
J. Austral. Math. Soc. (Series A) 41 (1986), 391-403

GROWTH OF SOLUTIONS
OF WEAKLY COUPLED PARABOLIC SYSTEMS

AND LAPLACE'S EQUATION

N. A. WATSON

(Received 5 March 1985)

Communicated by R. O. Vyborny

Abstract

Let ut(x,t) be the ;th component of a nonnegative solution of a weakly coupled system of
second-order, linear, parabolic partial differential equations, for x e R" and 0 < t < T. We obtain
lower estimates, near / — 0, for the Lebesgue measure of the set of x for which ta/1 ut(x, t) exceeds 1.
Related results for Poisson integrals on a half-space are also described, some applications are given,
and interesting comparisons emerge.

1980 Mathematics subject classification (Amer. Math. Soc): 35 B 05; Secondary 31 B 05, 31 B 25, 35
B 30, 35 J 05, 35 K 45.

1. Introduction

Let /x be a finite, positive Borel measure on R". Let w be the Poisson integral of fi

on the half-space R" X ]0, oo[, so that

f +t(\\x -
K

where an is the reciprocal of

, 0 = onf
K

f l\\ II2 . , \ - ( " + D/2

Jv{\\y\\ +1) dy.
Then w is a harmonic function and, if /i is singular with respect to Lebesgue

measure m on R", then w(x, t) -» oo as t -* 0 for ju-almost every x e R".

Recently, Ahern [1] obtained lower estimates for m{{x: w(x, t) > 1}) near t = 0.
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392 N. A. Watson [2]

In this paper we first extend his results to obtain estimates for m({x: taw(x, t) >
1}), given a condition on /x which implies that taw(x, t) -* oo as t -* 0 for
fi-almost all x in some Borel set A; here 0 < a < n. We then present the
corresponding estimates for solutions of certain weakly coupled systems of linear,
second-order, parabolic partial differential equations. Of particular interest is the
difference between two of the estimates. In the harmonic case, the lower estimate
depends essentially on a, while n(A) appears as a multiplicative factor; in the
parabolic case, a appears only as part of a multiplicative constant, and n(A) is
completely absent. Some applications of the estimates are also given, which differ
significantly in form due to the difference in the estimates.

2. The harmonic case

For any x, y e R", we put d(x, y) = max{ \xx - yx\, ...,\xn- yn\) and ||x|| =

(x\ + ••• +x2
n)

l/1, so that

d(x,y)<\\x-y\\<nl^d(x,y).

The open cube {y e R": d(x, y) < r), with centre x and edge length 2r, is
denoted by Q(x, r).

Throughout this section, n denotes a positive Borel measure on R" such that

/ ( T
This condition is necessary and sufficient for the Poisson integral w of ft to be
harmonic on R" X ]0, oo[, by Theorem 6 of [6].

Suppose that 0 ^ a < n, and that there is a Borel set A such that

(1) ju(e(x,r))r"-"-» oo as r -» 0

/i-a.e. on A. It then follows easily from the corollary to Theorem 2 of [2] that

t"w(x,t) -» oo as/ -» 0

ju-a.e. on A. It is therefore reasonable to seek a lower estimate for m({x: taw(x, t)
> 1}) near t = 0. Note that, if a = 0, then (1) holds ju-a.e. on R" if and only if ju
is singular with respect to m. However, if 0 < a < n and (1) holds ja-a.e. on R",
then [i is singular with respect to (n — a)-dimensional Hausdorff measure (by
Lemma 4 of [8]), but not conversely (see pages 19-21 of [8]). If a is a positive
integer and n is supported by a smooth surface of dimension n — a, then
H(Q(x, r))rP~" -» oo as r -* 0, /i-a.e. on R", for every/? < a.

We use C, with various subscripts, to denote a positive constant which depends
only on the subscripts; its value may vary from line to line. If C is replaced by a
Greek letter, the constant always has the same value.
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[31 Parabolic systems and Laplace's equation 393

Our first result is an easy modification of Lemma 1 of [1].

LEMMA 1. Suppose that 0 ^ a < n, and that (1) holds n-a.e. on a Borel set A

with ju(v4) < oo. Then, if e > 0, there is a Borel set E such that fi(A \ E) < e and

(1) holds uniformly on E.

In Lemma 1, we use a general Borel set A instead of R" partly because, for a
given ju, (1) may hold with different values of a on different sets. See also the
proof of Theorem 3 below.

We recall Lemmas 2 and 3 of [1] for ease of reference.

LEMMA 2. Suppose that d(x, z) < r, that 0 < / < 2r, and that w is the Poisson
integral of p. Then there is a positive constant yn such that

(2) W(x,t)>ymtr-"-lpL(Q(z,r)).

LEMMA 3. If & is a finite collection of open cubes, then there is a subcollection 5?
of disjoint cubes such that, for each Q e &, there is Q(x, r) e & with Q c
Q(x,3r).

Given any Borel set A, the modulus of continuity of ju over A is defined by

uA(r) = sup{ii(Q(x,r)): x e A).

If 0 < a < n, and if yn is the same as in (2), we put

for all t > 0.
With these notations, Theorem 1 of [1] can be extended in the following way.

THEOREM 1. Suppose that 0 < a < n, that (1) holds fi-a.e. on a Borel set A with
fi(A) < oo, and that w is the Poisson integral of ja. Then there is t0 > 0 such that

m({x: t"w(x,t) > 1}) > CnVL(A)f + 1/8aJt)

whenever 0 < / < t0.

The proof of Theorem 1 differs from that of Ahern's result only in that R" is
replaced by A and appropriate items in his argument are multiplied by ta; his
auxiliary function 8(x, t) is replaced by 8a(x, t) = inf{r: ynt

a+1r-"~1p(Q(x, r))

In the extension of the corollary to Theorem 1 of [1], the replacement of R" by
A causes some difficulty, and so full details of the proof are given.
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394 N. A. Watson [4]

THEOREM 2. Under the hypotheses of Theorem 1, there is a positive t0 such that

m({x: t°w(x,t) > 1}) > CMA)ta+l)n/("+1)

whenever 0 < t < t0.

PROOF. Since n is regular, we can find a compact subset of K of A such that
jti(AT) > n(A)/2, and an open superset Fof K such that n(V) < 2ix(A) (ignoring
the trivial case where p(A) = 0). Now let v be a point mass at x0 e A with
»>(R") = 2n(A). Then, inserting extra subscripts to distinguish between the two
measures, we have aAt,(r) = 2n(A) for all r > 0, and hence wA-M(r) < p(V) <
2fi(A) = u>A ,,(r) for all r < r0, where r0 is the distance between K and R" \ F in
the rf-metric. Next, S = 8a Ar(t) satisfies

so that

8 = (2yn,(A)t^)1A"+1\

Therefore 8 -» 0 as f -» 0, so that we can find fx > 0 such that 8 < r0 whenever
0 < t < tv Hence there are values of r less than r0 such that

yJtt+1r-"-WAr) < yKt"+1r-»-\*A<,(r) < 1.

It follows that, for / < tv we have

Theorem 1 now implies that, for all sufficiently small t,

m({x: taw(x,t) > 1}) >

By considering the case where ju is a point mass at the origin, it is easy to
verify, by direct calculation, that f(a+1)n/(n+1) can be the exact rate of decrease of
m({x: taw(x, t) > 1}) as / -» 0. The advantage of Theorem 2 over Theorem 1 is
that it does not mention 8a A, which may be defined only implicitly.

One consequence of the use of an arbitrary Borel set A, rather than R", in the
above results, is the following condition for absolute continuity.

THEOREM 3. Ifw is the Poisson integral of \i, and

liminf r" / ( n + 1 )m({;c: H>(A

then /x is absolutely continuous with respect to m.

liminf rn/in+l)m({x: w(x,t) > 1}) = 0,
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P R O O F . By Theorem 2, if (1) holds (with a = 0) /x-a.e. on a Borel set A, then

liminf r" / ("+ 1 )m({jc: w(x,t) > 1}) > Cnn(A)"/l"+1).
/-*o

Therefore our hypothesis implies that (1) can hold only on sets of /x-measure zero.
By the Lebesgue Decomposition Theorem, we can write ju = fia + ns, where na

and [is are non-negative measures, jua is absolutely continuous and fis is singular
(with respect to m). By Lemma 6.1 of [4], we have

jB,(G(x,r))r-"-»oo a s r ^ O
jura.e. on R". Therefore (1) holds (with a = 0) at every point of a set E with
/i,(R" \ E) = 0. But, from above, ju(£) = 0, so that fis(E) = 0 and hence ns is
null.

As an application of Theorem 3, we give a variant of the well-known result
that, if v is continuous on R" X [0, oo[, non-negative and harmonic on R" X ]0, oo[,
and i>(-,0) = 0, then v(x, t) = Ct for some constant C 3* 0.

THEOREM 4. Let v be non-negative and harmonic on R" X ]0, oo[. / /

m-a.e. on R", and

liminf v(x, t) = 0
t — 0

liminf t-"/(n+l)m({x: v(x,t)> 1}) = 0,
r--0

then there is a constant C such that v(x, t) = Ct throughout R" X ]0, oo[.

PROOF. Since v is non-negative and harmonic, we can write
v(x,t) = Ct + w(x,t)

for all {x, t) e R" x ]0, oo[, where C is a non-negative constant and w is the
Poisson integral of a non-negative measure n (see [5]). Since w < v, we can apply
Theorem 3 to w and deduce that ju is absolutely continuous with respect to m. In
view of the Fatou theorem [7, Theorem 1] and of Lebesgue's theorem on
differentiation of measures, v(x,0 + ) exists m-a.e. and dp(x) = v(x,0 + )dx. It
follows that w = 0.

3. The parabolic analogue of Theorem 1

We now consider the case of a weakly coupled parabolic system of second-order,
linear, partial differential equations:

-i n 3 2, n ", N
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396 N. A. Watson [6]

for k = 1 , . . . , N and (x, t) e R" X ]0, T[. We require the following properties of
the solutions of (3). Conditions on the coefficients which guarantee these proper-
ties are given in [3] or [4], where further details and references can be found.

(i) There exists a fundamental solution (or matrix) { Tij{x, t; y, s)}NXN, defined
and non-negative for all (x, t), (y, s) e R" X [0, T] such that t > s, which
satisfies

K(t - s)-"/2exp{-X\\x - y\\2/4(t - s)) < Tu(x, t; y,s)

for i = 1 , . . . , N, where K and X are positive constants. (See Section 4 of [4].)
(ii) A function « = ( « x , . . . , «#) is a non-negative solution of (3) if and only if

there are non-negative Borel measures n1,...,[iN on R" such that

(4) tii(x,t)=f

for i = l,...,N and (x, l ) e R " X ]0, T[, where the integrals are finite. (See
Theorem 1 of [3] and Theorem 5.1 of [4].) In the sequel, we shall always assume
that our measures are such that the integrals in (4) are finite,

(iii) If 0 < a < n, (4) holds, and

(5) j u , . ^ * , / - ) ) ' " - " - ^ a s r - 0

for some / and some x e R", then

ta/2ui(x,t) -> oo as ; -* 0.

(This follows easily from Corollary 6.1 of [4].)
We now develop analogues of Lemma 2 and Theorem 1. It is important for our

applications in Section 5 that we keep track of the values of our various constants,
and that these should be the best that our methods allow. We let x denote an
arbitrary, fixed number greater than 1.

LEMMA 4. Suppose that d{x, z) < r, that 0 < t < xr2> and that (4) holds. Then

(6) ut(x, t) > V ( texp(-Anr2 /0 |a , (e(z , r))r~\

where X and K are the same as in (i), and where mnK = KX'"/2-

PROOF. If d(x, z) < r and y e Q(z, r), then
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(7 ] Parabolic systems and Laplace's equation 397

It follows from (i) and (4) that, if 0 < t < xr2, then

[ ,

Kt'n/2 (_ exp(-X||x - y\\2/4t) dn
J Q ( )

For each integer / (1 < / < iV) and Borel set A, we denote the modulus of
continuity of /x, over A by uA<i.

Let irn K be the same as in (6). If 0 < a < n, and if A is a Borel set, we put

PA(*) = P..A.M = m f { ' : *»,.<a/2exp
foralWG]0,T[.

THEOREM 5. Suppose that 0 < a < n, that w, w giuen by (4), anJ r/iar (5) holds
Hra.e. on a Borel set A with Hj(A) < oo. T/ien there exists tQ > 0 sue/i

m({x: r«/2
M,(x,/) > 1}) > «B>./i((>4)/-/2eXp(-X/ip(,i/lj/(

whenever 0 < t ^ t0, where 6nK = ( 2 / 3 ) " X ~ ( " + 2 ) / 2 K -

PROOF. It follows from Lemma 1, and the regularity of ju,, that there is a
compact set K such that fi^K)^ Hj(A)/x and

M,-(6(*,'•))'•""" ^ oo asr -*O
uniformly for x in I Therefore we can find t0 > 0 such that, whenever
0 < r < *o/2> w e n a v e

(7) W n i ^ , ( e ( x , r ) ) r « - " > e x " for all x e iC.

Fix / e]0, f0]. For every x e « , put

P(x,t) = pa,,(x,t) = inf{r: •nn^
2cxp{-\nr2/t)lLi{Q(x,r))r-'' < l} .

Then

(8) P(x,r)<p^(/)
for all x G K. Furthermore, given x, there is a sequence { rA} which decreases to
p(x,t) and which is such that

for all &. Making k -» oo, we deduce that

(9) V ) t r / 2exp(-X«p(*, /)2A)M,(e(^, P(x, /)))p(*. 0"
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398 N. A. Watson [8]

Next, if 0 < r < tl/2, then it follows from (7) that

ffn K/o/2exp(-X/jr2/f)/i,((2(jc,r))r~" > ta/2exp(-\nr2/t)r~aex"

> 1.
Therefore, for all x e ^ . w e have

{W) t ^ p\X, t).
Since K is compact, and since the family

{Q{x,p(x,t)/3):x<EK}

of open cubes covers K, we can select a finite subfamily & which also covers K.
By Lemma 3, IF has a subfamily

(11) {Q(xhp{xht)/3):l=l,...,q}

of disjoint cubes such that
i

KQ\J Q(x,,p(x,,t)).

Therefore

It now follows from (9) and (8) that

a/2 / ^ \ V™1 / \

1=1

i

< Xexpy\npA(t) /t) ^3 p(xh ' )"•
/=i

Therefore, because the cubes in the family (11) are disjoint, we obtain

(12)

= E m{Q{x,,p{x,,t)/i))
i-i

J Q(x,,p(xl,t))\.

If y belongs to the set whose measure is the last term in (12), then y e Q(z, p(z, t))
for some z e AT. Since J ( j , z) < p(z, 0, and since (//x)1 / 2 < p(^, 0 by (10), we
can choose r such that / < xfl and d(y, z) < r < p(z, t). Therefore, by Lemma
4,

f/2
Ui(y,t) > nn,Kta/
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since r < p{z,t). Therefore (12) implies that

et,,Kt'^l(A)CXp{-\npA(t)2/t) < m{{y: t^2
Ui(y,t) > l}),

as required.

4. The parabolic version of Theorem 2

Theorem 5 is analogous to Theorem 1, and a comparison of the two yields no
real surprises. The situation is different, however, for Theorem 2 and its analogue,
Theorem 6 below. In Theorem 2, the parameter a appears as a power of /, while
p(A) appears as a multiplicative factor; in Theorem 6, a appears only as part of a
multiplicative constant, and Hj(A) is completely absent. We must therefore
assume that nt(A) > 0.

THEOREM 6. Suppose that 0 < a < n, that ui is given by (4), and that (5) holds
fij-a.e. on a Borel set A with 0 < fij(A) < oo. Then we can find t0 > 0 such that

m{{x: f*ut{x,t) > 1}) > A n > - a)"/2\t log t\"/2

whenever 0 < t < /0, where An x = 2 / > / 2 3""x""" 3 (An)"" / 2 .

PROOF. Let c be a point mass at x0 e A with v{A) = xPj(A), so that
w^ „(/•) = xPi(A) for all r > 0. The method for proving Theorem 6 is basically
similar to that for Theorem 2, and so we want to find p = pa A „(/) which satisfies

Xii,(A)^,Kta/2exp{-Xnp2/t)p-" = 1.
Since p is defined only implicitly, we shall have to manage with an approximation
to p for small /.

Consider the function a defined by

for all small positive T, where T = t/X, and where

a = (n - a ^ X

As / -> 0, we have

ta/2exp(-Xna2/t)a-"

= (\T)a/2exp(-«a2A)o""

= \ " / 2 {2a log T/log(-aT<"-a>/n log T ) } "/2
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thus

as t -> 0. Put

f(r,t) = x / t , (^ )^ ,«^
for all r > 0 and f > 0, and put f(f) = a{t/\). Then

/ ( £ ( r ) , 0 - » l asr-»O,
and

/ (p (f), t) = 1 for all sufficiently small t,

so that

(13) / t t ( 0 , 0 ~ / ( p ( 0 . 0 as/-»O.
We assert that

(14) f (O~p(O as*-»0.
If (14) is false, then there is rj > 0 and a null sequence {tk} such that either

*"(/*)> (1 + i | )p (O or p ( f j > (1 + i»K('t)
for all k. We suppose that the former is the case; the proof for the latter is
similar. For each fixed t, the function / ( - , t) is strictly decreasing, so that

for all k. Therefore

< (1 + VT"
for all A:, contrary to (13). Thus (14) is proved, so that

(15)

as f -» 0.
We can now complete the proof. Since /i, is regular, we can find a compact

subset K of A such that nt(K)^ iit(A)/x, and an open superset V of K such
that /x,(K) < xf-i^A). With »> as above, we have

for all r < r0, where r0 is the distance between K and R" \ V in the ^-metric. In
view of (15), p -» 0 as r -» 0, so that we can find ^ > 0 such that p < r0

whenever 0 < t < tv Hence there are values of r less than r0 such that
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[11] Parabolic systems and Laplace's equation 401

It now follows that

Therefore, by Theorem 5,

m({x: t^2u,{x,t) > 1}) > ^) l t / i ,

Since f(p(t), t) = 1 for all sufficiently small t, it follows that

«({*: t^2u,(x,t) > 1}) > fB,,x-V>(')"
In view of (15) we have, as t -* 0,

|/log/| ^

-* (n - a)/2xX«.

Therefore, for all sufficiently small f, we have

and hence

m({x: t^ut{x,t) > 1}) > AB,X(« - a)n/2

as required.

The result of Theorem 6 is sharp for every value of a, in the sense that
\t logf |"/2 can be the exact rate of decrease of m({x: ;a / 2«,(x, t) > 1}) as / -» 0,
at least for the case of the heat equation (N = 1). This can be verified by direct
calculation by taking JMX to be a point mass at the origin (since the lower estimate
for F,, in (i) is then an identity). However, it is extremely unlikely that the
constant An x is the best possible, and this is slightly unfortunate when we come
to consider applications in the next section.

5. Applications in the parabolic case

The theorems of this section are parabolic analogues of Theorems 3 and 4.
However, the precise forms of the parabolic results are significantly different to
those of their harmonic counterparts, due to the absence of ]u,(/4) from the
conclusion of Theorem 6.
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402 N. A. Watson [12]

THEOREM 7. / / « , « given by (4), and if

(16) liminf |rlogrr"/2ro({jc: «,•(*, 0 > 1}) < (2/9X)"/2,

f/ien ju., w absolutely continuous with respect to m.

PROOF. Condition (16) implies that there is a null sequence {tk} such that the
sequence {\tk\ogtk\~"/2m({x: ui(x,tk)>l})} converges to a limit <j> <
(2/9X)"/2. Choose X o > 1 such that </> < X5""3(2/9X)"/2. Then, for any t0 > 0,
we can find k such that tk < t0, and

m({x: u,(x,tk) > 1}) < Xo"-3(2/9\r/2\tklogtk\
n/2.

Therefore Theorem 6 (with a = 0 and x = Xo) implies that (5) does not hold on
any Borel set A with 0 < Hj(A) < 00. Hence (5) can hold (with a = 0) only on
sets of ju(-measure zero, and the proof can be completed by the argument in the
last paragraph of the proof of Theorem 3.

The principal difference between Theorem 7 and its harmonic counterpart is
that the lower limit in (16) can be positive. The constawnt (2/9X)"/2 is derived
from the constants in the earlier theorems, and this is why it was important to
keep them as large as possible; but it is most unlikely to be the best possible. If
we reconsider the case of the heat equation, with nl a point mass, which showed
that the rate of decrease \t log t\n/1 is exact, we get

Jim \t\ogt\'"/2m({x: Ul(x,t) > 1}) = vn(2n/\)n/\

where vn = ir"/2/T((n + 2)/2) is the volume of the unit ball in R". This gives an
upper bound for the best constant.

THEOREM 8. Let u = (uv..., uN) be a non-negative solution of (3) on R" X
]0, T[. If, for every i, we have

(17) liminf ut(x,t) = 0
r-»0

m-a.e. on R", and (16) holds, then u = 0 on R" X ]0, T[.

PROOF. By (ii), each M, is given by (4). Since (16) holds for all /, Theorem 7
implies that each jit, is absolutely continuous with respect to m. Since (17) holds
for all i, the Fatou theorem [4, Theorem 3.1] implies that each ju, is null.
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Added in proof

The constants in the parabolic case can be improved by using balls instead of
cubes throughout. Hence, in particular, Theorem 7 holds with (2/9X)"/2 replaced
b y tf/2
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