FINITE GROUPS WITH NORMAL NORMALIZERS

C. HOBBY

We say that a finite group G has property N if the normalizer of every subgroup of G is normal in G. Such groups are nilpotent since every Sylow subgroup is normal (the normalizer of a Sylow subgroup is its own normalizer). Thus it is sufficient to study p-groups which have property N. Note that property N is inherited by subgroups and factor groups. We shall show that $P(G) \supseteq G_3$. It follows that if p > 3, then G is regular and $P(G') \supseteq G_4$. In particular, G' is one of the groups studied in (5). If G can be generated by n elements, then G has class at most 2n. We shall find all of the 2-generator p-groups (p > 3) which have property N. Since property N is inherited by subgroups, it follows that any group which has property N can be generated by elements x_1, \ldots, x_n where the groups $\langle x_i, x_j \rangle$ are known.

All groups considered are finite p-groups. We shall use the following notation: $h^g = g^{-1}hg$; $(h, g) = h^{-1}h^g$; (H, K) is the subgroup generated by $\{(h, k) | h \in H, k \in K\}$; $G_1 = G, G_{n+1} = (G_n, G)$; $G' = G_2$; P(G) is the subgroup generated by pth powers; $\phi(G)$ is the Frattini subgroup of G; $N_G(H)$ is the normalizer in G of H; H(x) is the (normal) subgroup generated by $\{x^g | g \in G\}$.

LEMMA 1. Suppose that G has property N. Then H(x) has class at most 2. If x has order p, then H(x) is abelian.

Proof. It follows from property N that H(x) normalizes the cyclic group $\langle x \rangle$. If M is the subgroup of H(x) consisting of elements which commute with x, then M is normal in H(x) and H(x)/M is isomorphic to a group of automorphisms of $\langle x \rangle$. Since the automorphism group of a cyclic group is abelian, it follows that M contains the commutator subgroup of H(x). Thus (x, H(x)') = 1. Therefore $(x^g, H(x^g)') = 1$ for every $g \in G$. Since H(x) is generated by $\{x^g | g \in G\}$, we see that $H(x^g) = H(x)$ and it follows that (H(x), H(x)') = 1.

If x has order p, then $\langle x \rangle$ is a normal subgroup of order p in H(x) and hence is in the centre of H(x). Since $H(x) = H(x^g)$ for every $g \in G$, it follows that x^g is also in the centre of H(x). Therefore H(x) is abelian.

THEOREM 1. If G has property N and if G can be generated by n elements, then $G_{2n+1} = 1$.

Received May 1, 1967. This research was supported jointly by the National Science Foundation under grant GR-5691 and by the Air Force Office of Scientific Research under contract AF-AFOSR-937-65.

FINITE GROUPS

Proof. Suppose that $G = \langle x_1, \ldots, x_n \rangle$. Then $G = H(x_1) H(x_2) \ldots H(x_n)$ where, by Lemma 1, each $H(x_i)$ has class at most 2. It is known that whenever A, B are normal subgroups of G of class a, b, respectively, then AB has class at most a + b. The theorem follows from a straightforward argument.

THEOREM 2. Suppose that G has property N. Then $P(G) \supseteq G_3$. If p > 3, then G is regular.

Proof. Let K = G/P(G). If P(G) does not contain G_3 , then $K_3 \neq 1$. By Lemma 1, H(x) is abelian for every x in K. Thus, K is a p-group of exponent p in which every element commutes with all of its conjugates. Such groups are known to have class at most 2 when $p \neq 3$; see (1). Suppose now that p = 3. If $K_3 \neq 1$, there are elements a, b, c in K such that $(a, b, c) \neq 1$. Since K has exponent 3, (a, b, c) = (b, c, a) = (c, a, b), and $K_4 = 1$; see (2, p. 322). Let T be the subgroup generated by a, b. Clearly, $b \in N_K(T)$; hence, it follows from property N that $(b, c, a) \in T$. Let $M = \langle a, b, c \rangle$. Every 2-generator subgroup of M has class at most 2 since if $x, y \in M$, then $(x, y) \in H(x) \cap H(y)$, where both of H(x) and H(y) are abelian. Since $M_3 \neq 1$, it follows that a, b are independent modulo M'; hence, $T \cap M' = T'$. Since $T_3 = 1$, $T' = \langle (a, b) \rangle$. We now have $(b, c, a) \neq 1$ in T', and we know that (b, c, a) is central in K, hence (a, b) is central in K. Therefore (a, b, c) = 1, a contradiction. Thus $K_3 = 1$ for all p and it follows that $P(G) \supseteq G_3$.

Suppose now that p > 3. A *p*-group is regular if and only if every 2-generator subgroup is regular. Let K be a 2-generator subgroup of G. Since Khas property N we know that $P(K) \supseteq K_3$; consequently, $(K: P(K)) \leq p^3$. By a theorem of P. Hall (4, Theorem 2.3) a *p*-group K is regular whenever $(K: P(K)) < p^p$. Therefore K is regular.

COROLLARY. If G has property N and p > 3, then $P(G') \supseteq G_4$.

Proof. By Theorem 2, G is regular and $P(G) \supseteq G_3$. Therefore $(G, P(G)) \supseteq G_4$. The result follows from the fact that in a regular group, (G, P(G)) = P(G'); see (3, Theorem 4.4).

Remark. The restrictions on p in Theorem 2 are necessary. When p is 2 or 3 there are irregular groups which have property N. The non-abelian groups of order 8 are examples for p = 2. An example for p = 3 is the group $G = \langle a, b \rangle$ defined by the relations $a^9 = 1$, $b^3 = a^6$, $a^b = ac$, $a^c = a^4$, $c^3 = (b, c) = 1$. This group has the property that if $x \in G - G'$, then $\langle x^3 \rangle = \langle a^3 \rangle = G_3$. It follows that $P(G) = \langle a^3 \rangle$; hence $(G: P(G)) = 3^3$ whereas the elements of order 3 generate a subgroup of order 3^2 . This cannot happen in a regular group. On the other hand, G' normalizes every cyclic subgroup, hence G has property N.

We shall now restrict our attention to p-groups (for p > 3) which can be generated by two elements.

C. HOBBY

LEMMA 2. Suppose that G has property N and that p > 3. If G can be generated by two elements, then $G_4 = 1$.

Proof. Let $K = G/G_5$. It will suffice to show that $K_4 = 1$. By Theorem 2, *K* is regular; thus, we may suppose that the generators *x*, *y* of *K* are chosen from a *canonical basis*; see (3, p. 91). In particular, we may suppose that $\langle x \rangle \cap \langle y \rangle = 1$. By property N, $(x, y) \in H(x) \cap H(y)$; hence, $(x, y, x) \in \langle x \rangle$ and $(x, y, y) \in \langle y \rangle$. Therefore, (x, y, x, x) = (x, y, y, y) = 1. The remaining generators for K_4 are (x, y, x, y) and (x, y, y, x). We shall use the identity

(1)
$$(u, v^{-1}, w)^{v} (v, w^{-1}, u)^{w} (w, u^{-1}, v)^{u} = 1$$

which is valid in any group. Set u = (x, y), v = x, w = y. Then each term of (1) is in K_4 which is central; thus, we can omit the conjugations by v, w, u. We have that

(2)
$$((x, y), x^{-1}, y)(x, y^{-1}, (x, y))(y, (x, y)^{-1}, x) = 1.$$

Since $K_5 = 1$, we have that

$$(x, y, x^{-1}, y) = (x, y, x, y)^{-1},$$
 $((x, y^{-1}), (x, y)) = 1,$
 $(y, (x, y)^{-1}, x) = (y, (x, y), x)^{-1} = (x, y, y, x).$

Substituting these results in (2) yields

$$(x, y, y, x) = (x, y, x, y).$$

The left-hand side of this equation is an element of $\langle x \rangle$ while the right-hand side is an element of $\langle y \rangle$, thus each side is 1. We have shown that a generating set for K_4 consists of elements which are 1, therefore $K_4 = 1$.

We shall show later that G' normalizes every cyclic subgroup of G. We observe now that G' normalizes $\langle g \rangle$ whenever $g \notin \phi(G)$.

LEMMA 3. Suppose that G has property N and that p > 3. If G can be generated by two elements and if $g \notin \phi(G)$, then G' normalizes $\langle g \rangle$.

Proof. It follows from the choice of g that there is an element h such that $G = \langle g, h \rangle$. Since g normalizes $\langle g \rangle$, any commutator involving g must normalize $\langle g \rangle$. Therefore, G' normalizes $\langle g \rangle$.

We can now describe the 2-generator groups which have property N.

THEOREM 3. Suppose that G has property N and that p > 3. If G can be generated by two elements, then $G = \langle x, y \rangle$, where $\langle x \rangle \cap \langle y \rangle = 1$; $(x, y, x) = x^{kp^s}$, $(x, y, y) = y^{kp^s}$, where k is prime to p; $G_4 = 1$; if G_3 is cyclic, then we may suppose that (x, y, y) = 1. Conversely, any group which satisfies these relations will have property N.

Proof. Suppose that G satisfies the relations given in the theorem. We shall show that G' normalizes every cyclic subgroup of G. It will follow immediately that G has property N. Set c = (x, y). If $g \in G$, then $g = x^u y^v c^n$ for

1258

FINITE GROUPS

appropriate integers u, v, n. If $h \in G'$, then $h = c^{v_z}$ for some integer w and some z in the centre of G. Since $G_4 = 1$, $(h, g) = (c, x)^{wu}(c, y)^{w_v}$; thus $(h, g) = x^{uwkp^s}y^{vwkp^s}$. We must show that (h, g) is a power of g. Since p > 3and $G_4 = 1$, the group G is regular; thus $g^{p^s} = x^{up^s}y^{vp^s}d^{p^s}$ for some $d \in G'$. The order of the commutator (x, y) = c cannot be greater than the smallest power of x which lies in Z(G); see (3, Theorem 4.22). Therefore, $c^{p^s} = 1$, and hence, G' has exponent p^s . Thus, $g^{p^s} = x^{up^s}y^{vp^s}$. Therefore, $(h, g) = g^{kwp^s}$.

Suppose now that G is a 2-generator p-group (p > 3) which has property N. We know that $G_4 = 1$ (Lemma 2) and that G is regular (Theorem 2). Pick generators x, y for G from a canonical basis. Then $G = \langle x, y \rangle$, where $\langle x \rangle \cap \langle y \rangle = 1$. It follows from Lemma 3 that $(x, y, x) = x^{kp^s}$, $(x, y, y) = y^{rp^t}$ for appropriate integers k, s, r, t, where we may assume that k and r are prime to p. We must show that we can take k = r, s = t.

We first consider the case where G_3 is non-cyclic. Thus, $x^{p^s} \neq 1$ and $y^{p^t} \neq 1$. We know that (x, y) normalizes xy (Lemma 3); thus, $(x, y, xy) = (xy)^n$ for some n. Since $G_4 = 1$, (x, y, xy) = (x, y, x)(x, y, y); thus, $(xy)^n = x^{kp^s}y^{rp^t}$. Since $(xy)^n$ is in the centre of G, and $G = \langle x, xy \rangle$, we know that G' has exponent at most n; hence, $(g \cdot xy)^n = g^n(xy)^n$ for every $g \in G$. In particular, $y^n = (x^{-1} \cdot xy)^n = x^{-n}(xy)^n$; thus, $y^{n-rp^t} = x^{kp^s-n}$. Therefore, $rp^t = xp^s$ modulo d, where d is the minimum of |x|, |y|. There is no loss of generality if we suppose that $s \leq t$. Since G_3 is not cyclic, we know that p^{s+1} divides d. If s < t, we have that $(rp^{t-s} - k)p^s$ is divisible by p^{s+1} , a contradiction. Therefore, s = t. Thus, $(r - k)p^s = 0$ modulo d. If d = |x|, then $x^{rp^s} = k^{kp^s}$. If d = |y|, then $y^{rp^s} = y^{kp^s}$. In either case we may suppose that r and k are equal. This completes the proof when G_3 is non-cyclic.

If G_3 is cyclic but non-trivial, then we may suppose that $(x, y, x) = x^{kp^s} \neq 1$, (x, y, y) = 1. We must show that $y^{p^s} = 1$. As above, $(x, y, xy) = x^{kp^s}$ and hence $(xy)^n = x^{kp^s}$ for some *n*. Since $(xy)^n$ is central, $(xy)^n = x^n y^n$. It follows from $x^n y^n = x^{kp^s}$ that $y^n = 1$. Thus, $x^n = x^{kp^s}$. Therefore, p^s divides *n* but p^{s+1} does not divide *n*. Therefore, $y^{p^s} = 1$.

Finally, if $G_3 = 1$, we see that G satisfies the necessary relations if we set p^s equal to the maximum of |x|, |y|. This completes the proof.

If G is a group with property N, then every pair of generators of G must give one of the groups described in Theorem 3. Since property N is inherited by subgroups, one might conjecture that a group G has property N if and only if every 2-generator subgroup has property N. Unfortunately, this conjecture is false. (A counterexample is given below.) However, the corresponding conjecture for 3-generator subgroups is true for all primes p.

THEOREM 4. A group G has property N if and only if every 3-generator subgroup of G has property N.

Proof. It will suffice to show that if G fails to have property N, then there is a 3-generator subgroup which fails to have property N. Suppose that H is a

C. HOBBY

subgroup of G such that $N_G(H)$ is not normal in G. Then there is an element x in $N_G(H)$ and an element g in G such that x^g does not normalize H. Thus, there is an element h in H such that h^{x^g} does not belong to H. In particular, h^{x^g} does not belong to H_1 , the normal subgroup of $\langle h, x \rangle$ generated by all conjugates of h obtained from elements of $\langle h, x \rangle$. Let $G_1 = \langle h, x, g \rangle$. Then x normalizes H_1 but x^g does not normalize H_1 ; thus, G_1 does not have property N.

We shall now give an example of a 3-generator p-group (p > 3) which does not have property N but in which every 2-generator subgroup does have property N. Let $\langle a, b \rangle$ be the non-abelian group of order p^3 and exponent p. Let H be the direct product of $\langle a, b \rangle$ with $\langle u, v \rangle$, an elementary abelian group of order p^2 . Form K by adjoining to H an element x of order p such that $a^x = au$, $u^x = u$, $b^x = b$, $v^x = vc$, where c denotes (a, b). The required group G is formed by adjoining to K an element g such that $g^p = c$, $x^q = xb$, $b^q = b$, $a^q = av$, $v^q = v$, $u^q = uc^2$. Clearly, $G = \langle a, x, g \rangle$. G does not have property N since x normalizes $\langle a, u \rangle$ but $(x, g, a) \notin \langle a, u \rangle$. A long but routine calculation shows that every 2-generator subgroup does have property N.

References

- 1. W. Burnside, On groups in which every two conjugate operations are permutable, Proc. London Math. Soc. 35 (1902), 28-37.
- 2. M. Hall, The theory of groups (Macmillan, New York, 1959).
- P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. (2) 36 (1933), 29–95.
- 4. —— On a theorem of Frobenius, Proc. London Math. Soc. (2) 40 (1935), 468-501.
- 5. C. Hobby, A characteristic subgroup of a p-group, Pacific J. Math. 10 (1960), 853-858.

University of Washington, Seattle, Washington

1260