) follows.
Next, we show (2.2). Take ν ∈ Z so that 2ν < β ≤ 2ν+1. Note that

σ̂k(ξ, η) =

∫
βk<r(x)≤βk+1

exp(−2π i〈0(r(x)), η〉)(exp(−2π i〈x, ξ 〉)− 1)h(r(x))

×�(x ′)r(x)−γ dx .

Thus

|σ̂k(ξ, η)| ≤ C
∫

1<r(x)≤β
|x ||Bβk ξ ||h(βkr(x))�(x ′)|r(x)−γ dx

≤ C
ν∑

j=0

|Bβk ξ |‖�‖12 j/α1

∫ 2 j+1

2 j
|h(βkr)| dr/r

≤ Cβ1/α1 |Bβk ξ |‖�‖1‖h‖11 . (2.7)

Combining (2.6) and (2.7),

|σ̂k(ξ, η)| ≤ C‖�‖1‖h‖11 min(log β, β1/α1 |Bβk ξ |). (2.8)

If s(Bβk ξ) < 1, then |Bβk ξ | ≤ C(βks(ξ))1/b1 . Therefore

min(log β, β1/α1 |Bβk ξ |)≤ C(βk+ds(ξ))1/b1 .

Using this in (2.8), we have (2.2). We can prove (2.5) in the same way.
Next we prove (2.3). We use a method similar to that of [5, p. 551]. Define

τ(ξ)=

∫
6

�(θ) exp(−2π i〈ξ, θ〉) dσ(θ).

We need the following estimates.

LEMMA 2.1. Let L be the degree of the minimal polynomial of P. Then, if 0< ε0
< a−1

2 min(1/2, q ′/L),∫ βk+1

βk
|τ(Brξ)|

2 dr/r ≤ C(log β)(βks(ξ))−ε0/q ′‖�‖2q ,

where C is independent of � ∈ Lq , q ∈ (1, 2] and β.
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In proving Lemma 2.1 we use the following estimate, which follows from the corollary
to Theorem 4.1 in Section 4 via an integration by parts argument.

LEMMA 2.2. Let L be as in Lemma 2.1. Then, for η, ζ ∈ Rn
\ {0},∣∣∣∣∫ 2

1
exp(i〈Btη, ζ 〉) dt/t

∣∣∣∣≤ C |〈η, Pζ 〉|−1/L

for some positive constant C independent of η and ζ .

PROOF OF LEMMA 2.1. Choose ν ∈ Z such that 2ν < β ≤ 2ν+1. Then∫ βk+1

βk
|τ(Brξ)|

2 dr/r ≤
ν∑

j=0

∫ βk2 j+1

βk2 j
|τ(Brξ)|

2 dr/r

=

ν∑
j=0

∫ ∫
6×6

(∫ 2

1
exp(−2π i〈Bβk2 j rξ, θ − ω〉) dr/r

)
�(θ)�̄(ω) dσ(θ) dσ(ω).

By Lemma 2.2,∣∣∣∣∫ 2

1
exp(−2π i〈Bβk2 j rξ, θ − ω〉) dr/r

∣∣∣∣≤ C |〈Bβk2 j ξ, P(θ − ω)〉|−ε,

where 0< ε ≤ 1/L . Using Hölder’s inequality, if 0< ε <min(1/(2q ′), 1/L), then∫ ∫
6×6

|〈Bβk2 j ξ, P(θ − ω)〉|−ε |�(θ)�̄(ω)| dσ(θ) dσ(ω)

≤

(∫ ∫
6×6

|〈P∗Bβk2 j ξ, θ − ω〉|
−εq ′ dσ(θ) dσ(ω)

)1/q ′

× ‖�‖2q ≤ C |Bβk2 j ξ |
−ε
‖�‖2q ,

where the last inequality follows from condition (3) of Section 1 (see [5, p. 553]).
Therefore ∫ βk+1

βk
|τ(Brξ)|

2 dr/r ≤ C‖�‖2q

ν∑
j=0

|Bβk2 j ξ |
−ε (2.9)

(for 0< ε <min(1/(2q ′), 1/L)). If s(Bβk ξ)≥ 1, |Bβk2 j ξ | ≥ C(βk2 j s(ξ))1/a2

(0≤ j ≤ ν). Thus

ν∑
j=0

|Bβk2 j ξ |
−ε
≤

ν∑
j=0

C(βk2 j s(ξ))−ε/a2 ≤ C(log β)(βks(ξ))−ε/a2, (2.10)

where C is independent of q . By (2.9) and (2.10) we have the estimate of Lemma 2.1
when s(Bβk ξ)≥ 1. If s(Bβk ξ) < 1, the estimate of Lemma 2.1 follows from the
inequality |τ(ξ)| ≤ ‖�‖1. This completes the proof of Lemma 2.1. 2
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Now, by Hölder’s inequality,

|σ̂k(ξ, η)| =

∣∣∣∣∫ βk+1

βk
exp(−2π i〈0(r), η〉)h(r)τ (Brξ)dr/r

∣∣∣∣
≤

(∫ βk+1

βk
|h(r)|s dr/r

)1/s(∫ βk+1

βk
|τ(Brξ)|

s′ dr/r

)1/s′

(2.11)

≤ C(log β)1/s‖h‖1s‖�‖
(s′−2)/s′

1

(∫ βk+1

βk
|τ(Brξ)|

2 dr/r

)1/s′

,

where we have used the estimate |τ(ξ)| ≤ ‖�‖1 to get the last inequality. By (2.11)
and Lemma 2.1 we obtain (2.3). The estimate (2.4) can be proved similarly.

Let Bqs = (1− β−θε0/q ′s′)−1, where β ≥ 2, θ ∈ (0, 1) and ε0 is as in (2.3) and (2.4).
To prove Theorems 1.1 and 1.3, we use the following result.

PROPOSITION 2.3. Suppose that � ∈ Lq , q ∈ (1, 2] and h ∈1s , s ∈ (1, 2]. Let
|1/p − 1/2|< (1− θ)/(s′(1+ θ)). Then

‖T f ‖p ≤ C(log β)‖h‖1s‖�‖q Bqs B|1/p−1/p′|
q2 ‖ f ‖p,

where C is a constant independent of �, h, q, s and β.

PROPOSITION 2.4. Suppose that 0 ≡ 0. Let � ∈ Lq , h ∈1s , q, s ∈ (1, 2]. Then, for
p ∈ (1+ θ, (1+ θ)/θ),

‖T f ‖p ≤ C(log β)‖�‖q‖h‖1s B1+|1/p−1/p′|
qs ‖ f ‖p,

where C is a constant independent of �, h, q, s and β.

To prove Propositions 2.3 and 2.4, we need the following result.

PROPOSITION 2.5. Let µ∗( f )(x)= supk |µk ∗ f (x)|. Let � ∈ Lq , q ∈ (1, 2].

(1) If h ∈1∞, then for p > 1+ θ ,

‖µ∗( f )‖p ≤ C(log β)‖�‖q‖h‖1∞B2/p
q2 ‖ f ‖p,

where C is a constant independent of �, h, q and β.
(2) Suppose that 0 ≡ 0. Let h ∈1s , s ∈ (1, 2]. Then

‖µ∗( f )‖p ≤ C(log β)‖�‖q‖h‖1s B2/p
qs ‖ f ‖p

for p > 1+ θ , where C is independent of �, q, h, s and β.

PROOF. Since the estimate ‖µ∗( f )‖∞ ≤ C(log β)‖�‖1‖h‖11‖ f ‖∞ follows from
(2.1), by interpolation, to prove (1) and (2) of Proposition 2.5 we may assume that
p ∈ (1+ θ, 2].
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First, we give a proof of part (1). Define measures νk on Rn
× Rm by

ν̂k(ξ, η)= µ̂k(ξ, η)− 9̂k(ξ, η),

where 9̂k(ξ, η)= ϕ̂k(ξ)µ̂k(0, η) with ϕk(x)= β−kγ ϕ(Aβ−k x), ϕ ∈ C∞0 . We assume
that ϕ is supported in {r(x)≤ 1}, ϕ̂(0)= 1 and ϕ ≥ 0. Then by (2.1), (2.4) and (2.5),
for q, s ∈ (1, 2],

|ν̂k(ξ, η)| ≤ C(log β)‖�‖q‖h‖1s min(1, (βk+ds(ξ))1/b1, (βks(ξ))−ε0/q ′s′).

We may assume that ε0 is small enough so that ε0/4≤ 1/b1. Then

|ν̂k(ξ, η)| ≤ C A min(1, (βk+ds(ξ))α, (βks(ξ))−α), (2.12)

where A = (log β)‖�‖q‖h‖1∞ and α = ε0/(2q ′).
Let

g( f )(x, z)=

( ∞∑
k=−∞

|νk ∗ f (x, z)|2
)1/2

.

Then µ∗( f )≤ g( f )+9∗(| f |), where 9∗( f )= supk ||9k | ∗ f |. Let

Mg(x)= sup
t>0

t−γ
∫

r(x−y)<t
|g(y)| dy

be the Hardy–Littlewood maximal function on Rn with respect to the function r . By
the L p boundedness of M0 and M , it is easy to see that ‖9∗( f )‖p ≤ C A‖ f ‖p for
p > 1. Thus to prove Proposition 2.5(1) it suffices to show that

‖g( f )‖p ≤ C AB2/p
‖ f ‖p (p ∈ (1+ θ, 2]), (2.13)

where A is as above and B = Bq2. By a well-known property of Rademacher’s
functions, (2.13) follows from

‖Uε( f )‖p ≤ C AB2/p
‖ f ‖p (p ∈ (1+ θ, 2]), (2.14)

where Uε( f )(x, z)=
∑
εkνk ∗ f (x, z) with ε = {εk}, εk = 1 or −1 (the inequality is

uniform in ε).
We define two sequences {rm}

∞

1 and {pm}
∞

1 by p1 = 2 and

1
rm
−

1
2
=

1
2pm

,
1

pm+1
=
θ

2
+

1− θ
rm

for m ≥ 1.

Then
1

pm+1
=

1
2
+

1− θ
2pm

for m ≥ 1.

Thus 1/pm = (1− ηm)/(1+ θ), where η = (1− θ)/2, so {pm} is decreasing and
converges to 1+ θ .
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For j ≥ 1 we prove that

‖Uε( f )‖p j ≤ C j AB2/p j ‖ f ‖p j , (2.15)

using the Littlewood–Paley theory. Let {ψk}
∞
−∞ be a sequence of nonnegative

functions in C∞((0,∞)) such that

supp(ψk)⊂ [β
−k−1, β−k+1

],
∑

k

ψk(t)
2
= 1,

|(d/dt) jψk(t)| ≤ c j/t j ,

for j = 1, 2, . . . , where c j is independent of β ≥ 2. Define Sk by

(Sk( f )) ˆ (ξ, η)= ψk(s(ξ)) f̂ (ξ, η).

We write Uε( f )=
∑
∞

j=−∞ U j ( f ), where U j ( f )=
∑
∞

k=−∞ εk S j+k(νk ∗ S j+k( f )).
Then by Plancherel’s theorem and (2.12),

‖U j ( f )‖22 ≤
∑

k

C
∫ ∫

D( j+k)×Rm
|ν̂k(ξ, η)|

2
| f̂ (ξ, η)|2 dξ dη

≤ C A2 min(1, β−2(| j |−1−d)α)
∑

k

∫ ∫
D( j+k)×Rm

| f̂ (ξ, η)|2 dξ dη

≤ C A2 min(1, β−2(| j |−1−d)α)‖ f ‖22, (2.16)

where D(k)= {ξ ∈ Rn
| β−k−1 < s(ξ)≤ β−k+1

}. By (2.16),

‖Uε( f )‖2 ≤
∞∑
−∞

‖U j ( f )‖2 ≤ C
∞∑
−∞

A min(1, β−(| j |−1−d)α)‖ f ‖2

≤ C A(1− β−α)−1
‖ f ‖2. (2.17)

If we denote by A(m) the estimate of (2.15) for j = m, this proves A(1).
Now we assume A(m) and derive A(m + 1) from A(m). Note that

ν∗( f )≤ µ∗(| f |)+9∗(| f |)≤ g(| f |)(x)+ 29∗(| f |),

where ν∗( f )(x)= supk ||νk | ∗ f (x)|. Since ‖g( f )‖pm ≤ C AB2/pm‖ f ‖pm by A(m),

‖ν∗( f )‖pm ≤ C AB2/pm‖ f ‖pm .

Also, ‖νk‖ ≤ C A by (2.1). Thus, by the proof of Lemma for [5, Theorem B, p. 544],
the following vector-valued inequality holds:∥∥∥∥(∑ |νk ∗ gk |

2
)1/2∥∥∥∥

rm

≤ C(AB2/pm sup
k
‖νk‖)

1/2
∥∥∥∥(∑ |gk |

2
)1/2∥∥∥∥

rm

≤ C AB1/pm

∥∥∥∥(∑ |gk |
2
)1/2∥∥∥∥

rm

. (2.18)
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By (2.18) and the Littlewood–Paley inequality,

‖U j ( f )‖rm ≤ C

∥∥∥∥(∑
k

|νk ∗ S j+k( f )|2
)1/2∥∥∥∥

rm

≤ C AB1/pm‖ f ‖rm . (2.19)

Here we note that the bounds for the Littlewood–Paley inequality are independent of
β ≥ 2. Interpolating between (2.16) and (2.19),

‖U j ( f )‖pm+1 ≤ C AB(1−θ)/pm min(1, β−θα(| j |−1−d))‖ f ‖pm+1 .

Thus

‖Uε( f )‖pm+1 ≤

∑
j

‖U j ( f )‖pm+1 ≤ C AB(1−θ)/pm (1− β−θα)−1
‖ f ‖pm+1

≤ C AB2/pm+1‖ f ‖pm+1,

which proves A(m + 1). By induction, this completes the proof of (2.15).
We now prove (2.14). Let p ∈ (1+ θ, 2] and let {pm}

∞

1 be as in (2.15). Then
we have pN+1 < p ≤ pN for some N . By interpolation between the estimates in
(2.15) for j = N and j = N + 1, (2.14) holds. This completes the proof of part (1) of
Proposition 2.5.

Part (2) of Proposition 2.5 can be proved in the same way. We take
A = (log β)‖�‖q‖h‖1s and α = ε0/q ′s′ in (2.12). Then, since

‖9∗( f )‖p ≤ C(log β)‖�‖1‖h‖11‖ f ‖p for p > 1

if 0 ≡ 0, the proof of part (1) can be used to get (2.13) with A = (log β)‖�‖q‖h‖1s

as above and B = Bqs , and the conclusion of part (2) follows from (2.13). 2

PROOF OF PROPOSITION 2.3. To prove Proposition 2.3 we may assume that 1< s <
2. As in [1], here we apply an idea in the proof of [6, Theorem 7.5]. We consider
measures τk defined by

τ̂k(ξ, η) =

∫
Ek

exp(−2π i〈y, ξ 〉)

× exp(−2π i〈0(r(y)), η〉)|h(r(y))|2−s
|�(y′)|r(y)−γ dy.

Then the Schwarz inequality implies that

|σk ∗ f |2 ≤ C(log β)‖h‖s1s
‖�‖1τk ∗ | f |

2. (2.20)

Define measures λk by

λ̂k(ξ, η)=

∫
Ek

exp(−2π i〈y, ξ 〉) exp(−2π i〈0(r(y)), η〉)|�(y′)|r(y)−γ dy.
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Since |h|2−s
∈1s/(2−s) and ‖|h|2−s

‖1s/(2−s) = ‖h‖
2−s
1s

, if u = s/(2− s) then, by
Hölder’s inequality,

|τk ∗ f | ≤ C(log β)1/u‖h‖2−s
1s
‖�‖

1/u
1 (λk ∗ | f |

u′)1/u
′

.

Therefore, if 1+ θ < r/u′ = 2r(s − 1)/s, by applying (1) of Proposition 2.5 to {λk}

we see that
‖τ ∗( f )‖r ≤ C(log β)‖h‖2−s

1s
‖�‖q B2/r

q2 ‖ f ‖r , (2.21)

where τ ∗( f )= supk |τk ∗ f |. Thus, if |1/v − 1/2| = 1/2r < 1/(s′(1+ θ)), using
(2.20), (2.21) and arguing as in the proof of Lemma for [5, Theorem B, p. 544], we
see that∥∥∥∥(∑ |σk ∗ gk |

2
)1/2∥∥∥∥

v

≤ C(log β)‖h‖1s‖�‖q B1/r
q2

∥∥∥∥(∑ |gk |
2
)1/2∥∥∥∥

v

. (2.22)

We decompose T f =
∑
∞

j=−∞ V j f , where V j f =
∑
∞

k=−∞ S j+k(σk ∗ S j+k( f )).
Then, using (2.22) and the Littlewood–Paley theory,

‖V j f ‖v ≤ C(log β)‖h‖1s‖�‖q B1/r
q2 ‖ f ‖v, (2.23)

where |1/v − 1/2| = 1/2r < 1/(s′(1+ θ)). On the other hand, by (2.1)–(2.3),

|σ̂k(ξ, η)| ≤ C(log β)‖�‖q‖h‖1s min(1, (βk+ds(ξ))κ , (βks(ξ))−κ),

where κ = ε0/q ′s′, and hence, much as in the proof of (2.16), we can show that

‖V j f ‖2 ≤ C(log β)‖h‖1s‖�‖q min(1, β−(| j |−1−d)κ)‖ f ‖2. (2.24)

If |1/p − 1/2|< (1− θ)/(s′(1+ θ)), then we can find numbers v and r such that
|1/v − 1/2| = 1/2r < 1/(s′(1+ θ)) and 1/p = θ/2+ (1− θ)/v. Thus, interpolating
between (2.23) and (2.24),

‖V j f ‖p ≤ C(log β)‖h‖1s‖�‖q B(1−θ)/r
q2 min(1, β−θ(| j |−1−d)κ)‖ f ‖p.

Therefore

‖T f ‖p ≤
∑

j

‖V j f ‖p ≤ C(log β)‖h‖1s‖�‖q B(1−θ)/r
q2 Bqs‖ f ‖p. (2.25)

This completes the proof of Proposition 2.3, since (1− θ)/r = |1/p − 1/p′|. 2

PROOF OF PROPOSITION 2.4. The L2 estimates follow from Proposition 2.3, so
on account of duality and interpolation we may assume that 1+ θ < p ≤ 4/(3− θ).
For p0 ∈ (1+ θ, 4/(3− θ)] we can find r ∈ (1+ θ, 2] such that 1/p0 = 1/2+
(1− θ)/2r . If 0 ≡ 0, by (2) of Proposition 2.5 and (2.1), arguing as in (2.18), we
obtain (2.22) with Bq2 replaced by Bqs for the number v satisfying 1/v − 1/2= 1/2r
(note that 1/p0 = θ/2+ (1− θ)/v). Thus, arguing as in the proof of Proposition 2.3,
we obtain (2.25) with p = p0 and Bqs in place of Bq2. This ends the proof of
Proposition 2.4. 2
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Now we can give proofs of Theorems 1.1 and 1.3. To prove Theorem 1.1, we may
assume that 1< s ≤ 2. Let β = 2q ′ in Proposition 2.3. Then, since θ is an arbitrary
number in (0, 1), we have Theorem 1.1 for s ∈ (1, 2].

Next, take β = 2q ′s′ in Proposition 2.4. Then

‖T f ‖p ≤ C(q − 1)−1(s − 1)−1
‖�‖q‖h‖1s‖ f ‖p

for p ∈ (1,∞), since (1+ θ, (1+ θ)/θ)→ (1,∞) as θ→ 0. From this the result for
S in Theorem 1.3 follows if we take functions of the form f (x, z)= k(x)g(z).

3. Extrapolation

We can prove Theorems 1.2 and 1.4 by an extrapolation method similar to that used
in [14]. We give a proof of Theorem 1.4 for the sake of completeness (Theorem 1.2
can be proved in the same way). We fix p ∈ (1,∞) and f with ‖ f ‖p ≤ 1. Let S be as
in (1.2). We also write S f = Sh,�( f ). Put U (h, �)= ‖Sh,�( f )‖p. Then we see that

U (h, �1 +�2) ≤ U (h, �1)+U (h, �1),

U (h1 + h2, �) ≤ U (h1, �)+U (h2, �),
(3.1)

for appropriate functions �, h, �1, �2, h1 and h2. Set

E1 = {r ∈ R+ | |h(r)| ≤ 2},

Em = {r ∈ R+ | 2m−1 < |h(r)| ≤ 2m
} for m ≥ 2.

Then h =
∑
∞

m=1 hχEm . Put em = σ(Fm) for m ≥ 1, where

Fm = {θ ∈6 | 2m−1 < |�(θ)| ≤ 2m
} for m ≥ 2,

F1 = {θ ∈6 | |�(θ)| ≤ 2}.

Let �m =�χFm − σ(6)
−1
∫

Fm
� dσ . Then �=

∑
∞

m=1 �m . Note that
∫
6
�m dσ =

0. Applying Theorem 1.3, we see that

U (hχEm , � j )≤ C(q − 1)−1(s − 1)−1
‖hχEm‖1s‖� j‖q (3.2)

for all s, q ∈ (1, 2].
Now we follow the extrapolation argument of Zygmund [18, Ch. XII, pp. 119–120].

For k ∈ Z, put

E(k, m) = {r ∈ (2k, 2k+1
] | 2m−1 < |h(r)| ≤ 2m

} for m ≥ 2,

E(k, 1) = {r ∈ (2k, 2k+1
] | 0< |h(r)| ≤ 2}.

Then∫
E(k,m)

|h(r)|(m+1)/mdr/r ≤ Cm−a
∫

E(k,m)
|h(r)|(log(2+ |h(r)|))a dr/r

≤ Cm−a La(h),
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and hence
‖hχEm‖11+1/m ≤ Cm−am/(m+1)La(h)

m/(m+1) (3.3)

for m ≥ 1. Also
‖� j‖1+1/j ≤ C2 j e j/( j+1)

j . (3.4)

From (3.1)–(3.4),

U (h, �) ≤
∑
m≥1

∑
j≥1

U (hχEm , � j )≤ C
∑
m≥1

∑
j≥1

jm‖hχEm‖11+1/m‖� j‖1+1/j

≤ C(1+ La(h))
∑
m≥1

∑
j≥1

m1−am/(m+1) j2 j e j/( j+1)
j

= C(1+ La(h))

(∑
m≥1

m1−am/(m+1)
)(∑

j≥1

j2 j e j/( j+1)
j

)
.

When a > 2, it is easy to see that
∑

m≥1 m1−am/(m+1) <∞. Also,∑
j≥1

j2 j e j/( j+1)
j =

∑
e j<3− j

j2 j e j/( j+1)
j +

∑
e j≥3− j

j2 j e j/( j+1)
j

≤

∑
j≥1

j2 j 3− j2/( j+1)
+

∑
j≥1

j2 j e j 3 j/( j+1)

≤ C + C
∫
6

|�(θ)| log(2+ |�(θ)|) dσ(θ).

Collecting the results, we conclude the proof of Theorem 1.4.

REMARK. For a positive number a and a function h on R+, let

Na(h)=
∑
m≥1

ma2mdm(h),

where dm(h)= supk∈Z 2−k
|E(k, m)| (E(k, m) is as above). We define a class Na to

be the space of all measurable functions h on R+ which satisfy Na(h) <∞. Then it
can be shown that if h ∈La for some a > 2, then h ∈N1. By a method similar to that
used in this section, we can show the L p boundedness of S in Theorem 1.4 under a
less restrictive condition that h ∈N1 and � ∈ L log L (see [14]).

4. An estimate for a trigonometric integral

Let A be an n × n real matrix and

φA(t)= (t − γ1)
m1(t − γ2)

m2 · · · (t − γk)
mk

be the minimal polynomial of A, where γi 6= γ j if i 6= j . Let ai (t)= (t − γi )
mi for

i = 1, 2, . . . , k. Then we can find polynomials bi (t) (i = 1, 2, . . . , k) such that

1
φA(t)

=

k∑
i=1

bi (t)

ai (t)
.
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For each i , 1≤ i ≤ k, let Pi be the polynomial defined by

Pi (t)=
bi (t)

ai (t)
φA(t).

We consider the n × n matrices Pi (A), which are defined as usual (see [8]).
Let

Vi = {z ∈ Cn
| (A − γi E)mi z = 0} (i = 1, 2, . . . , k),

where E denotes the unit matrix. Then the vector space Cn can be decomposed into a
direct sum as

Cn
= V1 ⊕ V2 ⊕ · · · ⊕ Vk .

Each of the matrices Pi (A) is the projection onto Vi ; indeed, Pi (A)z ∈ Vi for all
z ∈ Cn , for i = 1, 2, . . . , k, and

P1(A)+ P2(A)+ · · · + Pk(A)= E,

P2
i (A)= Pi (A), Pi (A)Pj (A)= 0 if i 6= j (1≤ i, j ≤ k).

For z = (zi ) and w = (wi ) in Cn , we write 〈z, w〉 =
∑n

i=1 ziwi . Let

J (A, η, ζ )=
k∑

i=1

mi−1∑
j=0

|〈(A − γi E) j Pi (A)η, A∗ζ 〉| (4.1)

for η, ζ ∈ Rn . In this section, we prove the following result.

THEOREM 4.1. Let η, ζ ∈ Rn
\ {0} and 0< a < b. Suppose that J (A, η, ζ ) 6= 0 and

the numbers a, b are in a fixed compact subinterval of (0,∞). Then∣∣∣∣∫ b

a
exp(i〈t Aη, ζ 〉) dt

∣∣∣∣≤ C J (A, η, ζ )−1/N ,

where N = deg φA = m1 + m2 + · · · + mk and the constant C is independent of η, ζ ,
a and b.

Since
∑k

i=1 Pi (A)= E , using the triangle inequality,

|〈η, A∗ζ 〉| ≤
k∑

i=1

|〈Pi (A)η, A∗ζ 〉| ≤ J (A, η, ζ ).

Therefore Theorem 4.1 implies the following result.

COROLLARY 4.2. Let η, ζ, a, b and N be as in Theorem 4.1. Then∣∣∣∣∫ b

a
exp(i〈t Aη, ζ 〉) dt

∣∣∣∣≤ C |〈Aη, ζ 〉|−1/N

when 〈Aη, ζ 〉 6= 0.

This is used to prove Lemma 2.2 in Section 2.
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We define the curve X (t)= t Aη for a fixed η ∈ Rn
\ {0}. Then Stein and

Wainger [17] proved the following theorem (see [11, 16] for related results).

THEOREM A. Suppose that the curve X does not lie in an affine hyperplane. Then∣∣∣∣∫ b

a
exp(i〈X (t), ζ 〉) dt

∣∣∣∣≤ C |ζ |−1/n,

where C is independent of ζ ∈ Rn
\ {0}; furthermore, if a and b are in a fixed compact

subinterval of (0,∞), the constant C is also independent of a and b.

Evidently Theorem 4.1 implies Theorem A. Since Pi (A)z ∈ Vi for all z ∈ Cn ,

(A − γi E)m Pi (A)= 0 if m ≥ mi (i = 1, 2, . . . , k).

Therefore

exp((log t)A)Pi (A) = exp((log t)γi E) exp((log t)(A − γi E))Pi (A)

= tγi

mi−1∑
j=0

(log t) j

j !
(A − γi E) j Pi (A).

Thus, using
∑k

i=1 Pi (A)= E ,

t A
=

k∑
i=1

tγi

[mi−1∑
j=0

(log t) j

j !
(A − γi E) j

]
Pi (A). (4.2)

The assumption on X of Theorem A can be rephrased as follows: the function
ψ(t)= 〈t Aη, ζ 〉 is not a constant function on (0,∞) for every ζ ∈ Rn

\ {0}. If ψ(t)
is not a constant function, then ψ ′(t) is not identically 0. Thus, since t (d/dt)ψ(t)=
〈t Aη, A∗ζ 〉, by (4.2) we have J (A, η, ζ ) > 0, where J (A, η, ζ ) is as in (4.1). Let
C0 =min|ζ |=1 J (A, η, ζ ) and note that C0 > 0. Then, from Theorem 4.1, it follows
that ∣∣∣∣∫ b

a
exp(i〈X (t), ζ 〉) dt

∣∣∣∣≤ CC−1/N
0 |ζ |−1/N .

This implies Theorem A, since N ≤ n (in fact, it is not difficult to see that N = n if X
satisfies the assumption of Theorem A).

We conclude this paper with a proof of Theorem 4.1. Let I = [α, β] be a compact
interval in R. Consider the differential equation

y(k) + a1 y(k−1)
+ a2 y(k−2)

+ · · · + ak y = 0 on I , (4.3)

where a1, a2, . . . , ak are complex constants. Let {ϕ1, ϕ2, . . . , ϕk} be a basis for the
space S of all solutions of (4.3). Then in order to prove Theorem 4.1 we require the
following result.
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PROPOSITION 4.3. Let ϕ be a real-valued function such that ϕ′ ∈ S. Suppose that
ϕ′ = d1ϕ1 + d2ϕ2 + · · · + dkϕk , where d1, d2, . . . , dk are complex constants, which
are uniquely determined by ϕ′. Then∣∣∣∣∫ β

α

eiϕ(t) dt

∣∣∣∣≤ C(|d1| + |d2| + · · · + |dk |)
−1/k,

where C is independent of ϕ; also the constant C is independent of α, β if they are
within a fixed finite interval of R.

To prove Proposition 4.3 we use the following two lemmas, both of which are well
known.

LEMMA 4.4. Let ϕ be a solution of (4.3). Suppose that ϕ is not identically 0. Then
there exists a positive integer K independent of ϕ such that ϕ has at most K zeros in I .

LEMMA 4.5 (van der Corput). Let f : [c, d] → R and f ∈ C j ([c, d]) for some
positive integer j , where [c, d] is an arbitrary compact interval in R. Suppose that
infu∈[c,d] |(d/du) j f (u)| ≥ λ > 0. When j = 1, we further assume that f ′ is monotone
on [c, d]. Then ∣∣∣∣∫ d

c
ei f (u) du

∣∣∣∣≤ C jλ
−1/j ,

where C j is a positive constant depending only on j . (See [17, 18].)

We now give a proof of Proposition 4.3. We consider linear combinations
c1ϕ1 + c2ϕ2 + · · · + ckϕk , where c1, c2, . . . , ck ∈ C. We write ψ = c1ϕ1 + c2ϕ2 +

· · · + ckϕk and define

N1(ψ) = |c1| + |c2| + · · · + |ck |,

N2(ψ) = min
t∈I
(|ψ(t)| + |ψ ′(t)| + · · · + |ψ (k−1)(t)|).

Let U = {(c1, c2, . . . , ck) ∈ Ck
| |c1| + |c2| + · · · + |ck | = 1}. We consider a

function F on I ×U defined by

F(t, c1, c2, . . . , ck)= |ψ(t)| + |ψ
′(t)| + · · · + |ψ (k−1)(t)|.

Then the function F is continuous and positive on I ×U (see [4]). Thus, if we put

C0 = min
(t,c1,c2,...,ck)∈I×U

F(t, c1, c2, . . . , ck),

then C0 > 0 and N2(ψ)≥ C0 N1(ψ).
Therefore, if ϕ is as in Proposition 4.3,

min
t∈I
(|ϕ′(t)| + |ϕ′′(t)| + · · · + |ϕ(k)(t)|)≥ C0 N1(ϕ

′). (4.4)
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By (4.4), for any t ∈ I , there exists ` ∈ {1, 2, . . . , k} such that

|(d/dt)`ϕ(t)| ≥ C N1(ϕ
′), C > 0.

By a suitable application of Lemma 4.4, we can decompose I = ∪H
m=1 Im , where

H is a positive integer independent of ϕ and {Im} is a family of nonoverlapping
subintervals of I such that for any interval Im there exists `m ∈ {1, 2, . . . , k} satisfying
|(d/dt)`mϕ(t)| ≥ |(d/dt) jϕ(t)| on Im for all j ∈ {1, 2, . . . , k}, so |(d/dt)`mϕ(t)| ≥
C N1(ϕ

′) on Im , and such that ϕ′ is monotone on each Im . Therefore, by Lemma 4.5,∣∣∣∣∫ β

α

eiϕ(t) dt

∣∣∣∣ = ∣∣∣∣ H∑
m=1

∫
Im

eiϕ(t) dt

∣∣∣∣≤ C
H∑

m=1

min(|Im |, N1(ϕ
′)−1/`m )

≤ C N1(ϕ
′)−1/k .

Since N1(ϕ
′)= |d1| + |d2| + · · · + |dk |, this completes the proof of Proposition 4.3.

PROOF OF THEOREM 4.1. By the change of variables t = es and an integration by
parts argument, to prove Theorem 4.1 it suffices to show that∣∣∣∣∫ β

α

exp(i〈et Aη, ζ 〉) dt

∣∣∣∣≤ C J (A, η, ζ )−1/N (4.5)

for an appropriate constant C > 0, where [α, β] is an arbitrary compact interval in R.
Let ψ(t)= 〈et Aη, ζ 〉. Then ψ ′(t)= 〈et Aη, A∗ζ 〉, and hence, by (4.2),

ψ ′(t)=
k∑

i=1

mi−1∑
j=0

ci j (η, ζ )t
j eγi t ,

where

ci j (η, ζ )=
1
j !
〈(A − γi E) j Pi (A)η, A∗ζ 〉.

It is known that N functions t j eγi t (0≤ j ≤ mi − 1, 1≤ i ≤ k) form a basis for the
space of solutions for the ordinary differential equation of order N with characteristic
polynomial φA (see [4]). Thus, the estimate (4.5) immediately follows from
Proposition 4.3, since

∑k
i=1

∑mi−1
j=0 |ci j (η, ζ )| ≈ J (A, η, ζ ). 2
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