
J. Aust. Math. Soc. 75 (2003), 399-407

HOMOGENEOUS QUASI-INVARIANT SUBSPACES
OF THE FOCK SPACE

KUNYUGUO

(Received 12 April 2001; revised 30 October 2002)

Communicated by G. Willis

Abstract

In this paper, we prove that two homogeneous quasi-invariant subspaces are similar only if they are
equal. Moreover, we exhibit an example to show how to determine the similarity orbits of quasi-invariant
subspaces.
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1. Introduction

Recall that the Hardy space //2(D>) over the open unit disk D> is the closed subspace
of L2(J) spanned by the non-negative powers of the coordinate function z- If M is a
(closed) subspace of / /2(P) that is invariant for the multiplication operator Mz, then
Beurling's theorem says that there exists an inner function r) such that M = r)H2(B).
Beurling's theorem has played an important role in operator theory, function theory
and their intersection, function-theoretic operator theory. Let £2 be a bounded domain
in C , and let X be a Hilbert space consisting of analytic functions in Q such that
1 6 X, and for each polynomial p and each h € X,ph e X. If M is a closed subspace
of X such that pM c M for every polynomial p, we say that M is an invariant
subspace for the function space X.

Despite the great development in these fields over the past fifty years, there are
still many problems to explore, one of which is to investigate equivalence classes of
invariant subspaces of function spaces under similarity or unitary equivalence.
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Along this line, Axler, Agrawal, Bourdon, Douglas, Guo, Paulsen, Putinar, Salinas
havedonealotofwork,see[l,2,4,7-12,14,15] and references therein. Theextension
of some of the above results to the Fock space, and analytic Hilbert spaces on the
complex plane were considered by Guo and Zheng [13], and by Chen, Guo and
Hou [6].

The Fock space is the analog of the Bergman space in the context of the complex
n-space C . It is a Hilbert space consisting of entire functions in C". Let

dfi(z) = e-lz?/2dv(z)(27T)-n

be the Gaussian measure on C (d v is the ordinary Lebesgue measure). The Fock space
L2

tt{V, d\x) (for short, L0(C)), by definition, is the space of all /z-square-integrable
entire functions on C . It is easy to see that L*(C") is a closed subspace of L2(C)
with the reproducing kernel functions Kk(z) = ekz/2, and the normalized reproducing
kernel functions kk(z) = eiz/2~w2/\ (here lz = £"=i k,zi).

The next proposition states that there exists no nontrivial invariant subspace for the
Fock space. This proposition first appeared in [13].

PROPOSITION 1.1. Let M be a {closed) subspace ofL2
a(C), and M ^ {0}. / / / is

an entire function on C" such that f M C M, thenf is a constant.

Thus, an appropriate substitute for invariant subspace, the so-called quasi-invariant
subspace is needed. Namely, a (closed) subspace M of the Fock space is called quasi-
invariant if the relation pf e L2

a(C) implies pf e M for any f e M and any
polynomial p. Equivalently, M is quasi-invariant if pM D L2

a(<Ln) c M for each
polynomial p.

Let M\ and Mi be two quasi-invariant subspaces of L^(C"). For a bounded linear
operator A : M \ —> M2, we call A a quasi-module map if A (pf) = pA(f) whenever
pf e Mi (here p is any polynomial, and / e Mi). Thus by the definition if A is a
quasi-module map, then the relation pf e M\ forces pA(f) e M2. Letting Mx and
Mi be quasi-invariant subspaces of Ll(C), we say that

(1) they are unitarily equivalent if there exists a unitary quasi-module map A :
Mi —*• M2 such that A~x : M2 —*• Mi is also quasi-module map;
(2) they are similar if there exists an invertible quasi-module map A : Mi -*• M2

such that A~l : M2 -> Mi is also a quasi-module map.

It is easy to check that unitary equivalence and similarity are equivalence relations in
the category of all quasi-invariant subspaces.

It is well known that for each analytic function space X on a bounded domain Q, the
closure / of an ideal / of polynomial ring ^ is an invariant subspace of X. However
it is never obvious if the closure / of / in the Fock space L2

a(C) is quasi-invariant. In
Section 2, we first prove that the closure of a homogeneous ideal is quasi-invariant.
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Furthermore, it is shown that two homogeneous quasi-invariant subspaces are similar
only if they are equal. In Section 3, we determine the similarity orbit of the quasi-
invariant subspace [zm] generated by zm- Namely, the similarity orbit of [zm] consists
of lp(z)], where p(z) range over all polynomials in the variable z with degp = m.

2. Homogeneous quasi-invariant subspaces of the Fock space

It is well known that for each analytic Hilbert space X on a bounded domain Q,
the invariant subspace generated by an ideal / of polynomial ring *& is the closure /
of / . However, in the case of the Fock space it is never obvious if the quasi-invariant
subspace generated by / is the closure I of I. Here we give a proposition which shows
that the quasi-invariant subspace generated by a homogeneous ideal is the closure of
this ideal. Recall that an ideal / is homogeneous if the relation p e l implies that all
homogeneous components of p are in / . Equivalently, an ideal / is homogeneous if
and only if / is generated by homogeneous polynomials.

PROPOSITION 2.1. Let I be a homogeneous ideal. Then on the Fock space L*(C"),
the quasi-invariant subspace generated by I is the closure I of I.

PROOF. L e t / e / , a n d / = £ ^ 0 / t b e / ' s homogeneous expression. We claim
that every fk is in / . To prove the claim, we let ^k consist of all those p e l with
homogeneous degree of p being at most k. Then ^k is of finite dimension. From the
relation f e I, there is a sequence {pm} in / such that pm -> / as m —> oo. This
implies that p * —> fk, where pj^ denote ^-homogeneous component of pm. Since
/ is homogeneous, p * belong to / , and hence they are in ^k. Because J?k is finite
dimensional, and hence closed, this forces fk e I.

Assume that qf 6 L2
a(€.n) for some polynomial q. Let q = 5Z!=o<7' be the

homogeneous expression of q. Then the homogeneous expression of qf is given by

m=0

Now it is easy to derive that qf e I by the above homogeneous expression of qf.
It follows that / is quasi-invariant, and hence it equals the quasi-invariant subspace
generated by / . •

THEOREM 2.2. Let I\ and I2 be homogeneous ideals. Then Ix and I2 are similar if

and only if I\ = I2.

To prove theorem we need some preliminaries. For a polynomial p, we use degp
to denote the homogeneous degree of p . First we give the following proposition.
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PROPOSITION 2.3. Let A : M\ ->• M2 be a quasi-module map. Then A maps MiDtf
to M2 n &. Furthermore, ifp e Mj n ci, then degp > degA(p).

PROOF. We may assume that Mt contains a nonzero polynomial p. Set q = A(p).
We claim that degg < degp. Let p = Ylt=o P^Q — YlT=o Qk ^ t n e homogeneous
expansions of p and q, respectively. Then for each positive integer N, one has

and hence for I > deg p,

degp

(1)
k=0

For each homogeneous polynomial r = 5Z/,+ +Jn=degra;i ;n^i' •" 'Z'n
n, an easy calcu-

lation gives

Multiplying the two sides of (1) by enN/(2nNNl+nN+N/2) and letting N -+ oo, then
applying Stirling's formula m\ ~ «j2nmmme~m (as m —> oo) to (1) gives

This means that qt = 0 for all / > degp, and hence the desired result follows. •

We endow the polynomial ring <€ with the topology induced by the Fock space
L2(C"). For an ideal / , we regard / as module over the ring <€.

COROLLARY 2.4. Let A : Mx —>• A/2 be a similarity. Then A induces a continuous
module isomorphism from M\ fl ^ onto M2 H <€.

By [13, Lemma 5.2], for each ideal / of the polynomial ring ^ , one has / fTif = /.
Combining this fact with Proposition 2.1 and Corollary 2.4, we see that if l\ and I2

are homogeneous ideals, then a similarity A : I\ —>• I2 induces a continuous module
isomorphism from I\ onto l2.

Let Bn be the unit ball of C \ and dBn be the boundary of Bn. We let a be the
unique rotation-invariant positive Borel measure on dBn for which a(3fin) = 1. As
usual, H2(Bn) denotes the Hardy space on the unit ball Bn. Let M\, M2 be invariant
subspaces of H2(Bn). We say that a bounded linear operator A : M\ —> M2 is a
module map if A(ph) = pA(h) for any polynomial p and h e M\.
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LEMMA 2.5. IfMt and M2 are invariant subspaces ofH2(Bn) and A : Mj -> M2

is a module map, then there exists a bounded function <p ondBn such that A (Ji) = 4>h
for any h e M\.

PROOF. From Rudin [17], we see that all inner functions on Bn and their adjoints
generate L°°(dBn) in the weak*-topology. Set

$ = [fjh : r) are inner functions, and h e M\}.

Then Si is a dense linear subspace of L2(dBn). We define a map A : Si -> L2(dBn) by
A(rjh) = rjA (h). Since A is a module map, the above definition is well defined. From
the relation ||A(^A)|| = ||A(/i)|| < ||A||||Jj/i||, we see that A extends to a bounded
map from L2(dBn) to L2(dBn). It is obvious that A satisfies AMg = MgA for any
g 6 L°°(dBn), and hence there exists a function <f> e L°°(dBn) such that A = M^.
This insures that A (h) = <f>h for any h e M\. •

Below we prove Theorem 2.2.

PROOF. Let A : /i —> h be a similarity. Taking a homogeneous polynomial /?
in /j and setting q = A(p), and using [13, Lemma 5.2] and Proposition 2.3, we see
that q e I2 and degp = degg. Since ||r^||2 < ||A||2||A7?||2 for any homogeneous
polynomial r, we have

(2) lk<7,||2<||,4||2||rp||2,

where / = deg<7, and q = J2i=o Q* ' s m e homogeneous expansion of q. Recall that
integration in polar coordinates (corresponding the volume measure) is given by [16,
page 13]

f
JC
f f ^ f

C n- JO JdBn

Hence from(2), we have

f(r$)da.

dcr < \\Af [ \rtf)p(!-)\2da.
JdBn

Since on the Hardy space H2(Bn) two homogeneous polynomials with different de-
grees are orthogonal, this shows that

f \HS)qi(S)\2d0<\\A\\2 f
JdBr J»B
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for any polynomial h. Let [qt]n and [p]n be invariant subspaces of H2(Bn) generated
by qh p respectively. Then applying the preceding inequality yields the following
bounded module map B : [p]n -» [qi]n, Bph = qth, for each polynomial h. By
Lemma 2.5, there is a bounded function / on BBn such that B = Mf. This implies
that q{ = fp on dBn. So, |9/(f )| < \\f |U/>(|) | for every £ e dBn. Since both p
and qt are homogeneous, and degp = deg qi = I, this means that for any z e C ,
l<7/(z)l 5 ll/lloolp(z)l- So, the function qi(z)/p(z) is analytic and bounded on C ,
and it follows that there is a nonzero constant y such that g; = yp. Since /2 is
homogeneous, qt e /2, and hence p e /2. The above reasoning shows that /] c /2.
Note that A : It -» /2 be a similarity. The same reasoning gives that /2 c /,, and
hence I\ = /2, completing the proof. •

3. The similarity orbit of [zm]

From Theorem 2.2, one sees that for homogeneous quasi-invariant subspaces simi-
larity only appears in the case of equality. Therefore, a natural problem is to determine
the similarity orbit of quasi-invariant subspaces. Let M be a quasi-invariant subspace.
Then the similarity orbit, orb^M), of M consists of all quasi-invariant subspaces
which are similar to M. There is no doubt that the problem is difficult. Here we will
exhibit an example to show how to determine the similarity orbit.

For a polynomial p, we let [p] denote the closure of p^ on the Fock space. Using
sheaf theory or [11, Theorem 2.3], one easily verifies that for each g € [p] there exists
an entire function/ such that g = pf. Moreover, if p is homogeneous, then [p] is
quasi-invariant.

THEOREM 3.1. On the Fock space L2
a(€

2), the similarity orbit orbs([zm]) of[zm]
consists of [p(z)], where p(z) range over all polynomials in the variable z with
degp = m.

PROOF. Let p(z) be a polynomial in the variable z with degp = m. Then we can
establish an inequality Ci||zm/ ||2 < \\p{z)f ||2 < C2\\z

mf \\2 for any entire function
/ , where C\ and C2 are positive constants only depending on p(z). In fact, One can
show that there exist positive constants C\ and C2, which depend only on p (z) such
that

Q\\zmg(z)\\2 < ||p(z)s(z)||2 < C2\\z
mg(z)\\

for any entire function g(z)- Let / = ^,k>ofk(,z)wk be the expansion of/ relative to
the variable w. Then by the equality p(z)f — ̂ ,k>op(z)fk(z)wk, we have

*>o
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From the above inequality we see

\\p(z)f II2 < C2 £ \\zmfk(z)\\2\\wk\\2 = C2\\z
mf ||2.

The same reasoning gives ||p (z)f \\2 > Q \\zmf ||2, and hence the required inequality
is established.

Since the homogeneous quasi-invariant subspace [zm] is given by

[zm] = [zmf € L2
a(€

2) | / is an entire function),

the preceding established inequality gives that

lp(z)] = {p(z)f € Z,2(C2) | / is an entire function},

and hence [p(z)] is quasi-invariant.
Now we establish a map

(3) A : [zm] -* [p(z)l zmf H+ p(z)f.

Then by the preceding discussion and the closed graph theorem, A is continuous.
Obviously, A is injective, surjective, and is a quasi-module map. Similarly, A"1 also
is a quasi-module map, and hence A is a similarity. On the other hand, we let M be
quasi-invariant, and A : [zm] -> M be a similarity. Set q = A(zm). We claim that
q is a polynomial in the variable z, and degg = m. To prove the claim, we expand
q relative to the variables w, by q = qo(z) + wq\{z) + w2qi(j.) + • • • • Assume that
deg,,, q > deg^ zm = 0, here deg ,̂ q denotes degree of q in the variable w (allowed to
be oo). Then there exists a positive integer s such that qs(z) ^ 0. Since

00
kq\\2 = J2 \\v>k+i= \\wkq\\2 = J2 \\v>k+iqi(z)\\2,

i=0

this implies that \\wk+sqs(z)\\2 < \\A ||2||w*zm||2 for any positive integer k. Since

k 2 k 2 and \\wkzm\\2 = 2k+mk\m\

for any positive integer k, this clearly implies that qs = 0. This contradicts the
assumption, and hence degw q = 0. So, 9 depends only on the variable z. Now we
expand q in the variable z by q(z) — ]C/t>o a*z*- ^ there is a positive integer /, and
/ > m such that a, ^ 0, then the equality A(zszm) = ^2k>o

akZs+k implies that
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This leads to the following

2s+l\a,\2(s + 1)1 < 2m+s\\A\\2(m + s)\

for any positive integer s. This clearly is impossible, and hence q(z) is a polynomial
in the variable z with deg<? < m. It is easy to see that M = [q] because A :
[zm] -*• M coincide on the dense set zmc€ with the map A considered in (3). Applying
Proposition 2.3, degq = m. This shows that q(z) is a polynomial in the variable z
with degree m. Based on the above discussion, we conclude that the similarity orbit
orbj([zm]) of [zm] consists of [p(z)], where p(z) range over all polynomials in the
variable z with degp —m. •

REMARK. From the proof of Theorem 3.1, it is not difficult to see that Theorem 3.1
remains true in the case of the Fock space L2JS-n) for any positive integer n. For
n = 1, a related problem is considered in [13].
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