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On Induced Representations Distinguished
by Orthogonal Groups
Cesar Valverde

Abstract. Let F be a local non-archimedean field of characteristic zero. We prove that a representation
of GL(n, F) obtained from irreducible parabolic induction of supercuspidal representations is distin-
guished by an orthogonal group only if the inducing data is distinguished by appropriate orthogonal
groups. As a corollary, we get that an irreducible representation induced from supercuspidals that is
distinguished by an orthogonal group is metic.

1 Introduction

Let F be a number field with ring of adeles A. We will denote by G̃L(n) a twofold
cover of GL(n), consisting of (g, z) with g ∈ GL(n), z = ±1. We remark that GL(n,F)

embeds in ˜GL(n,A) via g 7→ (g, 1). A function f on ˜GL(n,A) is genuine if one has

f (g, z) = f (g, 1)z. We denote by L̃2 the subspace of L2(GL(n,F)\ ˜GL(n,A)) consist-

ing of genuine functions. A constituent of the ˜GL(n,A) module L̃2 is called a gen-
uine automorphic representation. The metaplectic correspondence is a lifting of the

genuine automorphic representations of ˜GL(n,A) to automorphic representations of
GL(n,A).

The work of Flicker and Kazhdan in [FK] suggests the following criterion:
An irreducible cuspidal automorphic representation of GL(n,A) is a lift from

˜GL(n,A) if and only if it is metic (i.e., all of its local components are metic).
A representation π of GL(n) over a local field F is defined to be metic if it is equiva-

lent to a representation unitarily induced from a
∏

i GL(ri , F) module⊗iσiν
si , where∑

ri = n, si ∈ C, ν = | det | and the σi are square integrable GL(ri , F) modules
whose central characters are trivial on {±1}.

Let χ be a quadratic character of F×\A× and let π be an irreducible cuspidal
automorphic representation of GL(n,A). For a diagonal matrix D ∈ GL(n) we have
the associated orthogonal group OD = {g ∈ GL(n)|gDt g = D} and the similitude
group GOD = {g ∈ GL(n) | gDt g = λ(g)D}, where λ(g) is a scalar.

We recall that a cuspidal automorphic representation π with trivial central char-
acter is said to be (GOD, χ)-distinguished if for some φ in the space of π we have∫

Z(A)GOD(F)\GOD(A)
φ(hg)χ(λ(h))dh 6≡ 0,
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where Z is the center of GL(n).
A consequence of the (conjectural) relative trace formula suggested by Jacquet in

[J] (also discussed in [Mao]) is that a global cuspidal representation π of GL(n,A) is
expected to be distinguished by some similitude group GOD if and only if it is globally

a lift from a genuine generic representation on ˜GL(n,A). Thus, a global cuspidal rep-
resentation π of GL(n,A) is expected to be distinguished by some similitude group if
and only if all its local components are metic.

We now move to a local setting. We let F be a local non-archimedean field of
characteristic zero. We recall the local notion of distinction, namely, let π be a repre-
sentation of G, let H be a closed subgroup of G, then π is said to be H-distinguished
if the space of H-invariant linear forms on π is nontrivial.

In this paper we consider a representation obtained by parabolic induction from
supercuspidals, π = �πi . Assuming that π = �πi is irreducible, we show that
if π is OD-distinguished, then π is metic. More precisely, given a set of diagonal
matrices {D1, . . . ,Dr} with Di ∈ GL(Mi , F), we denote by

∏
Di the matrix obtained

by diagonally embedding (D1, . . . ,Dr) in G where n = M1 + · · · + Mr. For diagonal
matrices D and D ′, we write D ∼ D ′ if there exists g ∈ GL(n, F) with gD t g = D ′.
We have the following theorem.

Theorem 1.1 Let M1 + M2 + · · · + Mr = n be a partition of n. For 1 ≤ i ≤ r, let πi

be an irreducible supercuspidal representation of GL(Mi , F). Assuming the parabolically
induced representation π = �πi is irreducible and π is OD distinguished, then there
exists D ′ ∼ D such that for all i, πi is OD ′i

-distinguished, where D ′ =
∏

D ′i .

Note that if πi is a supercuspidal representation distinguished by ODi , then its
central character is trivial on {±1}. Thus we have the following corollary.

Corollary 1.2 Assume as above that π = �πi is irreducible; if π is OD-distinguished,
then π is metic.

Clearly, a (GOD, χ)-distinguished representation is OD-distinguished.
In [HL], Hakim and Lansky set out to determine when a supercuspidal representa-

tion is OD distinguished. Let G = GL(n, F) with n odd and H = OD. We understand
by an irreducible tamely supercuspidal representation of G, one of the representations
constructed by Howe in [H]. A result of [HL], based on work of Hakim and Mur-
naghan in [HM], implies that when F is of odd residual characteristic, an irreducible
tamely supercuspidal representation π of G is H-distinguished if and only if

(i) the central character ωπ of π satisfies ωπ(−1) = 1, and
(ii) OD is quasi-split.

We remark that by [Moy], we have that for p not dividing n all supercuspidals are
tamely supercuspidal where p is the characteristic of the residue field of F. Thus if
in Theorem 1.1 Mi are odd and not divisible by p, the condition of πi being OD ′i

-
distinguished is equivalent to π being metic and OD ′i

being all quasi-split.
We have a refined version of Theorem 1.1 in the case when π is a principal series

representation.

Theorem 1.3 Let D be any diagonal matrix, let π = �χi be an irreducible principal
series representation of G. Then π is OD-distinguished if and only if χi(−1) = 1 for all
χi .
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As a consequence, an irreducible principal series representation is distinguished
by OD if and only if it is distinguished by OD ′ for any other diagonal matrix D ′ ∈
GL(n, F).

It is worth contrasting Theorem 1.3 with the result of [HL] on supercuspidal
representations. We consider an irreducible tame supercuspidal representation of
GL(n, F) with n odd. Then such a representation is distinguished by a quasisplit or-
thogonal group exactly when its central character is trivial on −1. Distinction by
non-quasisplit orthogonal subgroups never occurs.

The proof of Theorem 1.1 proceeds by studying the double coset decomposition
of P\GL(n, F)/OD (where P denotes the standard parabolic subgroup of GL(n, F) as-
sociated with the partition n = M1 + · · ·+ Mr) and then showing that the linear form
is supported on one of the double cosets. We then rule out the support consisting
of any cosets except the open cosets by considerations of irreducibility and cuspi-
dality. The form being supported on the open cosets is seen to give the appropriate
condition on the inducing data.

2 Double Coset Decomposition

For F a local non-archimedean field of characteristic zero, we will denote G =
GL(n, F). For g ∈ G, the transpose of g will be denoted t g, and B,N,T,W will
denote, respectively, the standard Borel subgroup of G, the group of upper triangular
matrices with unit diagonal, the group of diagonal matrices, and the Weyl group of G,
identified with the subgroup of permutation matrices in G. The standard parabolic
associated with the partition M1 + · · · + Mr = n will be denoted by P. We denote by
WP the Weyl group corresponding to the Levi subgroup of P. Throughout the paper
we use right-invariant Haar measures and we write ∆B (resp. ∆P) for the modulus
function of B (resp. P).

We briefly review the classification of quadratic forms on a finite dimensional vec-
tor space V over F, cf. [MVW, Section 1.6]. An isometry of spaces equipped with
such forms is a F-linear bijection respecting the pairing. We have that up to isome-
try any quadratic form is given on row vectors v1, v2 by (v1, v2) 7→ v1D t v2 for some
diagonal matrix D.

We denote by OD, the group of automorphisms of V leaving the quadratic form
given by D invariant, i.e., OD = {g ∈ G|gD t g = D}.

The following lemma is well known.

Lemma 2.1 Let U be an algebraic connected unipotent group over F. Let θ be an
automorphism of U with θ2 = 1. If x ∈ U verifies xθ(x) = 1, then there is u ∈ U with
x = θ(u−1)u.

We need the following version of Bruhat decomposition.

Lemma 2.2 Every symmetric matrix s in G admits a Bruhat decomposition s = nwat n
where a ∈ T, n ∈ N, and w ∈W is uniquely determined by s.

Proof Let s = n1wa t n2 be a symmetric matrix, then

n−1
2 n1wa t n2

t n−1
1 = a t w,
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which implies a t w = wa, t w = w−1 = w, and a = waw. Write n = n−1
2 n1, then we

have s = n2nwa t n2 so we may assume s = nwa. We remark that if w is trivial, then
na is symmetric, in which case we see that n = 1 and our lemma follows.

Suppose w is nontrivial. We denote by Nw the unipotent subgroup Nw = N ∩
w−1(t N)w. We have nwa = aw t n so that n ∈ Nw and n−1 = wa t n−1wa−1. Define
an involution on Nw by

θ(x) = aw t x−1a−1w.

Then n−1θ(n−1) = 1, so by the previous lemma there exists u ∈ Nw with n−1 =
θ(u−1)u. Thus n = u−1θ(u) and s = nwa = u−1aw t u−1a−1wwa = u−1wa t u−1 as
desired.

The following lemma is clear.

Lemma 2.3 Let S denote the set of invertible symmetric matrices. The map
m : G/OD → S defined by g 7→ m(g) = gD t g is a continuous map to its image.

We remark that for any class A of P\G/OD, we have that m(A) = {pwa t p|p ∈ P}
for some w ∈W , a ∈ T.

Lemma 2.4 Let g ∈ G with gD t g = wa for some w ∈ W , a ∈ T. Then the coset
PgOD is open if and only if w ∈WP.

Proof We use an argument from [BlD, Section 2.4]. We denote by Lie(H) the Lie
algebra of a group H. We denote by θ the involution on G given by θ(h) = D t h−1D−1

for h ∈ G. We denote by Pg the subgroup g−1Pg. Assuming that gD t g = wa with
w ∈ WP, we have that gθ(Pg)g−1 = gg−1wa t Pa−1w−1gg−1 = t P. In other words,
θ(Pg) is opposite to Pg . Hence for x ∈ Lie(G) there exist y ∈ Lie(Pg), z ∈ Lie(θ(Pg))
with x = y + z. We write x = y − θ(z) + θ(z) + z and remark that y − θ(z) ∈ Lie(Pg)
and θ(z) + z ∈ Lie(OD). Thus Lie(G) = Lie(Pg) + Lie(OD). Hence g−1PgOD contains
a neighborhood of the identity, thus PgOD is open. On the other hand, if w 6∈ WP,
the above calculation shows that θ(Pg) is not opposite to Pg . By [BlD, Lemme 2.4],
all open cosets are of the form PyOD, where θ(Py) is opposite to Py . Thus PgOD is
not open when m(g) = wa with w 6∈WP, a ∈ T.

Lemma 2.5 The classes A1,A2, . . . ,Am of P\G/OD can be ordered in such a way that
A1 is closed in G and for 2 ≤ i ≤ m, Ai is closed in G−

⋃i−1
k=1 Ak. Moreover, there exists

1 ≤ l ≤ m− 1 such that Ai is open if and only if l + 1 ≤ i ≤ m.

Proof By [BlD, Lemme 3.1] we have a sequence of P × OD-invariant open subsets

U0 = ∅ ⊂ U1 ⊂ · · · ⊂ Um = G,

where for 0 ≤ i ≤ m − 1, Ui+1\Ui is a P × OD orbit. Moreover, we choose this
sequence so that there exists 1 ≤ l ≤ m− 1 with Ui+1\Ui open if and only if 0 ≤ i ≤
m− l− 1. For 1 ≤ j ≤ m, we take A j = Um− j+1\Um− j .
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3 A Key Proposition

Let H be a closed subgroup of G, X a locally closed subspace of G, and D(X) the
space of smooth complex valued functions on X with compact support. If τ is a
smooth representation of H in a complex vector space V , then D(H\X, τ ,V ) (or
(D(H\X, τ ))) will denote the space of smooth V -valued functions f on X with com-
pact support modulo H that satisfy f (hx) = τ (h) f (x).

The following lemma is found in [Mat].

Lemma 3.1 The map from D(X)⊗ V to D(H\X, τ ,V ) defined by

f ⊗ v 7→
(

x 7→
∫
H

f (hx)τ (h−1)vdh
)

is surjective. As a corollary, if Y is an H-stable closed subset of X, then the restriction
map from D(H\X, τ ,V) to D(H\Y, τ ,V) is surjective.

We remark that the following argument is standard, cf. [Mat] and [BH, Section
3.4]. Our main contribution in the proof of Proposition 3.2 is the calculation of
certain modulus functions which imply that the support of the invariant functional
lies in the open cosets.

Recall that the space of π = �πi is D(P\G,∆1/2
P ρ), where ρ denotes the represen-

tation π1 ⊗ · · · ⊗ πr of
∏

GL(Mi , F) extended trivially to the unipotent radical of P.
Lemmas 2.5 and 3.1 imply that we have the following exact sequence of smooth OD

modules:

0→ D
(

P\(G− A1),∆1/2
P ρ

)
→ D(P\G,∆1/2

P ρ)→ D(P\A1,∆
1/2
P ρ)→ 0.

Hence if π is OD-distinguished, then there is a nonzero OD-invariant linear form

on either D(P\A1,∆
1/2
P ρ), or on D(P\(G − A1),∆1/2

P ρ). In the second case we have
the exact sequence

0→ D
(

P\G−(A1∪A2),∆1/2
P ρ

)
→ D

(
P\(G−A1),∆1/2

P ρ
)
→ D(P\A2,∆

1/2
P ρ)→ 0.

Repeating this process, we deduce the existence of a nonzero OD-invariant linear

form on one of the spaces D(P\Ai ,∆
1/2
P ρ).

We have an isomorphism of OD-modules between D(P\Ai ,∆
1/2
P ρ) and D(g−1Pg∩

OD\OD,∆
′
Pρ
′) given by f 7→ [x 7→ f (gx)], where ∆ ′P(x) = ∆

1/2
P (gxg−1), ρ ′(x) =

ρ(gxg−1), and g is a representative of Ai with m(g) = wa and w ∈W, a ∈ T. Such a
representative exists by the remark following Lemma 2.3.

Lemma 3.1 gives a surjection

D(OD)⊗V → D
(

g−1Pg ∩ OD\OD,∆
′
Pρ
′)

defined by

(3.1) ( f ⊗ v) 7→
[

x 7→ ˜( f ⊗ v)(x) =

∫
H

∆ ′P(h−1) f (hx)ρ ′(h−1)vdh
]
,
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where h ∈ H = g−1Pg ∩ OD and dh denotes a right invariant Haar measure.
We point out that if λ denotes the action of the group OD on D(OD) by left trans-

lation, namely λσ f (x) = f (σ−1x), then the above surjection is seen to satisfy, for
k ∈ H

λ̃k f ⊗ v(x) =

∫
H

∆ ′P(h−1) f (k−1hx)ρ ′(h−1)vdh

= ∆ ′P(k−1)∆H(k) ˜f ⊗ ρ ′(k−1)v(x).

(3.2)

If D(g−1Pg ∩ OD\OD,∆
′
Pρ
′) admits an OD-invariant form L ′, then we get an

OD-invariant linear form on D(OD) ⊗ V . We also have that (D(OD) ⊗ V )∗OD ∼=
D(OD)∗OD ⊗V ∗, and we remark that HomOD (D(OD),C) is a one dimensional space
spanned by the right Haar integral. Thus the form L ′ is given by

L ′( f ⊗ v) =

∫
σ∈OD

f (σ)dσL(v)

for some L ∈ V ∗. The existence of the OD-invariant form on

D(g−1Pg ∩ OD\OD,∆
′
Pρ
′)

implies that the right Haar integral factors through the quotient map (3.1). Equa-
tion (3.2) implies that the kernel of the induced form L ′ contains the functions of the
form λh( f )⊗ v −∆ ′P(h−1)∆H(h) f ⊗ ρ ′(h−1)v for h ∈ H so that we have∫

OD

f (h−1σ)dσL(v) = ∆ ′P(h−1)∆H(h)

∫
OD

f (σ)dσL
(
ρ ′(h−1)v

)
.

After a change of variables σ 7→ hσ this implies∫
OD

f (σ)dσL(v) = ∆
−1/2
P (p)∆P∩gODg−1 (p)

∫
OD

f (σ)dσL
(
ρ(p−1)v

)
for all f ∈ D(OD), p ∈ P ∩ gODg−1, v ∈ V , which implies

(3.3) L(v) = ∆
−1/2
P (p)∆P∩gODg−1 (p)L

(
ρ(p−1)v

)
for all v ∈ V and p ∈ P ∩ gODg−1.

Proposition 3.2 Assume that g is a representative of Ai with m(g) = wa, w ∈ W ,
a ∈ T. Assume the existence of a nonzero L ∈ V ∗ satisfying equation (3.3) for all v ∈ V
and p ∈ P ∩ gODg−1. Then w ∈WP.

Proof As a simple example, we now do the relevant calculations for the principal
series case first. Here ρ = ⊗n

i=1χi , where the χi are characters of F×.
The existence of L as in the statement of the proposition implies equation (3.3),

which in the present case is

(3.4) χ(b)∆1/2
B (b)∆B∩gODg−1 (b−1) = 1
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for b ∈ B ∩ gODg−1.
Assume now that there is a smallest l not fixed by w, we consider d where d is a

diagonal matrix with x and x−1 in the (l, l) and (w(l),w(l)) coordinates respectively
and 1 elsewhere. We remark that d ∈ B ∩ gODg−1.

We need to compute ∆B∩gODg−1 (d). For this we compute the tangent space of
N ∩ gODg−1 by taking ε with ε2 = 0 and looking for elements X with I + εX ∈ N ∩
gODg−1, i.e., we look for X strictly upper triangular with (I + εX)wa t (I + εX) = wa.
We have X = −aw t Xwa−1, i.e., Xi j = −aiXw( j)w(i)a

−1
j , where we write ai for a(i,i).

Claim. The first l− 1 rows, l columns of X are zero.

The first row is clearly zero. If the first k − 1 rows are zero, then the first k
columns are zero (recall that X is upper triangular). If w(k) = k, then we have
Xk j = akkXw( j)w(k)a j j = 0 proving our claim by induction.

Claim. The number of nonzero free entries in the l-th row of X is w(l)− l− 1.

For j > l we have Xl j = 0 if and only if w( j) = l (in which case we have Xl j =
Xl,w(l) = −alXl,w(l)a

−1
w(l) = 0 using aw(l) = al, which follows from wa being symmetric)

or w( j) > w(l). There is exactly one instance in which the first case occurs and
n− w(l) for the second case; this proves our claim.

The previous two claims prove the following one.

Claim. ∆B∩gODg−1 (d) = |x|w(l)−l−1.

Also note that ∆
1/2
B (d) = |x|w(l)−l. By equation (3.4), this implies

|x|w(l)−l|x|1+l−w(l)χl(x) = χw(l)(x),

i.e., |x|χl(x) = χw(l)(x), thus contradicting the irreducibility of π. This proves that
w = 1.

In the general case, let us assume the existence of a nonzero linear functional L ∈
V ∗ satisfying equation (3.3). We will prove that w ∈WP.

We take a partition R1 ∪ R2 ∪ · · · ∪ Rr = {1, 2, . . . , n}, where |Ri | = Mi ; we call
Ri a block. We denote by αi , βi the initial and final elements of Ri respectively. We
choose the partition so that Ri consists of consecutive positive integers with α1 = 1
and αi+1 = βi + 1. The group G acts on ⊕n

i=1Fei , and the group GL(Mi , F) acts on
⊕ j∈Ri Fe j .

Lemma 3.3 The element w permutes the blocks Ri .

Proof Let Ri have the property that at least two elements of Ri map to different
blocks and let Ri be minimal in the sense that R j for j < i does not have this
property. After conjugation by a suitable Weyl element we may assume that for
any two elements p < q ∈ Ri either w(p),w(q) ∈ R j , or w(p) > w(q) whenever
w(p),w(q) ∈ Rl,Rk respectively with l 6= k.

Let l denote the smallest member of Ri such that w(l) ∈ R j with the property
that for x ∈ Ri , x < l we have w(x) ∈ R j and w(l + 1) ∈ Rh with j 6= h. We
further partition Ri as a disjoint union Ri = R1

i ∪ R2
i , where R1

i = {αi , . . . , l} and
R2

i = {l + 1, . . . , βi}.
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We consider the matrix X given by

Xi ′, j ′ =


Ui ′ j ′ for αi ≤ i ′ ≤ l, l + 1 ≤ j ′ ≤ βi ,

−a−1
w( j ′)Uw( j ′),w(i ′)aw(i ′) for αi ≤ w( j ′) ≤ l, l + 1 ≤ w(i ′) ≤ βi ,

0 otherwise,

where the Ui ′ j ′ for αi ≤ i ′ ≤ l, l + 1 ≤ j ′ ≤ βi are free variables.
Let U be the unipotent radical of P = MU , where M =

∏
GL(Mi , F). Let Ui

denote the unipotent radical of GL(Mi , F) corresponding to the partition Ri = R1
i ∪

R2
i . We identify Ui with the unipotent radical of the parabolic subgroup of M with

Levi subgroup equal to

i−1∏
j=1

GL(M j , F)× GL
(
|R1

i |, F
)
× GL

(
|R2

i |, F
) r∏

k=i+1
GL(Mk, F),

and we let U i = UUi . As in the principal series case, we have that X is by construction
in the tangent space of U i ∩ gODg−1. We consider exp(X) and remark that exp(X) ⊂
U i ∩ gODg−1. We write exp(X) = u ′u with u ′ ∈ U , u ∈ Ui and remark that u
exhausts Ui as the free variables Ui ′ j ′ vary over F.

From equation (3.3) we obtain that

(3.5) L
(
ρ(exp(X))v

)
= L
(
ρ(u ′u)v

)
= L(v)

for all v ∈ V . It follows from equation (3.3) that L is U -invariant. Hence from
equation (3.5) and the U -invariance of L we have that

L
(
ρ(u)v

)
= L(v)

for all u ∈ U ′i and v ∈ V . Because ρ is supercuspidal, V is spanned by vectors of the
form ρ(u)v − v, where u ∈ U ′i and v ∈ V . Therefore L = 0, which contradicts an
assumption of Proposition 3.2. This proves the lemma.

Lemma 3.4 The element w maps each block Ri to itself.

Proof We know by the previous claim that w maps blocks to blocks. Let Ri be the
smallest block mapped to a different block R j ; we remark that we have Mi = M j .

We consider the block diagonal matrix p consisting of h, t h−1 as the Ri ,R j di-
agonal blocks and the identity for the other blocks. Then this matrix satisfies p ∈
P ∩ gODg−1. We have for such p that

L(v) = ∆
1/2
P (p)∆−1

P∩gODg−1 (p)L
(
ρ(p)v

)
,

which is equation (3.3).
We remark that if w permutes the blocks Ri and R j , then after acting by a suitable

parabolic element, we may assume wa = w ′a ′ with w ′(αi + l) = α j + l for 0 ≤ l ≤ Mi

and a ′l = a ′k = 1 for l, k ∈ Ri ,R j respectively. We now assume that wa is of the form
w ′a ′.
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An easy computation gives

∆
1/2
P (p) = | det(h)2(Mi+1+···+M j−1)+Mi +M j |1/2 = | det(h)Mi +···+M j−1 |,

where we used Mi = M j . To obtain ∆−1
P∩gODg−1 (p), we compute the tangent space of

U ∩gODg−1 as in the principal series case by taking X with I +εX ∈ U ∩gODg−1 and
ε2 = 0. Elements X in this tangent space are seen to verify Xi ′ j ′ = −a ′i ′Xw( j ′)w(i ′)a

−1
j ′ .

We write X = (Xkl) with Xkl an Mk × Ml matrix. The following two claims are
proved as in the principal series case, and we omit their proofs.

Claim. If k < i, then Xkl = 0. If l ≤ i, then Xkl = 0.

Claim. There are exactly j− i−1 free nonzero blocks of the form Xil. The only other
possibly nonzero block of the form Xil is Xiw(i).

Let Λ denote the set of l with the property that Xil is nonzero and free.

Claim.

(3.6)
∑
l∈Λ

Ml = Mi+1 + · · · + M j−1.

We assume that l satisfies i < l < w(i). If l /∈ Λ, then each element in Xiw(l) is up
to a factor equal to an element in Xlw(i). Our assumption that i < l < w(i) implies
that w(l) ∈ Λ. On the other hand, since w permutes blocks, we have that Ml = Mw(l)

and thus our claim is proved.

Claim. The block Xi,w(i) is a square matrix (Y p,q) for 1 ≤ p, q ≤ Mi with Y p,p = 0,
Yq,p = −Y p,q, and the Y p,q are free variables.

This claim is a consequence of the equation Xi ′ j ′ = −a ′i ′Xw( j ′)w(i ′)a
′−1
j ′ and of the

normalization wa = w ′a ′ described above.
We remark that the last claim implies that there are n(n−1)

2 free variables in the
block Xi,w(i). This remark combined with equation (3.6) and the claim preceding
equation (3.6) prove the following claim.

Claim. ∆−1
P∩gODg−1 (p) = | det(h)−Mi−···−M j−1+1|.

From equation (3.3), we obtain L(v) = | det(h)|L(ρ(p)v). Then

(3.7) L(v1, . . . , vi , . . . , v j , . . . , vr) =

| det(h)|L
(

v1 . . . , πi(h)vi , . . . , π j(
t h−1)v j , . . . , vr

)
where for 1 ≤ l ≤ r, vl ∈ Vl, where Vl is the space of πl. Since L is nonzero, for

1 ≤ l ≤ r, there exist xl ∈ Vl with L(x1, . . . xr) 6= 0. We define a nonzero linear form
Li j on Vi ⊗V j by

Li j(vi ⊗ v j) = L(x1, . . . , xi−1, vi , . . . , x j−1, v j , . . . , xr).

We may think of Li j as defined on the space of | det( · )|πi ⊗ π∨j , where π∨j (h) =

π j(t h−1). By equation (3.7) we have that Li j is invariant under the diagonal embed-
ding of GL(Mi , F) into GL(Mi , F) × GL(Mi , F). It follows that | det( · )|πi is equiv-
alent to the contragredient π j of π∨j . By [Zel, Theorem 4.2], this contradicts the
irreducibility of π.
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By Lemma 3.4, w restricts to a permutation within the blocks. Thus we obtain in
the general parabolic case that w ∈WP; this gives Proposition 3.2.

4 Proof of the Theorems

Proof of Theorem 1.1 Recall that M is the Levi subgroup of the standard parabolic
subgroup P, and that⊗iπi is a representation of M with πi irreducible, supercuspidal
for 1 ≤ i ≤ r. The representation π = �πi is assumed to be irreducible. Let O
denote the union of the (P,OD) open double cosets in G, and let J = {φ ∈ π |
φ is supported in O}. We remark that by Lemma 2.5 we have O = Al+1 ∪ · · · ∪ Am.
For a vector space X with the action of a group H, denote the dual of X by X∗ and let
X∗H denote the elements in X∗ invariant under H.

By Lemma 2.5, we have, for 1 ≤ i ≤ l, the exact sequence

(4.1) 0→ D
(

P\G− ∪i
k=0Ak,∆

1/2
P ρ

)
→ D

(
P\G− ∪i−1

k=0Ak,∆
1/2
P ρ

)
→ D(P\Ai ,∆

1/2
P ρ)→ 0,

where A0 denotes the empty set.
Taking duals we obtain the exact sequence

0→ D
(

P\Ai ,∆
1/2
P ρ

)∗OD → D
(

P\G− ∪i−1
k=0Ak,∆

1/2
P ρ

)∗OD

→ D
(

P\G− ∪i
k=0Ak,∆

1/2
P ρ

)∗OD
.

By Lemma 2.4 and Proposition 3.2 we have that D(P\Ai ,∆
1/2
P ρ)∗OD = 0 for 1 ≤

i ≤ l. Thus, for 1 ≤ i ≤ l, we get

(4.2) 0→ D
(

P\G− ∪i−1
k=0Ak,∆

1/2
P ρ

)∗OD → D
(

P\G− ∪i
k=0Ak,∆

1/2
P ρ

)∗OD
.

Using equation (4.2) iteratively, we obtain that

0→ (�πi)
∗OD = D(P\G,∆1/2

P ρ)∗OD → D(P\O,∆1/2
P ρ)∗OD = J∗OD .

By [BlD, Théorème 2.8], we have that

J∗OD ∼=
⊕
x∈S

(Vρ ′)
∗Mx∩OD ,

where Mx = x−1Mx, ρ ′ is the representation given by ρ ′(g) = ρ(x−1gx) on the space
V and S is a set of representatives for the double cosets Ai with the property that for
x ∈ S we have m(x) = wa with w ∈WP. We remark that by changing representative
x to px for a suitable element p in the Levi of P, we may assume that m(x) is diagonal
for x ∈ S.

Thus, if the representation π is distinguished, then for some x ∈ S, we have that
(Vρ ′)∗Mx∩OD is nontrivial. Since

(Vρ ′)
∗Mx∩OD ∼= (Vρ)∗M∩xODx−1

and M ∩ xODx−1 ∼=
∏

i
OD ′i

,

with D ′ = m(x) ∈ T, we obtain that πi is OD ′i
distinguished for 1 ≤ i ≤ r.
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Proof of Theorem 1.3 In the case of principal series representation π = �χi , we
have OD ′i

= {±1}. It is clear that χi is OD ′i
-distinguished if and only if χi(−1) = 1.

Thus Theorem 1.1 implies one direction of the theorem.
For the other direction, let χi(−1) = 1. Then J∗OD is nontrivial. We prove that

J∗OD ∼= π∗OD when π = �χi is irreducible. This implies that π is OD-distinguished.
We argue as in the proof of Theorem 1.1 and use some results in [BlD]. To simplify

the notations, we let D ′(X) = D(B\X,∆1/2
B ρ) where ρ = ⊗χi . The exact sequence

(4.1) gives, for 1 ≤ j ≤ l,

(4.3)

H0

(
OD,D

′(A j)
)
→ H0

(
OD,D

′(G− ∪ j−1
k=0 Ak)

)
→ H0

(
OD,D

′(G− ∪ j
k=0Ak)

)
→ H1

(
OD,D

′(A j)
)
.

Here H∗(OD, ∗) are homology groups ([BlD, Définition 1.2]). In particular for X
an OD module, H0(OD,X) is the quotient of X by the span of hx − x with h ∈ OD

and x ∈ X. Thus H0(OD,X)∗ ∼= X∗OD .

Lemma 4.1 If A j is not open, then H∗(OD,D ′(A j)) = 0.

Proof By Lemma 2.4 we may assume A j = BxOD for some representative x with
xDt x = wa, w 6= 1. Then

D ′(A j) ∼= D(OD ∩ x−1Bx\OD, ρx) ∼= indOD

OD∩x−1Bxρx,

where ρx(g) = ∆
1/2
B ρ(xgx−1). By Shapiro’s Lemma ([BlD, Proposition 1.15]),

H∗(OD,D
′(A j)) ∼= H∗(OD ∩ x−1Bx, ρx∆

−1
OD∩x−1Bx).

(The statements of Lemme 1.14 and Proposition 1.15 in [BlD] need to be modified
with extra modulus factors.)

Note that ρx∆
−1
OD∩x−1Bx is trivial on OD∩x−1Nx. From [BlD, Lemme 2.2], we have

H∗(OD,D
′(A j)) ∼= H∗(OD ∩ x−1Tx, ρx∆

−1
OD∩x−1Bx).

Now OD ∩ x−1Tx is an abelian group. The fact w 6= 1 and the irreducibility of π
means equation (3.4) does not hold; thus ρx∆

−1
OD∩x−1Bx is a nontrivial one dimen-

sional representation of OD ∩ x−1Tx. It is then clear that

H∗(OD ∩ x−1Tx, ρx∆
−1
OD∩x−1Bx) = 0,

(see [BlD, Corollary 1.9]).

From Lemma 4.1 and equation (4.3), we get

H0

(
OD,D

′(G− ∪ j−1
k=0 Ak)

) ∼= H0

(
OD,D

′(G− ∪ j
k=0Ak)

)
.

Applying the argument iteratively we get

H0(OD,�χi) ∼= H0(OD, J),

thus (�χi)∗OD ∼= J∗OD . Since J∗OD is nontrivial, we get that �χi is OD-distinguished.
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