FINITE GROUPS WITH NORMAL NORMALIZERS

C. HOBBY

We say that a finite group G has property N if the normalizer of every subgroup of G is normal in G. Such groups are nilpotent since every Sylow subgroup is normal (the normalizer of a Sylow subgroup is its own normalizer). Thus it is sufficient to study p-groups which have property N. Note that property N is inherited by subgroups and factor groups. We shall show that $P(G) \supseteq G_{3}$. It follows that if $p>3$, then G is regular and $P\left(G^{\prime}\right) \supseteq G_{4}$. In particular, G^{\prime} is one of the groups studied in (5). If G can be generated by n elements, then G has class at most $2 n$. We shall find all of the 2 -generator p-groups ($p>3$) which have property N . Since property N is inherited by subgroups, it follows that any group which has property N can be generated by elements x_{1}, \ldots, x_{n} where the groups $\left\langle x_{i}, x_{j}\right\rangle$ are known.

All groups considered are finite p-groups. We shall use the following notation: $h^{g}=g^{-1} h g ;(h, g)=h^{-1} h^{g} ;(H, K)$ is the subgroup generated by $\{(h, k) \mid h \in H, k \in K\} ; G_{1}=G, G_{n+1}=\left(G_{n}, G\right) ; G^{\prime}=G_{2} ; P(G)$ is the subgroup generated by p th powers; $\phi(G)$ is the Frattini subgroup of $G ; N_{G}(H)$ is the normalizer in G of $H ; H(x)$ is the (normal) subgroup generated by $\left\{x^{g} \mid g \in G\right\}$.

Lemma 1. Suppose that G has property N. Then $H(x)$ has class at most 2. If x has order p, then $H(x)$ is abelian.

Proof. It follows from property N that $H(x)$ normalizes the cyclic group $\langle x\rangle$. If M is the subgroup of $H(x)$ consisting of elements which commute with x, then M is normal in $H(x)$ and $H(x) / M$ is isomorphic to a group of automorphisms of $\langle x\rangle$. Since the automorphism group of a cyclic group is abelian, it follows that M contains the commutator subgroup of $H(x)$. Thus $\left(x, H(x)^{\prime}\right)=1$. Therefore $\left(x^{g}, H\left(x^{g}\right)^{\prime}\right)=1$ for every $g \in G$. Since $H(x)$ is generated by $\left\{x^{g} \mid g \in G\right\}$, we see that $H\left(x^{g}\right)=H(x)$ and it follows that $\left(H(x), H(x)^{\prime}\right)=1$.

If x has order p, then $\langle x\rangle$ is a normal subgroup of order p in $H(x)$ and hence is in the centre of $H(x)$. Since $H(x)=H\left(x^{g}\right)$ for every $g \in G$, it follows that x^{g} is also in the centre of $H(x)$. Therefore $H(x)$ is abelian.

Theorem 1. If G has property N and if G can be generated by n elements, then $G_{2 n+1}=1$.

[^0]Proof. Suppose that $G=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Then $G=H\left(x_{1}\right) H\left(x_{2}\right) \ldots H\left(x_{n}\right)$ where, by Lemma 1, each $H\left(x_{i}\right)$ has class at most 2 . It is known that whenever A, B are normal subgroups of G of class a, b, respectively, then $A B$ has class at most $a+b$. The theorem follows from a straightforward argument.

Theorem 2. Suppose that G has property N. Then $P(G) \supseteq G_{3}$. If $p>3$, then G is regular.

Proof. Let $K=G / P(G)$. If $P(G)$ does not contain G_{3}, then $K_{3} \neq 1$. By Lemma $1, H(x)$ is abelian for every x in K. Thus, K is a p-group of exponent p in which every element commutes with all of its conjugates. Such groups are known to have class at most 2 when $p \neq 3$; see (1). Suppose now that $p=3$. If $K_{3} \neq 1$, there are elements a, b, c in K such that $(a, b, c) \neq 1$. Since K has exponent $3,(a, b, c)=(b, c, a)=(c, a, b)$, and $K_{4}=1$; see (2, p. 322). Let T be the subgroup generated by a, b. Clearly, $b \in N_{K}(T)$; hence, it follows from property N that $(b, c, a) \in T$. Let $M=\langle a, b, c\rangle$. Every 2 -generator subgroup of M has class at most 2 since if $x, y \in M$, then $(x, y) \in H(x) \cap H(y)$, where both of $H(x)$ and $H(y)$ are abelian. Since $M_{3} \neq 1$, it follows that a, b are independent modulo M^{\prime}; hence, $T \cap M^{\prime}=T^{\prime}$. Since $T_{3}=1, T^{\prime}=\langle(a, b)\rangle$. We now have $(b, c, a) \neq 1$ in T^{\prime}, and we know that (b, c, a) is central in K, hence (a, b) is central in K. Therefore $(a, b, c)=1$, a contradiction. Thus $K_{3}=1$ for all p and it follows that $P(G) \supseteq G_{3}$.

Suppose now that $p>3$. A p-group is regular if and only if every 2 -generator subgroup is regular. Let K be a 2 -generator subgroup of G. Since K has property N we know that $P(K) \supseteq K_{3}$; consequently, $(K: P(K)) \leqq p^{3}$. By a theorem of P. Hall (4, Theorem 2.3) a p-group K is regular whenever $(K: P(K))<p^{p}$. Therefore K is regular.

Corollary. If G has property N and $p>3$, then $P\left(G^{\prime}\right) \supseteq G_{4}$.
Proof. By Theorem 2, G is regular and $P(G) \supseteq G_{3}$. Therefore $(G, P(G)) \supseteq G_{4}$. The result follows from the fact that in a regular group, $(G, P(G))=P\left(G^{\prime}\right)$; see (3, Theorem 4.4).

Remark. The restrictions on p in Theorem 2 are necessary. When p is 2 or 3 there are irregular groups which have property N. The non-abelian groups of order 8 are examples for $p=2$. An example for $p=3$ is the group $G=\langle a, b\rangle$ defined by the relations $a^{9}=1, b^{3}=a^{6}, a^{b}=a c, a^{c}=a^{4}$, $c^{3}=(b, c)=1$. This group has the property that if $x \in G-G^{\prime}$, then $\left\langle x^{3}\right\rangle=\left\langle a^{3}\right\rangle=G_{3}$. It follows that $P(G)=\left\langle a^{3}\right\rangle$; hence $(G: P(G))=3^{3}$ whereas the elements of order 3 generate a subgroup of order 3^{2}. This cannot happen in a regular group. On the other hand, G^{\prime} normalizes every cyclic subgroup, hence G has property N .

We shall now restrict our attention to p-groups (for $p>3$) which can be generated by two elements.

Lemma 2. Suppose that G has property N and that $p>3$. If G can be generated by two elements, then $G_{4}=1$.

Proof. Let $K=G / G_{5}$. It will suffice to show that $K_{4}=1$. By Theorem 2, K is regular; thus, we may suppose that the generators x, y of K are chosen from a canonical basis; see (3, p. 91). In particular, we may suppose that $\langle x\rangle \cap\langle y\rangle=1$. By property $\mathrm{N},(x, y) \in H(x) \cap H(y)$; hence, $(x, y, x) \in\langle x\rangle$ and $(x, y, y) \in\langle y\rangle$. Therefore, $(x, y, x, x)=(x, y, y, y)=1$. The remaining generators for K_{4} are (x, y, x, y) and (x, y, y, x). We shall use the identity

$$
\begin{equation*}
\left(u, v^{-1}, w\right)^{v}\left(v, w^{-1}, u\right)^{w}\left(w, u^{-1}, v\right)^{u}=1 \tag{1}
\end{equation*}
$$

which is valid in any group. Set $u=(x, y), v=x, w=y$. Then each term of (1) is in K_{4} which is central; thus, we can omit the conjugations by v, w, u. We have that

$$
\begin{equation*}
\left((x, y), x^{-1}, y\right)\left(x, y^{-1},(x, y)\right)\left(y,(x, y)^{-1}, x\right)=1 \tag{2}
\end{equation*}
$$

Since $K_{5}=1$, we have that

$$
\begin{aligned}
\left(x, y, x^{-1}, y\right) & =(x, y, x, y)^{-1}, \quad\left(\left(x, y^{-1}\right),(x, y)\right)=1, \\
\left(y,(x, y)^{-1}, x\right) & =(y,(x, y), x)^{-1}=(x, y, y, x) .
\end{aligned}
$$

Substituting these results in (2) yields

$$
(x, y, y, x)=(x, y, x, y)
$$

The left-hand side of this equation is an element of $\langle x\rangle$ while the right-hand side is an element of $\langle y\rangle$, thus each side is 1 . We have shown that a generating set for K_{4} consists of elements which are 1 , therefore $K_{4}=1$.

We shall show later that G^{\prime} normalizes every cyclic subgroup of G. We observe now that G^{\prime} normalizes $\langle g\rangle$ whenever $g \notin \phi(G)$.

Lemma 3. Suppose that G has property N and that $p>3$. If G can be generated by two elements and if $g \notin \phi(G)$, then G^{\prime} normalizes $\langle g\rangle$.

Proof. It follows from the choice of g that there is an element h such that $G=\langle g, h\rangle$. Since g normalizes $\langle g\rangle$, any commutator involving g must normalize $\langle g\rangle$. Therefore, G^{\prime} normalizes $\langle g\rangle$.

We can now describe the 2 -generator groups which have property N .
Theorem 3. Suppose that G has property N and that $p>3$. If G can be generated by two elements, then $G=\langle x, y\rangle$, where $\langle x\rangle \cap\langle y\rangle=1 ;(x, y, x)=x^{k p^{s}}$, $(x, y, y)=y^{k^{s} s}$, where k is prime to $p ; G_{4}=1$; if G_{3} is cyclic, then we may suppose that $(x, y, y)=1$. Conversely, any group which satisfies these relations will have property N.

Proof. Suppose that G satisfies the relations given in the theorem. We shall show that G^{\prime} normalizes every cyclic subgroup of G. It will follow immediately that G has property N. Set $c=(x, y)$. If $g \in G$, then $g=x^{u} y^{v} c^{n}$ for
appropriate integers u, v, n. If $h \in G^{\prime}$, then $h=c^{w} z$ for some integer w and some z in the centre of G. Since $G_{4}=1,(h, g)=(c, x)^{w u}(c, y)^{w v}$; thus $(h, g)=x^{u v k p^{s}} y^{v v k p^{s}}$. We must show that (h, g) is a power of g. Since $p>3$ and $G_{4}=1$, the group G is regular; thus $g^{p^{s}}=x^{u p^{s}} y^{v p^{s}} d^{p^{s}}$ for some $d \in G^{\prime}$. The order of the commutator $(x, y)=c$ cannot be greater than the smallest power of x which lies in $Z(G)$; see ($\mathbf{3}$, Theorem 4.22). Therefore, $c^{p^{s}}=1$, and hence, G^{\prime} has exponent p^{s}. Thus, $g^{p^{s}}=x^{u p^{s}} y^{v p^{s}}$. Therefore, $(h, g)=g^{k w p^{s}}$.

Suppose now that G is a 2 -generator p-group ($p>3$) which has property N. We know that $G_{4}=1$ (Lemma 2) and that G is regular (Theorem 2). Pick generators x, y for G from a canonical basis. Then $G=\langle x, y\rangle$, where $\langle x\rangle \cap\langle y\rangle=1$. It follows from Lemma 3 that $(x, y, x)=x^{k p^{s}},(x, y, y)=y^{\tau p^{t}}$ for appropriate integers k, s, r, t, where we may assume that k and r are prime to p. We must show that we can take $k=r, s=t$.

We first consider the case where G_{3} is non-cyclic. Thus, $x^{p^{s}} \neq 1$ and $y^{p^{t}} \neq 1$. We know that (x, y) normalizes $x y$ (Lemma 3) ; thus, $(x, y, x y)=(x y)^{n}$ for some n. Since $G_{4}=1,(x, y, x y)=(x, y, x)(x, y, y)$; thus, $(x y)^{n}=x^{k p^{s}} y^{r p^{t}}$. Since $(x y)^{n}$ is in the centre of G, and $G=\langle x, x y\rangle$, we know that G^{\prime} has exponent at most n; hence, $(g \cdot x y)^{n}=g^{n}(x y)^{n}$ for every $g \in G$. In particular, $y^{n}=\left(x^{-1} \cdot x y\right)^{n}=x^{-n}(x y)^{n}$; thus, $y^{n-r p^{t}}=x^{k p^{s}-n}$. Therefore, $r p^{t}=x p^{s}$ modulo d, where d is the minimum of $|x|,|y|$. There is no loss of generality if we suppose that $s \leqq t$. Since G_{3} is not cyclic, we know that p^{s+1} divides d. If $s<t$, we have that $\left(r p^{i-s}-k\right) p^{s}$ is divisible by p^{s+1}, a contradiction. Therefore, $s=t$. Thus, $(r-k) p^{s}=0$ modulo d. If $d=|x|$, then $x^{r p^{s}}=k^{k p^{s}}$. If $d=|y|$, then $y^{r p^{s}}=y^{k p^{s}}$. In either case we may suppose that r and k are equal. This completes the proof when G_{3} is non-cyclic.

If G_{3} is cyclic but non-trivial, then we may suppose that $(x, y, x)=x^{k p^{s}} \neq 1$, $(x, y, y)=1$. We must show that $y^{p^{s}}=1$. As above, $(x, y, x y)=x^{k p^{s}}$ and hence $(x y)^{n}=x^{k p^{s}}$ for some n. Since $(x y)^{n}$ is central, $(x y)^{n}=x^{n} y^{n}$. It follows from $x^{n} y^{n}=x^{k p^{s}}$ that $y^{n}=1$. Thus, $x^{n}=x^{k p^{s}}$. Therefore, p^{s} divides n but p^{s+1} does not divide n. Therefore, $y^{p^{s}}=1$.

Finally, if $G_{3}=1$, we see that G satisfies the necessary relations if we set p^{s} equal to the maximum of $|x|,|y|$. This completes the proof.

If G is a group with property N , then every pair of generators of G must give one of the groups described in Theorem 3. Since property N is inherited by subgroups, one might conjecture that a group G has property N if and only if every 2 -generator subgroup has property N. Unfortunately, this conjecture is false. (A counterexample is given below.) However, the corresponding conjecture for 3 -generator subgroups is true for all primes p.

Theorem 4. A group G has property N if and only if every 3-generator subgroup of G has property N.

Proof. It will suffice to show that if G fails to have property N , then there is a 3 -generator subgroup which fails to have property N . Suppose that H is a
subgroup of G such that $N_{G}(H)$ is not normal in G. Then there is an element x in $N_{G}(H)$ and an element g in G such that x^{g} does not normalize H. Thus, there is an element h in H such that $h^{x \theta}$ does not belong to H. In particular, $h^{x^{\varphi}}$ does not belong to H_{1}, the normal subgroup of $\langle h, x\rangle$ generated by all conjugates of h obtained from elements of $\langle h, x\rangle$. Let $G_{1}=\langle h, x, g\rangle$. Then x normalizes H_{1} but x^{g} does not normalize H_{1}; thus, G_{1} does not have property N .

We shall now give an example of a 3 -generator p-group ($p>3$) which does not have property N but in which every 2 -generator subgroup does have property N . Let $\langle a, b\rangle$ be the non-abelian group of order p^{3} and exponent p. Let H be the direct product of $\langle a, b\rangle$ with $\langle u, v\rangle$, an elementary abelian group of order p^{2}. Form K by adjoining to H an element x of order p such that $a^{x}=a u, u^{x}=u, b^{x}=b, v^{x}=v c$, where c denotes (a, b). The required group G is formed by adjoining to K an element g such that $g^{p}=c, x^{g}=x b, b^{g}=b$, $a^{g}=a v, v^{g}=v, u^{g}=u c^{2}$. Clearly, $G=\langle a, x, g\rangle . G$ does not have property N since x normalizes $\langle a, u\rangle$ but $(x, g, a) \notin\langle a, u\rangle$. A long but routine calculation shows that every 2 -generator subgroup does have property N .

References

1. W. Burnside, On groups in which every two conjugate operations are permutable, Proc. London Math. Soc. 35 (1902), 28-37.
2. M. Hall, The theory of groups (Macmillan, New York, 1959).
3. P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. (2) 36 (1933), 29-95.
4. ——On a theorem of Frobenius, Proc. London Math. Soc. (2) 40 (1935), 468-501.
5. C. Hobby, A characteristic subgroup of a p-group, Pacific J. Math. 10 (1960), 853-858.

University of Washington, Seattle, Washington

[^0]: Received May 1, 1967. This research was supported jointly by the National Science Foundation under grant GR-5691 and by the Air Force Office of Scientific Research under contract AF-AFOSR-937-65.

