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Abstract

We prove certain L? estimates (1 < p < oo) for nonisotropic singular integrals along surfaces of
revolution. The singular integrals are defined by rough kernels. As an application we obtain L7”
boundedness of the singular integrals under a sharp size condition on their kernels. We also prove a
certain estimate for a trigonometric integral, which is useful in studying nonisotropic singular integrals.
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1. Introduction
Let P be an n x n real matrix whose eigenvalues have positive real parts. Let
y =traceP. Define a dilation group {A;};~o on R"” by A, =t =exp((logt)P).
We assume that n > 2. There is a nonnegative function » on R" associated with

{A;};~0. The function r is continuous on R" and infinitely differentiable in R" \ {0}.
Furthermore, it satisfies the following conditions.

(1) r(A;x)=tr(x)forallt > 0and x € R".

2) r(x+y) <C@r(x)+r(y)) for some C > 0.

B If T={xeR"|r(x)=1}, then ¥ ={0 €R" | (B, 0) =1} for a positive
symmetric matrix B, where (-, -) denotes the inner product in R”.

Also dx =17~ do dr, that is,

fx) dx=/00/ f(A0)t" "V do (9) dt
R~ 0 z

for appropriate functions f, where do is a C* measure on X. See [2, 13, 17] for more
details.
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Let 2 be locally integrable in R” \ {0} and homogeneous of degree 0 with respect
to the dilation group {A;}, thatis, 2 (A;x) = Q(x) for x # 0. We assume that

/ Q(0) do(0) = 0.
=

For s > 1, let A denote the collection of measurable functionszon R ={reR |t >

0} satisfying
2/+1 1/s
7l = sup(/ |h(t)|* dt/t> < 00,
jezZ \J2J

where Z denotes the set of integers. We define [|A ]|, as usual (||2]|a,, = |2l L ®))-
Let " : [0, co) — R™ be a continuous mapping satisfying I"'(0) = 0. We define a
singular integral operator along the surface (y, I'(r(y))) by

Tf(x,z)=p.V. /Rn &=y, z=TF@NK(y)dy

= lim fx =y, z=TrmNK () dy, (1.1)
=0 Jr(y)>e
where K(y) =h(r()QLO)r(y)™V, y = A, y-1y and h € Ay. We assume that the
principal value integral in (1.1) exists for all (x, z) € R” x R™ and f € S(R" x R™)
(the Schwartz class).
We denote by L log L(X) the Zygmund class of all those functions €2 on ¥ which
satisfy

/ [2(0)] log(2 + |R2(0)]) do () < oo.
o
Also, we consider the L9(X) spaces and write [|Q2, = (fE 12(0)]9 do (0))'/4 for

Qe L1(X) (|R]|oo is defined as usual).
Let

R
Mrg(z) = sup R™ / lg(z = T'(1)| dt.
R>0 0

We assume that the maximal operator Mr is bounded on L”(R™) for all p > 1.
See [15, 17] for examples of such functions I'.
In this note we prove the following theorems.

THEOREM 1.1. Let T be as in (1.1). Suppose that Q2 € L1(X) for some q € (1, 2]
and h € Ay for some s > 1. Then

ITf Lo @remy < Cplg = DM IR 12l f Lo @rim)

if 1/p—1/2] <min(1/s’, 1/2), where 1/s'+1/s=1 and the constant C, is
independent of g and 2.
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THEOREM 1.2. Suppose that Q € Llog L(X) and h € Ay for some s > 1. Then T is
bounded on L (R"*™) if |1/p — 1/2| < min(1/s’, 1/2).

Theorem 1.2 follows from Theorem 1.1 by an extrapolation method. When r(x) = |x|
(the Euclidean norm), m =l and I"isa C 2, convex, increasing function, Theorem 1.2
was proved in Al-Salman and Pan [1] (see [1, Theorem 4.1] and also [10] for a related
result). In [1], it is noted that the estimates as ¢ — 1 of Theorem 1.1 (in their setting)
can be used through extrapolation to prove the L” boundedness of [1, Theorem 4.1],
although such estimates are yet to be proved. In this note, we are able to prove
Theorem 1.1 and apply it to prove Theorem 1.2.

If ' =0 (T is identically 0), then T essentially reduces to the lower-dimensional
singular integral

Sf(x) =p.v. / flx = yK(y)dy. (1.2)
Rn
For this singular integral we have the following theorem.

THEOREM 1.3. Let Q2 € L9(X) and h € A for some q, s € (1, 2). Then

ISfllLe@n < Cplg — 1) s = DML Il a N F | Lr ey
forall p € (1, 00), where the constant C, is independent of q, s, Q and h.

For a > 0, let

2Jj+l1
L4(h) = sup f |h(r)|(log2 + |h(r))* dr/r.
JEZ J2J
We define a class L, to be the space of all those measurable functions # on Ry which
satisfy L, (h) < oo.
By Theorem 1.3 and an extrapolation we have the following result.

THEOREM 1.4. Suppose that 2 € L log L(X) and h € L, for some a > 2. Then S is
bounded on LP (R") for all p € (1, 00).

It is noted in [5] that S is bounded on L? , 1 < p < o0, if 2 € L? for some g > 1
and i € Aj (see [5, Corollary 4.5]). Theorem 1.4 improves that result. See [13, 16] for
nonisotropic singular integrals S with 2 = 1 and also [3, 7, 9, 12] for related results.

In Section 2, we prove Theorems 1.1 and 1.3. The proofs are based on the method
of [5]. As in [14], a key idea of the proof of Theorem 1.1 is to use a Littlewood—
Paley decomposition depending on g for which 2 € LY. Theorem 1.3 is proved in
a similar fashion. Applying an extrapolation argument, we can prove Theorems 1.2
and 1.4 from Theorems 1.1 and 1.3, respectively. We give a proof of Theorem 1.4 in
Section 3. In Section 4, we prove an estimate for a trigonometric integral, a corollary
of which is used in proving Theorems 1.1 and 1.3.

Throughout this note, the letter C will be used to denote nonnegative constants
which may be different in different occurrences.
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2. Proofs of Theorems 1.1 and 1.3

Let A* denote the adjoint of a matrix A. Then A} =exp((log?)P*). We write
A} = B;. We can define a nonnegative function s from {B;} in exactly the same way
as we define r from {A,}.

There are positive constants ¢y, ¢z, ¢3, ¢4, &1, &2, B1 and B, such that

ci|x|*t <r(x) <co|x|*? ifr(x) >1,
3lx|Pr < r(x) <calx|P if0O<r(x)<l1.

Also,

di|E|" < s(§) < drlE|™ ifs(E) > 1,
ds|E|P < s(&) <dalP? ifO<s(E) <1,

for some positive numbers dy, d», d3, da, ay, az, by and by (see [17]). These estimates
are useful in the following.

We consider the singular integral operator 7 defined in (1.1). Let E; = {x € R" |
B/ <r(x) < B/*1l}, where B > 2 and j € Z. We define a sequence of Borel measures
{oj} on R" x R™ by

616, ) = / exp(-2mi(y, §)) exp(-22i (L (1), K () dy,

Ej

where 6 denotes the Fourier transform of o; defined by
6j, = / exp(—2mi((x, 2), (§, m)) doj(x, z).

Then Tf(x) =Y. ok * f(x).
Let ur = |ox|, where |o%| denotes the total variation of 0. Let Q€ L9, h € Ay,
q, s € (1, 2]. We prove the following estimates:

loxll < Clog BRIk, < Cog AL, IR A, Q2.1)
where [|ox || = |og| (R"+™);
161(E, M| < ClIQgIAla, (B 5@, (2.2)

where d = by /ay;

16 (€, M| < C(log B4 11hla, (BXs(E)) /@) (2.3)
for some €y > 0;
| (&, M| < Clog B) I, 1kl a, (BEs () ~€0/'), (2.4)
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where ¢ is as in (2.3); and

(€, 1) — [0, )| < ClIKUG Nl a, (B s(E)o1, (2.5)

where d is as in (2.2).
First, we see that

k+1
ﬁ+

loxllt = /ﬁk A dr/r = Cog Bl lI7 A, - (2.6)

From this, (2.1) follows.
Next, we show (2.2). Take v € Z so that 2" < 8 < 2v+1 Note that

or(&, ) = //;k (g exp(—2mi ([ (r(x)), n)(exp(—2mi{x, §)) — Dh(r(x))
X Q(x/);(x)_y dx.

Thus

|6k (§. I < C/ x| Bge& 1A (B r ()2 (x')r(x) 7 dx

l<r(x)<p
) . 2j+1
< C > |BgEllQlh2// / \h(B*r)| dr/r
j=0 Y
< CBY Byl 1] a,- 2.7)
Combining (2.6) and (2.7),
168, M| < ClIQI1 Ikl A, min(log B, B/*1[Bgé)). (2.8)
If s(Bgi&) < 1, then |Bgi&| < C(BFs(&))!/P1. Therefore

min(log B, B/ | By&|) < C(B*s(6) /0.

Using this in (2.8), we have (2.2). We can prove (2.5) in the same way.
Next we prove (2.3). We use a method similar to that of [5, p. 551]. Define

T(§)=/E Q(0) exp(=2mi(§, 0)) do (6).

We need the following estimates.

LEMMA 2.1. Let L be the degree of the minimal polynomial of P. Then, if 0 < €g
<a; ' min(1/2, ¢'/L),

,Bk+1

/ﬂ  [TB&)P dr/r < Cllog )(B*s@) |12l

where C is independent of Q € L4, g € (1, 2] and B.
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In proving Lemma 2.1 we use the following estimate, which follows from the corollary
to Theorem 4.1 in Section 4 via an integration by parts argument.

LEMMA 2.2. Let L be as in Lemma 2.1. Then, for n, ¢ € R" \ {0},

<Cl(n, Pg)|7VE

2
’/] exp(i(B:n, ¢)) dt/t

for some positive constant C independent of n and ¢.
PROOF OF LEMMA 2.1. Choose v € Z such that 2" < g < 2"*!. Then
gt pkoi+1

B drr < / 2(B,&) dr/r

2i
v 2
= Z f/ </ exp(—27i (Bgty) &, 0 — w)) dr/r)Q(@)Q(w) do (0) do (w).
j=0 TxXX 1
By Lemma 2.2,

2
‘ / exp(—27i (Byiys &, 6 — w)) dr/r| < Cl{Bpiysi. PO — w))| ™,
1

where 0 < € < 1/L. Using Holder’s inequality, if 0 < € < min(1/(2g’), 1/L), then

//z - [(Bgtpi&, PO — )|~ 1R(0)Q(w)| do (8) do ()

, 1/q'
< (/f (P*Byini£. 6 — )| do (6) do(w))
XXX
x Q117 < ClBgeyiEl IR,

where the last inequality follows from condition (3) of Section 1 (see [5, p. 553]).

Therefore
,Bk+ 1

J,

(for 0<e<min(1/(2¢"), 1/L)).  If s(Bg&) =1, |Bgiyi&| = C(B*2/s(8))"/ %
(0 < j <v). Thus

[T(B&)> dr/r < CIIQIl; Y |Bgrpi€| ™ (2.9)
=0

D IBpai&l T <D C(BF2s (€))7 < Clog B)(BFs(6)) /2, (2.10)
Jj=0 j=0

where C is independent of ¢g. By (2.9) and (2.10) we have the estimate of Lemma 2.1
when s(Bgi§) > 1. If s(Bgeé) < 1, the estimate of Lemma 2.1 follows from the
inequality |7(£)| < ||2||1. This completes the proof of Lemma 2.1. O
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Now, by Holder’s inequality,

k+1
ﬁ+

6% (&, M| = '/ﬁk exp(=2i(I'(r), n))h(r)t(B.&)dr/r

ﬂkH 1/s ﬂk+l ) 1/s'
[h(r)|® dr/r) (/k |T(B&)° dr/r) (2.11)
B

<
=(/,
k+1

e
< Clog )1 a 201" (/ﬂ

1/s’
|T(B, &) dr/r) :

where we have used the estimate |t(§)| < ||2]|; to get the last inequality. By (2.11)
and Lemma 2.1 we obtain (2.3). The estimate (2.4) can be proved similarly.

Let Bys = (1 — p=0€0/4'"y~1 'where 8 > 2,6 € (0, 1) and € is as in (2.3) and (2.4).
To prove Theorems 1.1 and 1.3, we use the following result.

PROPOSITION 2.3. Suppose that Qe L1, g€ (1,2] and he A;, s € (1,2]. Let
[1/p—1/2| < (1 =06)/(s'"(1 4+ 6)). Then

1/p—1/p'
ISl < Clog Bkl a, 1201y Bys By "~ PN £11p,
where C is a constant independent of 2, h, q, s and p.
PROPOSITION 2.4. Suppose that ' =0. Let Q € L9, h € A, q, s € (1, 2]. Then, for
ped+6,(1+0)/0),

1+1/p—1/p’
ITf1l, < Cllog IR IRl Bg "~ PN£1,
where C is a constant independent of Q, h, q, s and .
To prove Propositions 2.3 and 2.4, we need the following result.

PROPOSITION 2.5. Let w*(f)(x) =sup |ux * f(x)|. Let 2 € LY, g € (1, 2].
(1) Ifhe A, thenfor p>1+96,

I (Pl < Clog B IRl Nl ag BT 1 F -

where C is a constant independent of 2, h, q and B.
(2) SupposethatT' =0. Let h € A, s € (1, 2]. Then

2
I (H)llp < Cog BIRAlg 1Al B I £
for p > 146, where C is independent of 2, q, h, s and B.
PROOF. Since the estimate ||[u*(f)|lco < C(log B)I2111AlIa,llflleo follows from

(2.1), by interpolation, to prove (1) and (2) of Proposition 2.5 we may assume that
pe(l+0,2].
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First, we give a proof of part (1). Define measures vy on R* x R™ by

Dk(E, ) = (€, n) — Wi (&, 1),

where Wi (5, 1) = ¢ (§) (0, m) with ¢ (x) = B~ p(Ag4x), ¢ € C3°. We assume
that ¢ is supported in {r(x) < 1}, $(0) =1 and ¢ > 0. Then by (2.1), (2.4) and (2.5),
forgq, s € (1, 2],

196(&, M| < Clog BRI, I1h]l a, min(1, (BXFH4s(E)/01, (BEs(&))~/9").

We may assume that €q is small enough so that €g/4 < 1/b;. Then

95, M| < CAmin(1, (85", (Bs(E)™), (2.12)
where A = (log B)[|2¢ll/2]| a,, and & = €9/(2q").
Let
00 1/2
g(f)x.2) = ( D lvex fx, z)|2> :
k=—00

Then i*(f) < g(f) + W*(f]), where W*(f) = sup [ # £1. Let
Mg(x) = sup 1™ / 2] dy
t>0 r(x—y)<t

be the Hardy-Littlewood maximal function on R” with respect to the function r. By
the L” boundedness of Mr and M, it is easy to see that |[W*(f)|, < CA| f]l, for
p > 1. Thus to prove Proposition 2.5(1) it suffices to show that

lg(Hll, < CABYP|Ifll, (pe(l+86,2]), (2.13)

where A is as above and B = B;;. By a well-known property of Rademacher’s
functions, (2.13) follows from

IU(F)Il, < CABY?|fll, (pe(l+86,2]), (2.14)

where Ue(f)(x, 2) = Y exvi * f(x, 2) with € = {e;}, €x = 1 or —1 (the inequality is
uniform in €).
We define two sequences {r,}{° and {p;,}{° by p1 =2 and

1 1 1 1 g 1-6
_—— = =+ form > 1.
rm 2 2pm DPm+1 2 Fm
Then
1 1 1-6
=—+ form > 1.

Pm+1 2 2pm
Thus 1/pm =0 —=1n")/(1 +86), where n=(1—0)/2, so {pn} is decreasing and
converges to 1 + 6.
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For j > 1 we prove that
1U(H)llp, < CjABPi| £l (2.15)

using the Littlewood—Paley theory. Let {4}°%, be a sequence of nonnegative
functions in C*°((0, 00)) such that

supp(¥) C[B7, 7, D @) =1,
k

I(d/dt) Y () < cj/t!,
for j =1, 2, ..., where c¢; is independent of 8 > 2. Define Sy by
Sk E ) = Y @E) F &, 1)
We write Ue(f) = Y52 o U;j(f), where U;(f) = 302 oo €Sjtk (Vi % Sj+x(f)).
Then by Plancherel’s theorem and (2.12),
liHIiz<d ¢ /f D&, MIPIFE, I de dy
k D(j+k)xRm

< CA%min(1, g~207171=de) 3 // |f &, n)* dt dn
3 D(j+k)xRm

< CA®min(1, p2WI=1=0y | £)12, (2.16)
where D(k) = {§ e R" | %71 < 5(¢) < p~*+1}. By (2.16),

1Ue(Pll2 <D NU(HI2 = C Y Amin(l, =110y £,

< CA( = B77 NI £l (2.17)

If we denote by A(m) the estimate of (2.15) for j = m, this proves A(1).
Now we assume A (m) and derive A(m + 1) from A(m). Note that

VIO =t AFD +WEASD =g f D) 4+ 297 (D,
where V*(f)(x) = supy [[vg] * f(x)[. Since [[g(f)llp, < CABY P I, by A(m),

V)l e < CABY P2 || £l py-

Also, ||vk|| < CA by (2.1). Thus, by the proof of Lemma for [5, Theorem B, p. 544],
the following vector-valued inequality holds:
172
(Z |8k |2>

” (Z Vi >f<gk|2)l/2
(Z |gk|2) /

< C(AB*Pm sup ||ve|))!/?
k

'm 'm

< CAB!/Pn (2.18)

'm
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By (2.18) and the Littlewood—Paley inequality,

1/2
WU (Hllr,, < CH (Z |k S,-+k(f>|2)
k

m

< CABYPm||f],,.. (2.19)

Here we note that the bounds for the Littlewood—Paley inequality are independent of
B > 2. Interpolating between (2.16) and (2.19),

U (Pl pyay < CABA=O/Pm min1, g=0aUil=1=dyy ¢y
Thus

WU s < D MU ppay < CABE=OPm(1 — g~ £y,
J

< CABYPm1|| fll prs s

which proves A(m + 1). By induction, this completes the proof of (2.15).

We now prove (2.14). Let p € (1 +0, 2] and let {p;,}5° be as in (2.15). Then
we have pyt+1 < p < py for some N. By interpolation between the estimates in
(2.15)for j = N and j = N + 1, (2.14) holds. This completes the proof of part (1) of
Proposition 2.5.

Part (2) of Proposition 2.5 can be proved in the same way. We take
A = (log P)IILI4llhlla, and & = €p/q’s" in (2.12). Then, since

(Ol < Clog B INANA IfIl, for p>1

if I' = 0, the proof of part (1) can be used to get (2.13) with A = (log B)||2|l4 12| A,
as above and B = By, and the conclusion of part (2) follows from (2.13). O

PROOF OF PROPOSITION 2.3. To prove Proposition 2.3 we may assume that 1 <s <

2. Asin [1], here we apply an idea in the proof of [6, Theorem 7.5]. We consider
measures 7; defined by

(&, m) =/ exp(—2mi(y, §))
Ex

x exp(—=27i (T(r(y)), M)A ONP IO (y) ™7 dy.
Then the Schwarz inequality implies that
ok 1> < Cog B)IAIY, 12017 * | £ (2.20)

Define measures Ay by

(€, ) =/E exp(—27i(y, §)) exp(=27i (T (r(y)), nDIQO)Ir(») ™7 dy.
k
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Since |h|*™* € Ayjo—s) and [||2]*~S||a
Holder’s inequality,

oy = IRIIA°, if u=5/(2—s) then, by

_ 1 / ’
|7 % f1 < Clog £ I|AIA 12" G 1 £

Therefore, if 1 +60 < r/u’ =2r(s — 1)/s, by applying (1) of Proposition 2.5 to {A;}

we see that

(Ol < C(log ﬂ)IIhIIZAZSIIQIIqB%r||f||r, (2.21)

where t*(f) =supy |t * f|. Thus, if [1/v—1/2|=1/2r < 1/(s'(1 4+ 6)), using
(2.20), (2.21) and arguing as in the proof of Lemma for [5, Theorem B, p. 544], we

see that
1/2 172
‘ (Z o * gk|2) (Z |gk|2)

We decompose Tf = Z?i_oo Vif, where Vi f =372 Sik(ok * Sjtk(f)).
Then, using (2.22) and the Littlewood—Paley theory,

1/r

< C(log B)lIhlla, 1214 B> (2.22)
v

v

Vi fllu < Cdog Il ] a, IIQIIqulérIIfIIU, (2.23)

where |1/v — 1/2| =1/2r < 1/(s'(1 + 8)). On the other hand, by (2.1)-(2.3),
16x(5. )| =< Cllog AR IAlla, min(1, (Bs(€) . (856N,
where K = €y/q’s’, and hence, much as in the proof of (2.16), we can show that
IVj fllz < Cllog B l1Alla, IRl min(l, g~ V=D £l (2.24)

If [1/p—1/2| < (1 —=0)/(s'(1+6)), then we can find numbers v and r such that
[1/v—1/2|=1/2r <1/(s’(1 +80))and 1/p =6/2 + (1 — 0)/v. Thus, interpolating
between (2.23) and (2.24),

1-0)/r . —0(lil—1—
IV fll, < Clog B)lIAlla, IRlg Byy """ min(1, g=20=1=06) | £,

Therefore
1-6
ITf1lp < D IVifllp < Cllog B)likla, IR0BY " Byl £l (225)
J
This completes the proof of Proposition 2.3, since (1 —0)/r =|1/p — 1/p/|. O

PROOF OF PROPOSITION 2.4. The L? estimates follow from Proposition 2.3, so
on account of duality and interpolation we may assume that 1 +6 < p <4/(3 —6).
For ppe (1+4+6,4/(3—6)] we can find r € (1 +6, 2] such that 1/pg=1/2+
(1—-06)/2r. If T' =0, by (2) of Proposition 2.5 and (2.1), arguing as in (2.18), we
obtain (2.22) with B replaced by By for the number v satisfying 1/v — 1/2=1/2r
(note that 1/pp =6/2 + (1 — 6)/v). Thus, arguing as in the proof of Proposition 2.3,
we obtain (2.25) with p = pg and By in place of By,. This ends the proof of
Proposition 2.4. O
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Now we can give proofs of Theorems 1.1 and 1.3. To prove Theorem 1.1, we may
assume that 1 <s <2. Let 8 =27 in Proposition 2.3. Then, since 6 is an arbitrary
number in (0, 1), we have Theorem 1.1 for s € (1, 2].

Next, take B =24 in Proposition 2.4. Then

ITflp<Clg—1D""(s = DI IANA NIl
for p € (1, 00), since (1 + 6, (1 +0)/0) — (1, co0) as & — 0. From this the result for
S in Theorem 1.3 follows if we take functions of the form f (x, z) = k(x)g(z).

3. Extrapolation

We can prove Theorems 1.2 and 1.4 by an extrapolation method similar to that used
in [14]. We give a proof of Theorem 1.4 for the sake of completeness (Theorem 1.2
can be proved in the same way). We fix p € (1, 00) and f with || ]|, < 1. Let S be as
in (1.2). We also write Sf = S; o(f). Put U(h, Q) = ||Sp,o(f) Il - Then we see that

U(h, Q4 Q) <U(h, Q1)+ U(h, Q),
Uhy + ha, Q) < U(hy, Q) + U(hy, Q),

3.1
for appropriate functions 2, h, 21, 22, A1 and hj. Set
Ey={reRq||n(r)] =2},
E, ={reR;| m=l < lh(r)| <2™} form > 2.
Thenh =Y | hxE,. Pute, = o(Fy,) form > 1, where
F,=0eX |2’”_1 < |Q@®)| <2™} form > 2,
Fr={0eX|[Q0) <2}

Let @y = Qxr, —0 ()~ [ Qdo. Then @ =3Y"" | Q. Note that [ Q do =
0. Applying Theorem 1.3, we see that

Ulhxg,, 2) <Clq—1D""s— D" hxe, a2l (3.2)

forall s, g € (1, 2].
Now we follow the extrapolation argument of Zygmund [ 18, Ch. XII, pp. 119-120].
For k € Z, put

E(k,m) = {r e 2K, 2811271 < |h(r)| <2™} form > 2,
Etk, 1) ={re@ 2110 < h(r)| <2}.

Then
/ lh(r)| DM r < Cm™@ f |h(r)|(log(2 + |h(r)]))* dr/r
E(k,m)

E(k,m)
< Cm™“Ly(h),
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and hence
A XE AL < C =@ DL (y™/ D (3.3)

form > 1. Also N
1921114175 < C27el/VFY, (3.4)

From (3.1)-(3.4),
Uh. Q) <Y Ulhxe,. @) <C YY" jmlhxe, a2 1141

m>1 j>1 m>1 j>1

<CU+La() )Y ml—am/(m+1)j2je§/(j+l)

m>1 j>1

=Cc(+ La(h))<2 ml—am/(m+1>> (Z jzjej_'/(jﬂ))

m>1 j>1

When a > 2, it is easy to see that ), _; m!=am/m+1) 56 Also,

nj G+ _ nj i/t nj i/ G+D)

j=1 ej<37J e;j>37J
. D . 10 s
< Z j273=77/G+D 4 Z jZJEjBJ/(J+1)
jz1 j=1

<C+ C[ 1€2(0)] log(2 + [2(0)]) do (6).
z

Collecting the results, we conclude the proof of Theorem 1.4.

REMARK. For a positive number a and a function & on R, let

Na(h) = m*2"dy(h),

m>1

where d,, (h) = sup;y, 2’k|E(k, m)| (E(k, m) is as above). We define a class N, to
be the space of all measurable functions 4 on R, which satisfy N,(h) < oco. Then it
can be shown that if & € L, for some a > 2, then & € N. By a method similar to that
used in this section, we can show the L?P boundedness of S in Theorem 1.4 under a
less restrictive condition that 2 € N and Q € L log L (see [14]).

4. An estimate for a trigonometric integral

Let A be an n x n real matrix and

da®) = —y)" @t —y)" -t — )™

be the minimal polynomial of A, where y; # y; if i # j. Let a;(¢) = (t — y;)™ for
i=1,2,..., k. Then we can find polynomials b;(¢) (i =1, 2, . . ., k) such that
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For each i, 1 <i <k, let P; be the polynomial defined by

P =20,
A
We consider the n x n matrices P;(A), which are defined as usual (see [8]).

Let
Vi={zeC'"|(A-yE)"z=0} (i=1,2,...,k),

where E denotes the unit matrix. Then the vector space C" can be decomposed into a
direct sum as

C'=VioWVvd - V.
Each of the matrices P;(A) is the projection onto V;; indeed, P;(A)z € V; for all
ze(C" fori=1,2,...,k,and
Pi(A)+ P(A)+---+ P(A)=E,
P2(A) = Pi(A), P(APj(A)=0 ifi#j (1<i,j<h.
For z = (z;) and w = (w;) in C", we write (z, w) = Y+, z;w;. Let

k mifl

J(A, 0, 0) =" Y (A= yE) Pi(An, A*¢)] (4.1)

i=1 j=0
for n, ¢ € R”. In this section, we prove the following result.

THEOREM 4.1. Letn, { € R"\ {0} and 0 < a < b. Suppose that J(A, n, ¢) # 0 and
the numbers a, b are in a fixed compact subinterval of (0, 00). Then

b
/ expli (A0, ¢ di| < CI(A, 1, )V,

where N =deg ¢4 =m1 + my + - - - + my and the constant C is independent of n, ¢,
a and b.

Since Zle P;(A) = E, using the triangle inequality,

k
[(n, A*0) 1 <Y [{Pi(A)n, A*) < J(A, 7. ©).
i=1

Therefore Theorem 4.1 implies the following result.

COROLLARY 4.2. Letn, ¢, a, band N be as in Theorem 4.1. Then

b
/ exp(i (thn, ¢)) dt| < C|(An, &)~V

when (An, ¢) # 0.

This is used to prove Lemma 2.2 in Section 2.
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We define the curve X(¢r)=t4n for a fixed n € R”\ {0}. Then Stein and
Wainger [17] proved the following theorem (see [11, 16] for related results).

THEOREM A. Suppose that the curve X does not lie in an affine hyperplane. Then

b
/ exp(i (X (1), £)) dt| = Cle| /",

where C is independent of ¢ € R" \ {0}; furthermore, if a and b are in a fixed compact
subinterval of (0, 00), the constant C is also independent of a and b.

Evidently Theorem 4.1 implies Theorem A. Since P;(A)z € V; for all z € C",
(A—yiE)"Pi(A)=0 ifm>mii=1,2,...,k).
Therefore

exp((log 1) A) P;(A) = exp((log )y; E) exp((log 1)(A — y; E)) P; (A)

m;—1 i

' (logt)/ .

=y f, (A — yiE) Pi(A).
Jj=0 '

Thus, using Zf:l Pi(A) =E,

k m;—1 i
=2 1 [ 3 QB 4y }Pi(A). (42)

- Lizm /!

The assumption on X of Theorem A can be rephrased as follows: the function
V(1) = (t4n, ¢) is not a constant function on (0, co) for every ¢ € R” \ {0}. If ¥ (1)
is not a constant function, then v’ (¢) is not identically 0. Thus, since 7(d/dt)y (¢) =
(thn, A*C), by (4.2) we have J(A, n, ¢) > 0, where J(A, n, {) is as in (4.1). Let
Co=min; =1 J(A, 1, ¢) and note that Co > 0. Then, from Theorem 4.1, it follows
that

b
/ exp(i (X (1), £)) dt| < CcCy MgV,

This implies Theorem A, since N < n (in fact, it is not difficult to see that N = n if X
satisfies the assumption of Theorem A).

We conclude this paper with a proof of Theorem 4.1. Let I/ = [«, 8] be a compact
interval in R. Consider the differential equation

YO +ay® D 4 ay* P 4 gy=0 onl, (4.3)

where ay, as, . .., a; are complex constants. Let {¢1, ¢2, ..., ¢} be a basis for the
space S of all solutions of (4.3). Then in order to prove Theorem 4.1 we require the
following result.
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PROPOSITION 4.3. Let ¢ be a real-valued function such that ¢’ € S. Suppose that
¢ =dip1 +drpr + - - - + drgr, where dy, da, . . ., dy are complex constants, which
are uniquely determined by ¢'. Then

B
/ 90 gy
o

where C is independent of ¢; also the constant C is independent of o, B if they are
within a fixed finite interval of R.

< C(ldi| + |da| + - - -+ |di )V,

To prove Proposition 4.3 we use the following two lemmas, both of which are well
known.

LEMMA 4.4. Let ¢ be a solution of (4.3). Suppose that ¢ is not identically 0. Then
there exists a positive integer K independent of ¢ such that ¢ has at most K zerosin I.

LEMMA 4.5 (van der Corput). Let f:[c,d]— R and f e Ci([c,d)) for some
positive integer j, where [c, d] is an arbitrary compact interval in R. Suppose that
infye(c.qay 1(d/du)! f(u)| > A > 0. When j = 1, we further assume that f’ is monotone

on[c, d]. Then
d
/ & gy
.

where C; is a positive constant depending only on j. (See [17, 18].)

<cp,

We now give a proof of Proposition 4.3. We consider linear combinations
c191 + 292 + - - - + crr, where c¢1, ¢, ..., cp € C. We write ¥ = c191 + 22 +
-+« 4+ cxer and define

Ni(¥) = lerl + leal + - - - 4 ekl
Na(y) = min(yr )] + 19/ @1 + -+ V@D,

Let U={(ci,c2,...,ck) €CF|lci|+ |eal + -+ |ck| = 1). We consider a
function F on I x U defined by

Ft.cr.co, . ...c) =10 O+ W O+ + [y Do)l
Then the function F is continuous and positive on I x U (see [4]). Thus, if we put

Co = min F(t, c1,ca, ..., ch),
(t,c1,2,..ck)EI XU

then Co > 0 and Na(y) > CoN1 ().
Therefore, if ¢ is as in Proposition 4.3,

min(l¢/(0)] + ¢ (O] + - - + lo®@)]) > CoNi(¢'). (4.4)
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By (4.4), for any ¢ € I, there exists £ € {1, 2, ..., k} such that
[d/d) e)| = CNi(¢)), € >0.

By a suitable application of Lemma 4.4, we can decompose I = UZZII,,,, where
H is a positive integer independent of ¢ and {/,} is a family of nonoverlapping
subintervals of I such that for any interval I, there exists ¢,, € {1, 2, .. ., k} satisfying
[d/dt)me(t)| = |(d/dt)! ¢(1)] on I, forall j €{1,2, ..., k}, so|[(d/dt)mg(1)] =
CN;(¢") on I, and such that ¢’ is monotone on each I,,. Therefore, by Lemma 4.5,

B . H "
e gy / 0O gy

< CNi(¢) K
Since Ni(¢') = |di| + |da| + - - - + |dk|, this completes the proof of Proposition 4.3.

H
<C Y min(lnl, Ni(g)~m)

m=1

PROOF OF THEOREM 4.1. By the change of variables t = ¢® and an integration by
parts argument, to prove Theorem 4.1 it suffices to show that

B
f exp(i(e'n, £)) dt| < CJ(A, n, o)~V (4.5)

for an appropriate constant C > 0, where [«, 8] is an arbitrary compact interval in R.
Let ¥ (1) = (¢'4n, ¢). Then ¥/ (r) = (¢'4n, A*¢), and hence, by (4.2),

k mi—1

Y=Y e, orlert,

i=1 j=0

where :
cij(n, &) = F“A — vE) P;(A)n, A*¢).

It is known that N functions #/e”i? (0 < j<m;—1,1<i<k)form a basis for the
space of solutions for the ordinary differential equation of order N with characteristic
polynomial ¢4 (see [4]). Thus, the estimate (4.5) immediately follows from

Proposition 4.3, since Zle Z;"’ZEI lcij(m, O~ J(A, 0, 0). O
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