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Homological realization of Nakajima varieties and

Weyl group actions

Igor Frenkel, Mikhail Khovanov and Olivier Schiffmann

Abstract

We give a realization of Nakajima varieties and the action of the Weyl group on them
using certain canonical structures of homological algebras and their natural generalization,
which we develop in this paper. We consider in detail the case of an affine quiver, where
we present a simple homological characterization of Nakajima varieties and its relation to
moduli of sheaves on the projective plane.
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Introduction

A geometric approach to the representation theory of Kac–Moody algebras was given by Nakajima
in the groundbreaking work [Nak94], which was a culmination of a series of remarkable discoveries
discussed in the introduction to his paper. For any simply laced Kac–Moody algebra g with triples
of generators (ea, ha, fa)a∈I indexed by a finite set I, Nakajima constructed a family of complex
varieties Mζ(v,w), where v,w ∈ NI and ζ ∈ R3 ⊗ RI such that, for any generic ζ,

dimHmid(Mζ(v,w)) = dimLλ[λ− α],

where Lλ is the integrable highest weight g-module of highest weight λ, where Lλ[λ − α] is the
corresponding weight space, and where

α =
∑

a

vaαa, λ =
∑

a

waωa,

for (αa)a∈I , (ωa)a∈I the set of simple roots and fundamental weights, respectively. Nakajima realized
the action of the generators (ea, ha, fa)a∈I in a geometric way, the contravariant form on Lλ, and
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indicated the geometric meaning of the Weyl group action on weight spaces

σ : Lλ[λ− α] ∼→ Lλ[σ(λ− α)].

The action of the Weyl group on the underlying quiver varieties was further developed by Lusztig
[Lus00], Maffei [Maf02], and Nakajima [Nak03].

Nakajima varieties are defined in terms of certain data attached to the Dynkin diagram Q of
the Kac–Moody algebra g. This data can be viewed as a generalization of the Atiyah–Drinfeld–
Hitchin–Manin description of the instanton moduli spaces. Correspondingly, various structures of
representation theory of Kac–Moody algebra g including the action of the Weyl group on highest
weight modules were described in terms of this linear data. We will review the original constructions
relevant to our present work in § 1.

In this paper, we interpret the data and, consequently, Nakajima varieties, via differential graded
modules over a finite-dimensional quotient A(Q) of the double path algebra of Q. Defining relations
in this quotient algebra depend on the choice of orientation ε of Q, but different orientations produce
isomorphic algebras. The algebra A(Q) is the quadratic dual of the preprojective algebra of the
(oriented) graph Q and has a Frobenius structure. If Q is bipartite (see § 5), A(Q) is isomorphic
to the zigzag algebra of Q studied in [HK01]. Let us denote A(Q) simply by A.

Our realization of the Nakajima varieties allows us to view their theory in the context of homo-
logical algebra. In particular, simple A-modules Sa and projective A-modules Pa are the basic
building blocks in our picture. Furthermore, we give a natural interpretation of the Weyl group
action on Nakajima varieties, with the simple reflection sa acting as homological ‘addition’ and
‘substraction’ of the projective module Pa. This Weyl group action comes from a modification of
the braid group action in the derived category of A-modules, see [KS02, ST01, RZ03, HK01].

The theory of Nakajima varieties also suggest certain generalizations of some classical notions
and results in homological algebra. In fact, our constructions depend in an essential way on the
value of the parameter ζ = (ζR, ζC), where ζR ∈ RI and ζC ∈ CI . If ζC = 0 then we use the standard
theory of differential graded algebras and complexes of modules over them. On the other hand, when
ζC �= 0 we are led to consider modules over A equipped with a generalized differential d, which is a
degree 1 map satisfying

d2 = c

for a suitable central element c ∈ A. We introduce categories of (A, c)-complexes in § 2.
To define the Weyl group action we are then forced into 2-periodic generalized complexes, which

we call duplexes. The theory of duplexes, which we outline in § 3, can be developed in parallel with
some classical results of homological algebra and seems to be worthy of a deeper, independent study.

In § 4 we consider another way of deforming the derived category of A-modules: by a theorem
of Happel [Hap88], this derived category is equivalent to the stable category of graded modules
over the algebra A ⊗̇ C[d]/d2, where ⊗̇ denotes the super tensor product. We introduce the stable
category of A ⊗̇ C[d]/〈d2 − c〉 and relate this to the category of (A, c)-duplexes.

Our interpretation of Nakajima varieties Mζ(v,w) is given in § 5, and is set-theoretic, consisting
of a bijection between the set of points of Mζ(v,w) and certain isomorphism classes of differential
A-modules. Let (Va)a∈I , (Wa)a∈I denote collections of vector spaces of dimensions (va)a∈I and
(wa)a∈I , respectively. We consider Z/2Z-graded A-modules M equipped with a generalized differ-
ential d such that d2 = c, where c is ζC, viewed as a central element of A, and

M ∼=
⊕

a

(Pa ⊗ Va ⊕ Sa[−1] ⊗Wa), (0.1)

where [−1] denotes a grading shift, and the isomorphism is that of A-modules. When ζC is not
generic (for example, ζC = 0), we add an irreducibility condition with respect to d, analogous
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to a stability condition. We show that the set of classes of pairs (M,d) as above is in a natural
bijection with the set of GW -orbits of the quiver variety Mζ(v,w), where GW =

∏
a GL(Wa).

The full variety Mζ(v,w) is obtained by fixing, in addition, an isomorphism (framing) Wa 	
HomA(Sa[−1],M) for a ∈ I.

To obtain a realization of the Weyl group action, we consider a duplex of A-bimodules Ca,x

associated to a vertex a of Q:
→ Pa ⊗ aP → A→

where x ∈ C and one of the bimodule maps depends on x. We show in § 6 that duplexes Ca,x are
invertible in the homotopy category (as well as in the stable category),

Ca,x ⊗A Ca,−x
∼= A,

and satisfy Yang–Baxter relations:

Ca,x ⊗ Cb,y
∼= Cb,y ⊗ Ca,x

for any two vertices a and b which are not joined by an edge, and

Ca,x ⊗ Cb,x+y ⊗ Ca,y
∼= Cb,y ⊗ Ca,x+y ⊗ Cb,x

for a and b joined by a single edge. In the limit x → 0 our duplexes degenerate into those used to
categorify the Burau representation of the braid group, see [KS02].

Points of Nakajima varieties Mζ(v,w) can be identified with certain isomorphism classes of
A-duplexes. The functor of the tensor product with the bimodule duplex Ca,x acts in categories
of A-duplexes and restricts to a bijection

Ra : Mζ(v,w) ∼→ Msa·ζ(sa · (v,w)),

where sa is a simple reflection. We show in § 7 that our reflection maps coincide with those in
[Lus00, Maf02, Nak03].

The class of Kac–Moody algebras associated to affine Dynkin diagrams plays a very special role
in representation theory. The corresponding class of quivers is also distinguished in the Nakajima
theory since it appears in the study of the instanton moduli spaces. It is well known that simply-laced
affine Dynkin diagrams are in a bijection with finite subgroups Γ ⊂ SL(2,C) and it is natural to
reformulate Nakajima’s work entirely in terms of these finite groups. In § 8 we recast our realization
of Nakajima varieties in this light. We replace A by the Morita equivalent algebra AΓ = Λρ⊗C[Γ],
where ρ is the natural two-dimensional representation of Γ. To a collection of vector spaces (Va)a∈I

and (Wa)a∈I we now associate two Γ-modules

V =
⊕

a

ρa ⊗ Va, W =
⊕

a

ρa ⊗Wa,

where (ρa)a∈I is the set of all irreducible representations of Γ. The module M in (0.1) is replaced
by the following

M = Λρ⊗ V ⊕ W[−1]. (0.2)
The latter can be viewed as a module over ÃΓ,c = AΓ ⊗̇ C[d]/〈d2 − c〉, where c is a central element
of AΓ which depends linearly on ζC. It turns out that we can characterize modules of the form (0.2)
as a certain class of elements of the stable category of Z/2Z-graded ÃΓ,c-modules Mod2(ÃΓ,c). This
yields a realization of Nakajima varieties via isomorphism classes of pairs (M,u), where M is an
object of Mod2(ÃΓ,c) and u : W → R(M) is a fixed isomorphism, with R(M) being the restriction
of the module M to AΓ.

The relation between this realization of the Nakajima varieties by means of the stable category
Mod2(ÃΓ,c) and the realization as a moduli space of Γ-equivariant torsion-free sheaves on a non-
commutative P2 with fixed framing at infinity (presented in [BGK]) is explained in § 9. In fact, one
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may view such torsion-free sheaves as modules over the algebra Koszul dual to ÃΓ,c, see [BGK, Ap-
pendix B]. Thus, our construction illustrates a noncommutative version of the classical theorem of
[BGG78] claiming that when Γ = {e} and c = 0 (the case of commutative P2), the derived category
of coherent sheaves over P2 is equivalent to the stable category of ÃΓ,c. Finally, we reformulate the
action of the Weyl group on quiver varieties via certain natural duplexes of AΓ-bimodules.

We believe that the realization of the Nakajima varieties and Weyl group actions by means of
natural categorical constructions presented in this paper is only a first step in a more general program
of recasting the Nakajima geometric approach to representation theory of Kac–Moody algebras in
terms of canonical structures of homological algebra. We hope that the emerging interaction between
the two areas will be beneficial to both subjects. Below we will make a few remarks about further
developments of both areas inspired by our constructions.

As we mentioned in the beginning of the introduction, the Nakajima varieties encode the struc-
ture of the integrable highest weight modules Lλ. The latter modules possess rich structures asso-
ciated with the corresponding Weyl group W. On the one hand, each module Lλ contains a family
of Demazure submodules Lλ,w defined for any w ∈ W. On the other hand, each module Lλ admits
the Bernštĕın–Gel’fand–Gel’fand (BGG) resolution by Verma modules Vw·λ, where again w ∈ W
(see, e.g., [Kum02] for a review of both constructions). It is natural to expect that our realization
of the action of W on Nakajima varieties should lead to a transparent geometric construction of
the Demazure modules as well as the BGG resolution.

Concerning the applications to homological algebra, the example studied in this paper already
suggests the following generalizations of algebraic structures:

abelian −→ triangulated
Z-graded −→ Z/2Z-graded

d2 = 0 −→ d2 = c.

Starting with an abelian category of modules over a ring, we pass to the triangulated category of
complexes (the top arrow in the diagram). This arrow is the familiar advancement from the classical
theory of modules over a ring to homological algebra. The bottom arrows refer to two more recent
developments where:

• one gains from working with periodic triangulated categories, those with [2k] ∼= Id for some k
(case k = 1 seems especially important);

• differential modules acquire curvature (the square of differential is no longer zero).

Both transformations are natural from the deformation theory viewpoint. When the cohomology
ring of a symplectic manifold is deformed to the quantum cohomology ring, its Z-grading collapses
to a Z/2kZ-grading, where k is the minimal Chern number (see [MS94, Section 1.7]), and the
shift functor in the A∞ triangulated Fukaya–Floer category of the manifold is periodic, [2k] ∼= Id.
Deforming d2 = 0 to d2 = c is as legitimate as deforming the ring structure, when one is describing
all deformations of the homotopy category of modules over a (graded) ring. We should also mention
the paper of Peng and Xiao [PX00], where 2-periodic triangulated categories appear in relation to
Hall algebras.

1. Nakajima varieties

We recall the definition of Nakajima quiver varieties. Let Q = (I,E) be an arbitrary finite graph
with I the set of vertices and E the set of edges. We allow Q to have loops and multiple edges. Let
H be the set of oriented edges of this graph (thus H is ‘twice as large’ as E). For any h ∈ H we
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o(h) i(h)

h

h

Figure 1. Two orientations of an edge.

denote by o(h) and i(h) the outgoing and incoming vertices of h, respectively, and by h the edge h
with the opposite orientation, see Figure 1.

Let (v,w) ∈ NI × NI with v = (va)a∈I and w = (wa)a∈I . Fix some I-graded C-vector spaces
V =

⊕
Va and W =

⊕
Wa such that dimV = v and dimW = w. Set

E(V, V ) =
⊕
h∈H

Hom(Vo(h), Vi(h)),

L(V,W ) =
⊕

a

Hom(Va,Wa), L(W,V ) =
⊕

a

Hom(Wa, Va)

and

M(v,w) = E(V, V ) ⊕ L(W,V ) ⊕ L(V,W ).

An element of M(v,w) will usually be denoted by its components (B, i, j).

Let ε : H → {1,−1} be any function satisfying ε(h) + ε(h) = 0 for all h ∈ H. Such functions
are in a bijection with orientations of Q, the ε-orientation consists of all edges h with ε(h) = 1.
Consider the maps

µC : M(v,w) −→
⊕

a

gl(Va),

(B, i, j) −→
( ∑

o(h)=a

ε(h)BhBh + iaja

)
a

,

and

µR : M(v,w) −→
⊕

a

u(Va),

(B, i, j) �→
√
−1
2

( ∑
o(h)=a

BhB
�
h
−B�

hBh + iai
�
a − j�aja

)
a

.

In the above, f� denotes the Hermitian adjoint of f . Following Nakajima, to ζR ∈ RI we associate a
central element ζR =

∑
a(
√
−1ζR,a/2) Id ∈

⊕
a u(Va), and to ζC ∈ CI we associate a central element

ζC =
⊕

a ζC,a Id ∈
⊕

a gl(Va). The group UV =
∏

a U(Va) acts on M(v,w) by conjugation. Finally,
we put

Mζ(v,w) = (µR × µC)−1(ζR, ζC)/UV ,

where ζ = (ζR, ζC). Different choices of ε yield isomorphic varieties.

1.1 When ζR ∈ ZI there is also a purely complex-geometric description of Mζ(v,w).
Note that the group GV =

∏
a GL(Va) acts on M(v,w) by conjugation. To ζR we associate
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the character χζR : GV → C∗, (ga)a �→
∏

a det(ga)ζR,a . Following Nakajima [Nak94], we have

Mζ(v,w) 	 Proj
(⊕

n�0

An
ζR

(v,w)
)
,

where
An

ζR
(v,w) = {f ∈ C[µ−1

C
(ζC)] | f(g · (B, i, j)) = χζR(g)

nf((B, i, j)) ∀g ∈ GV }.

There is an open subset Mss
ζ (v,w) ⊂ µ−1

C
(ζC) of semistable points such that Mζ(v,w) =

Mss
ζ (v,w)//GV (categorical quotient). We will mainly be interested in the following two cases.

(i) ζR ∈ (N+)I and ζC = 0. In this case (B, i, j) ∈ Mss
ζC

(v,w) if the following condition is satisfied:
the only (graded) B-invariant subspace of V contained in Ker j is {0}.

(ii) ζR is arbitrary and ζC satisfies the following genericity condition: for every n1, . . . , nk ∈ Z,
we have

∑
a naζC,a = 0 ⇒ na = 0 for all a. In this case, all points (B, i, j) in µ−1

C
(ζC) are

semistable (and, in fact, all points (B, i, j) in µ−1
C

(ζC) automatically satisfy the condition in
case (i)).

In the two above cases, GV acts freely on Mss
ζ (v,w) (see, e.g., [Nak94]), so that the categorical quo-

tients are actually geometric (smooth) quotients. Note also that, in case (ii), the variety Mζ(v,w)
is actually independent of ζR.

1.2 To the graph (I,E) we associate a symmetric |I| × |I| Borcherds matrix A = (aij) with

aij = 2δij − #{h ∈ H | i(h) = i, o(h) = j}.
Let Ire ⊂ I be the set of all loopless vertices (characterized by the relation aii = 2). To A corre-
sponds a Borcherds algebra (or generalized Kac–Moody algebra) g (see [Bor88]). Let us fix a Cartan
decomposition g = n− ⊕ h ⊕ n+ and let αa and ωa (respectively α∨ and ω∨

a ) stand for the simple
root and fundamental weight (respectively simple coroot and fundamental coweight) associated to
a vertex a. We put

Q =
⊕

s

Zαa, P =
⊕

a

Zωa.

We also set Q∨ =
⊕

a Zα∨
a and P∨ =

⊕
a Zω∨

a and we denote by 〈·, ·〉 the natural pairing between
h and h∗. We consider v,w, ζR and ζC as elements of h∗ via the identifications

v �→
∑

a

vaαa, w �→
∑

a

waωa, ζR �→
∑

a

ζR,aωa, ζC �→
∑

a

ζC,aωa.

1.3 We say that the parameter ζ is generic when

For every ν ∈ P∨,we have 〈ν, ζR〉 �= 0 or 〈ν, ζC〉 �= 0 (1.1)

The variety Mζ(v,w) is smooth whenever ζ is generic. Moreover (for fixed v and w), the
varieties corresponding to generic parameters are all diffeomorphic [Nak94, Corollary 4.2].

1.4 The Weyl group W of g is defined to be the subgroup of Aut(h∗) generated by reflections

sa : α �→ α− 〈α,α∨
a 〉αa

for a ∈ Ire. Note that W acts on Q. The dual action on Q∨ is given by

sa : α∨ �→ α∨ − 〈αa, α
∨〉α∨

a . (1.2)

Moreover, 〈·, ·〉 induces a perfect pairing between P and Q∨, and thus (1.2) gives rise to an action
of W on P by duality.
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With this convention, W acts on ζR and ζC via the identifications in § 1.2. We also define an
action on pairs (v,w) by σ · (v,w) := (σ(v − w) + w,w). Following [Lus00] (see also [Nak94]),
Maffei [Maf02] defined, for generic ζ, isomorphisms

κσ : Mζ(v,w) ∼→ Mσ·ζ(σ · (v,w)).

Let us consider the situation when ζC is generic as in § 1.1 case (ii) (so that ζ is generic). In that
situation, it is more convenient to use the purely complex description of the quiver variety given
in § 1.1. In the case of a simple reflection sa, the construction is as follows. Let (B, i, j) ∈ Mss

ζ (v,w).
Define vector spaces V ′

k,W
′
k by V ′

k = Vk if k �= a,

V ′
a =

(
Wa ⊕

⊕
o(h)=a

Vi(h)

)/(
ja +

∑
o(h)=a

Bh

)
Va

and W ′
k = Wk for all k. Let Z be the set of all (B′, i′, j′) ∈ Msaζ(v′,w′) such that:

(i) B′
h = Bh if i(h) �= a and o(h) �= a;

(ii) ik = i′k and j′k = jk if k �= a;
(iii) set

xa = ja ⊕
⊕

o(h)=a

Bh : Va →Wa ⊕
⊕

o(h)=a

Vi(h),

ya = ia ⊕
⊕

i(h)=a

ε(h)Bh : Wa ⊕
⊕

i(h)=a

Vo(h) → Va

and define x′a and y′a in a similar fashion. The sequence

0 → Va
xa−→Wa ⊕

⊕
o(h)=a

Vi(h)

y′
b−→ V ′

a → 0

is exact, and xaya = x′ay′a − λa Id.

Then (see [Maf02]), Z is a principal GL(Va)-homogeneous space. Thus, it corresponds to a unique
point κsa(B, i, j) ∈ Msaζ(v′,w′) = Msaζ(sa · (v,w)).

2. Categories of (A,c)-complexes

2.1 Let A be a Z-graded ring and c a central element of A of degree 2. We denote by Z2(A) the
degree 2 summand of the center of A, so that c ∈ Z2(A).

Definition 1. A left (A, c)-complex is a Z-graded left A-module M together with a degree one
map d : M →M such that

d2 = c,

and d (super)commutes with the action of A:

d(am) = (−1)|a|ad(m), a ∈ A,m ∈M.

A morphism of (A, c)-complexes is a degree zero morphism of A-modules which commutes
with d. The category Com(A, c) of left (A, c)-complexes is abelian. The translation functor [1] in the
category Com(A, c) is defined by

(M [1])i = M i+1, d[1] = −d,
and the A-module structure on M [1] is

a ◦m = (−1)|a|am.
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Alternatively, we may define a Z-graded algebra Ãc = A ⊗̇ C[d]/(d2 − c) with da = (−1)|a|ad
and deg(d) = 1. Then Com(A, c) is nothing but the category Mod(Ãc) of graded left Ãc-modules.

2.2 Let M andN be left (A, c)-complexes. Given a morphism of graded A-modules h : M → N [−1],
the map f = hdM + dNh is a morphism M → N of (A, c)-complexes. Any such morphism is called
null-homotopic. The following result is clear.

Proposition 2.1. Null-homotopic morphisms form a two-sided ideal in the category Com(A, c).

We say that morphisms f, g : M → N are homotopic and write f ∼ g if f − g is null-homotopic.
Define the homotopy category K(A, c) as follows. Objects are (A, c)-complexes and for any two
(A, c)-complexes M and N we put

HomK(A,c)(M,N) = HomCom(A,c)(M,N)/ ∼ .

Categories Com(A, c), as well as K(A, c), for various c ∈ Z2(A), might have common objects. If
M ∈ Com(A, c) and c′M = 0 for some c′ ∈ Z2(A) then M ∈ Com(A, c+ c′).

2.3 Tensor product of left and right (A,c)-complexes
If M is a right graded A-module and N a left graded A-module, the tensor product M ⊗A N is a
graded abelian group. If M is a right (A, c)-complex and N a left (A,−c)-complex, then M ⊗A N
is a complex of graded abelian groups with the differential

d(m⊗ n) = dm ⊗ n+ (−1)|m|m⊗ dn,

since

d2(m⊗ n) = d2m⊗ n+m⊗ d2n = mc⊗ n+m⊗ (−c)n = 0.

2.4 Bimodules

Let c0, c1 ∈ Z2(A). An (A, c0, c1)-complex is a graded A-bimodule N together with a degree one
map d : N → N such that d2 = lc0 + rc1, (where lc0 is left multiplication by c0 and rc1 is right
multiplication by c1), d (super)commutes with the left action of A:

d(an) = (−1)|a|adn, a ∈ A,n ∈ N,

and commutes with the right action of A.
If M is a left (A,−c1)-complex, the tensor product N ⊗A M is a left (A, c0)-complex. Thus,

the tensor product with N is a functor from Com(A,−c1) to Com(A, c0), and from K(A,−c1)
to K(A, c0).

3. Categories of duplexes

3.1 Let A be a Z/2Z-graded ring, A = A0 ⊕A1, and c a degree zero central element of A. A duplex
over (A, c) is a Z/2Z-graded A-module M = M0 ⊕M1 with a generalized differential

M0 d−→M1 d−→M0 (3.1)

which supercommutes with the action of A and satisfies d2(m) = cm for all m ∈M . A duplex over
(A, 0) is simply a 2-periodic complex of A-modules. An (A, c)-duplex for c �= 0 can be viewed as a
2-periodic ‘complex’ with the differential satisfying d2 = c rather than d2 = 0.
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A homomorphism f : M → N of (A, c)-duplexes is a degree zero A-module map that commutes
with the differentials:

M0 d ��

f0

��

M1 d ��

f1

��

M0

f0

��
N0 d �� N1 d �� N0

We denote by Com2(A, c) the category of (A, c)-duplexes. The shift functor [1] in this category is
2-periodic, [2] ∼= Id. The category Com2(A, c) is abelian. We will often write duplexes in the form

d−→M0 d−→M1 d−→

Given maps f : M → N and g : N → M of (A, c)-duplexes such that fg = c1 and gf = c1 for
some degree zero central element c1 of A,

M0
dM ��

f0

��

M1
dM ��

f1

��

M0

f0

��
N0

dN ��

g0

��

N1
dN ��

g1

��

N0

g0

��
M0

dM �� M1
dM �� M0

the cone of (f, g) is defined as the ‘total’ (A, c + c1)-duplex of the above diagram,
d−→M0 ⊕N1 d−→M1 ⊕N0 d−→

with d = dM − dN + f + g.

We will also use a less precise notation
g−→M

f−→ N
g−→ for the cone of (f, g).

Note that we may once again think of Com2(A, c) as the category of Z/2Z-graded left
Ãc-modules, where Ãc is defined as in § 2.

3.2 Given an A-homomorphism h : M → N [−1], the map f = hdM + dNh is a morphism M → N
of duplexes. We will say that morphisms f, g : M → N are homotopic if f − g = hdM + dNh for
some h. The following is straightforward.

Proposition 3.1. Null-homotopic morphisms form a two-sided ideal in the category Com2(A, c).

We call the quotient category of Com2(A, c) by this ideal the homotopy category of
(A, c)-duplexes and denote it by K2(A, c).

Example. For an A-module M let Mc,1 be the duplex
1−→M

c−→M
1−→, (3.2)

which is the cone of (c, 1). The identity morphism of Mc,1 is null-homotopic, and Mc,1 is isomorphic
to the zero object in the homotopy category of duplexes.

Remark. If c is invertible, any (A, c)-duplex is trivial in the homotopy category, and the category
K2(A, c) is trivial. The case of noninvertible c is more interesting. If A is artinian, any element of
A is either invertible or nilpotent, and the only nontrivial case is that of nilpotent c.

Proposition 3.2. If M is an (A, c)-duplex and I an injective Z/2Z-graded A-submodule of M
such that d is injective on I and I ∩ dI = 0, then M is isomorphic in the homotopy category to its
quotient by the subduplex generated by I:

M ∼= {−→M0/(I0 ⊕ d(I1)) −→M1/(I1 ⊕ d(I0)) −→}.

1487

https://doi.org/10.1112/S0010437X05001727 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001727


I. Frenkel, M. Khovanov and O. Schiffmann

The proof is again straightforward.

3.3 Duplexes of bimodules
Tensor product with a duplex N of A-bimodules such that d2 = lc0 + rc1 is a functor from
Com2(A,−c1) to Com2(A, c0) and from K2(A,−c1) to K2(A, c0).

4. Stable categories

4.1 Let A be a Z-graded ring and c ∈ Z2(A) a degree two central element. Let Mod(A) denote
the stable category of Z-graded A-modules (see, e.g., [Hap88]). Its objects are Z-graded A-modules
and for any modules M and N we have

HomMod(A)(M,N) = HomA(M,N)/I

where I is the ideal of all morphisms f : M → N which admit a factorization f = g ◦ h where
h : M → P, g : P → N for some projective module P . In particular, an object M of Mod(A) is
isomorphic to the zero object if and only if it is projective as an A-module. We define the stable
category Mod(Ãc) in a same way. Since Ãc is projective (in fact, free) as an A-module, there is a
natural restriction functor R : Mod(Ãc) → Mod(A).

There is a canonical functor Φ : Mod(Ãc) 	 Com(A, c) → K(A, c).

Lemma 4.1. For any projective Ãc-module P we have Φ(P ) = 0.

Proof. Let {P ′
i} be the collection of indecomposable projective A-modules. It is easy to check

that Pi = Ãc ⊗A P ′
i is an indecomposable projective Ãc-module, and hence that {Pi} forms the

complete collection of indecomposable projectives for Ãc. However, Pi = P ′
i ⊕ P ′

i [−1] as A-module
and d : P ′

i
∼→ P ′

i [−1], so that Pi is homotopic to zero as an (A, c)-complex. �

We deduce that the functor Φ admits a factorization

Mod(Ãc) 	 Com(A, c) Φ1−→ Mod(Ãc)
Φ2−→ K(A, c). (4.1)

Similar results hold for Com2(A, c), Mod2(Ãc) and K2(A, c) if A is a Z/2Z-graded ring.

4.2 Proposition 3.2 admits the following straightforward generalization.

Proposition 4.1. If M is an (A, c)-duplex and I an injective and projective Z/2Z-graded
A-submodule of M such that d is injective on I and I ∩ dI = 0, then M is isomorphic in the
stable category Mod2(Ãc) to its quotient by the subduplex generated by I:

M ∼= {−→M0/(I0 ⊕ d(I1)) −→M1/(I1 ⊕ d(I0)) −→}.

5. Homological realization of Nakajima varieties

5.1 Let Q = (I,E),H and ε be as in § 1.1. We can view (I,H) as the oriented double of the
unoriented graph Q. Consider the path algebra of (I,H). Note that in this algebra the product hh′

of two length one paths is nonzero if and only if i(h) = o(h′).
Define the C-algebra A(Q) as the quotient of this path algebra by relations:

(i) hh′ = 0 if h′ �= h;

(ii) ε(h)hh = ε(h′)h′h′ if o(h) = o(h′).

Relations of the second type say that ε(h)hh in the quotient algebra depends only on the outgoing
vertex of h. We denote Xa = ε(h)hh where a = o(h).
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If the graph has only two vertices, a and b, and one edge connecting them, we let A(Q) be the
quotient of the path algebra by relations hhh = 0 = hhh (where h is one of the orientations of
the edge and h is the reverse of h). If the graph has only one vertex a, and no edges, define A(Q)
as the exterior algebra on one generator Xa, and place it in degree 2 to make A(Q) graded. If the
graph has more than one vertex, we grade A(Q) by lengths of paths. The graded algebra A(Q) is
(up to isomorphism) independent of the choice of the orientation ε.

For simplicity, we will write A instead of A(Q). The algebra A is finite-dimensional, dim(A) =
2(|I| + |E|). Any path of length at least 3 equals 0 in A.

Note that Xa (see above) is central, and Xa, over all vertices a, form a basis for the degree 2
subspace of A.

A length 0 path (a), for a vertex a ∈ I, is a minimal idempotent in A, and 1 =
∑

a(a).

Example. If Q has one vertex and one loop, A is isomorphic to the exterior algebra on two generators
h, h:

A ∼= C〈h, h〉/h2 = h
2 = hh+ hh = 0.

The trace tr : A→ C defined by

tr(Xa) = 1, tr(h) = tr((a)) = 0,

makes A into a graded Frobenius algebra. Note that A is symmetric (but with respect to a different
trace) if and only if Q is bipartite (i.e. if it is possible to partition the set of vertices of Q into
two disjoint sets in such a way that all edges go from one set to the other). In the latter case, A
is isomorphic to the zigzag algebra of Q, see [HK01]. For any Q, the algebra A is a skew-zigzag
algebra, in the terminology of [HK01, § 4.6].

Denote by Pa the indecomposable projective left A-module A(a). An indecomposable projective
left A-module is isomorphic to Pa, for some a. Denote by aP the indecomposable projective right
A-module (a)A. Since A is Frobenius, Pa and aP are, in addition, injective.

Let Sa be the simple quotient of Pa (equivalently, the quotient of Pa by all paths of length
greater than 0). Denote by â the image of (a) ∈ Pa under the quotient map. Sa is a one-dimensional
complex vector space and is spanned by â. A simple left A-module is isomorphic to Sa, for some a.
The modules Pa, Sa, and aP inherit Z-grading from A.

Denote by [m] the grading shift down by m., i.e (M [m])l = Mm+l. Let Mod(A) (respec-
tively HMod(A)) be the category of graded A-modules (respectively the category of graded
A-modules equipped with a Hermitian structure x �→ x∗ such that h(x∗) = (hx)∗ for all edges h).
For any two graded A-modules M,N we denote by HomA(M,N) the set of grading-preserving
A-homomorphisms.

The modules Pa, aP, Sa have unique Hermitian structures x �→ x∗ such that (a)∗ = (a) and
h(x∗) = (hx)∗ for all edges h.

5.2 Let Va,Wa, a ∈ I be finite-dimensional C-vector spaces. Consider the graded A-module

M =
⊕

a

Va ⊗ Pa ⊕Wa ⊗ Sa[−1],

a direct sum of a projective and a semisimple A-module. We raise the grading of simple modules Sa

by 1 to ‘balance’ them in the middle of projective modules Pa, the latter non-zero in degrees 0, 1, 2.
Let us equip M with a degree 1 generalized differential d : M → M with the property d2 = c

for a fixed degree 2 central element c of A,

c =
∑

a

caXa, ca ∈ C.
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d should super-commute with A,

dx = (−1)|x|xd, x ∈ A.

The graded components of M are

M0 =
⊕

a

(Va ⊗ (a)),

M1 =
⊕

a

((Wa ⊗ â)
⊕

o(h)=a

(Vi(h) ⊗ h)),

M2 =
⊕

a

(Va ⊗Xa),

and the differential must have the form

0 −→M0 d0

−→M1 d1

−→M2 −→ 0.

Since d(a) = (a)d, for minimal idempotents (a) ∈ A, the generalized complex decomposes into the
sum of

0 −→ (a)M0 d0

−→ (a)M1 d1

−→ (a)M2 −→ 0,

over all a. We can write the latter as

0 −→ Va ⊗ (a) d0

−→
⊕

o(h)=a

(Vi(h) ⊗ h) ⊕ (Wa ⊗ â) d1

−→ Va ⊗Xa −→ 0.

The components of d0 can be described as maps Bh ∈ Hom(Va, Vi(h)), ja ∈ Hom(Va,Wa):

d0 =
( ⊕

o(h)=a

Bh, ja

)t

.

The superscript t in the formula stands for transposing a row vector into a column vector. From
dh = −hd, for all edges h, we derive that

d1 =
( ⊕

o(h)=a

ε(h)Bh, ia

)
,

where ia ∈ Hom(Wa, Va). We should have c = d1d0, or, specializing to a vertex a,

ca Id =
∑

o(h)=a

ε(h)BhBh + iaja. (5.1)

The right-hand side is the a-component of the complex moment map for the Nakajima quiver
varieties.

If d is given as above by the data d = (Bh, ia, ja) we may define its Hermitian adjoint d∗ =
(ε(h)B∗

h
,−j∗a, i∗a) to be of the same form. The real component of the moment map equation

µR(B, i, j) = ζR is equivalent to the relation
√
−1
2

(dd∗ + d∗d) =
∑

a

ζR,aXa. (5.2)

We can think of ζC and ζR as degree 2 central elements of A, by taking the standard bases of CI

and RI to {Xa}a∈I . Collapse the grading from Z to Z/2Z, and write Mod2(A) and HMod2(A) for
the corresponding categories of Z/2Z-graded modules. Equations (5.1) and (5.2) together with the
definitions of quiver varieties imply the following result.
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Proposition 5.1. For any ζC, ζR there is a bijection between points on the Nakajima variety
Mζ(v,w) and isomorphism classes of the following data (M,d, ψ):

A graded A-moduleM ∈ HMod2(A) which is a direct sum of a projective and a semisimple mod-
ule, with va the multiplicity of Pa and wa the multiplicity of Sa[−1], with a generalized differential d
such that d2 = ζC, and (

√
−1/2)(dd∗ + d∗d) = ζR, and isomorphisms ψa : Wa

∼= HomA(Sa[−1],M).

Now suppose that ζC is generic. The complex description of quiver varieties yield the following
result.

Proposition 5.2. There is a bijection between points on the Nakajima variety Mζ(v,w) and
isomorphism classes of the following data (M,d, ψ).

A graded A-module M ∈ Mod2(A) which is a direct sum of a projective and a semisimple mod-
ule, with va the multiplicity of Pa and wa the multiplicity of Sa[−1], with a generalized differential d
such that d2 = ζC, and isomorphisms ψa : Wa

∼= HomA(Sa[−1],M).

It is easy to check that two nonisomorphic data (M,d, ψ) as above remain nonisomorphic after
applying the functor Φ1 (see (4.1)), and that

HomA(Sa[−1],M) ∼= HomMod2(A)(Sa[−1], RΦ1(M))

for any M as above. This gives the following variant of Proposition 5.2.

Proposition 5.3. There is a bijection between points on the Nakajima variety Mζ(v,w) and
isomorphism classes of the following data (M,ψ).

An object M ∈ Mod2(ÃζC) such that M 	 Φ1(M ′) for some M ′ ∈ Com2(A, ζC) with M ′ 	⊕
s Sa[−1]⊗Cwa ⊕

⊕
a Pa⊗Cva as an A-module; and isomorphisms ψa : Wa

∼= HomMod2(A)(Sa[−1],
R(M)).

Consider now the case when ζC = 0 and ζR ∈ (N+)I . The description of Mss
ζ (v,w) given in § 1.1

case (i) yields the following.

Proposition 5.4. There is a bijection between points on Mζ(v,w) and isomorphism classes of
(M,d, ψ) where M ∈ Mod2(A) and ψ are as in Proposition 5.2, d2 = 0 and no projective submodule
of M is d-stable.

Remark. All the above results also hold in the Z-graded case.

6. Weyl group action in categories of duplexes

6.1 We use notation from § 5.1. Choose a vertex a without a loop. Since Pa is a left A-module
and aP a right A-module, Pa ⊗ aP is an A-bimodule (the tensor product is over C). Denote by
ma : Pa ⊗ aP −→ A the bimodule map which is simply the restriction of the multiplication map
A ⊗ A −→ A, so that ma((a) ⊗ (a)) = (a). Denote by ∆a : A −→ Pa ⊗ aP the bimodule map
determined by

∆a(1) = Xa ⊗ (a) + (a) ⊗Xa +
∑

o(h)=a

ε(h)h⊗ h,

the sum over all edges h that start at a.

6.2 Let Ca,x, for x ∈ C, be the following duplex of bimodules:

∆a−−→ Pa ⊗ aP
xma−−−→ A

∆a−−→ . (6.1)
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If x �= 0, this duplex is isomorphic to
x∆a−−→ Pa ⊗ aP

ma−−→ A
x∆a−−→ . (6.2)

Denote by d the differential in (6.1) and (6.2). We have

d2 |Pa⊗aP = x(Xa ⊗ 1 + 1 ⊗Xa),

d2 |A= x

(
2Xa −

∑
o(h)=a

Xi(h)

)
.

Here Xa ⊗ 1 is the left multiplication by Xa, etc. Hence, as operators on Ca,x we have

d2 = x

(
Xa ⊗ 1 + 1 ⊗Xa −

∑
o(h)=a

Xi(h) ⊗ 1
)
. (6.3)

Note that Xb ⊗ 1 − 1 ⊗Xb acts trivially on Pa ⊗ aP and A if a �= b. Thus, we also have

d2 = x

(
Xa ⊗ 1 + 1 ⊗Xa −

∑
o(h)=a

Xi(h) ⊗ 1
)

+
∑
b�=a

xb(Xb ⊗ 1 − 1 ⊗Xb) (6.4)

for any xb ∈ C, as b ranges over all vertices other than a.
The Weyl group W of (I,E) has generators sa, over all loopless vertices a ∈ I, and relations:

(i) s2a = 1 for all a;
(ii) sasb = sasb if a and b do not have a common edge;
(iii) sasbsa = sbsasb if a and b are joined by exactly one edge.

The Weyl group acts on Z2(A), the degree 2 summand of the center of A (on the vector space
with the basis {Xa}a∈I) by

sa(c) = c+ xa

( ∑
o(h)=a

Xi(h) − 2Xa

)

for c =
∑

b∈I xbXb. This action is compatible with the one defined on ζC in § 1.4. via the natural
identification CI → Z2(A). It follows from (6.4) that, for any c ∈ Z2(A), the tensor product with
Ca,−xa is a functor from Com2(A, c) to Com2(A, sa(c)) and from K2(A, c) to K2(A, sa(c)). Denote
this functor by Ra : K2(A, c) → K2(A, sa(c)).

Lemma 6.1. The functor Ra lifts to a functor from Mod2(Ãc) to Mod2(Ãsa(c)).

Proof. Let P̃b = Ãc ⊗A Pb be an indecomposable projective Ãc-module. We have to show that
Ca,−xa ⊗ P̃b is a projective Ãsa(c)-module. By definition, we have

Ca,x ⊗ P̃b =


 A⊗ P̃b

⊕
(Pa ⊗ aP )[1] ⊗A P̃b


 =




Pb ⊕ Pb[1]
⊕⊕

o(h)=a
i(h)=b

(Pa[1] ⊕ Pa)


 ,

and the action of the element d ∈ Asa(c) is given by

d =
(

1 ⊗ d ma ⊗ 1
∆a ⊗ 1 1 ⊗ d

)
.

Since A is Frobenius, Pa and Pb are both projective and injective. Furthermore, it is easy to check
that d is injective on Pb and that Pb ∩ d(Pb) = 0. Similarly, we have d is injective on Pa[1] and
we have Pa[1] ∩ d(Pa[1]) = 0. By applying Proposition 4.1 twice we see that Ca,x ⊗ P̃b = 0 in
Mod2(Ãsa(c)) as desired. �
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We will denote this functor by the same symbol Ra : Mod2(Ãc) → Mod2(Ãsa(c)).

6.3 We now deal with the categorical analogue of the braid relation.

Proposition 6.1. If x �= 0, there is an isomorphism in the stable category of bimodule duplexes

Ca,−x ⊗A Ca,x
∼= A. (6.5)

Proof. Let N = Ca,−x ⊗A Ca,x and ∂ be the differential in N . Note that ∂2 = 0, and N is a duplex
of A-bimodules.

Since x �= 0, we can write Ca,−x as

∆a−−→ Pa ⊗ aP
−xma−−−−→ A

∆a−−→ (6.6)

N is the total duplex of the following diagram (which is 2-cyclic in horizontal and vertical directions,
and each of the four squares anticommutes)

−id⊗x∆a

��

id⊗x∆a

��−xma⊗id �� A⊗A Pa ⊗ aP
id⊗∆a ��

−id⊗ma

��

Pa ⊗ aP ⊗A Pa ⊗ aP

id⊗ma

��

−xma⊗id ��

−xma⊗id �� A⊗A A
id⊗∆a ��

−id⊗x∆a

��

Pa ⊗ aP ⊗A A

id⊗x∆a

��

−xma⊗id ��

Denote by Nij the four bimodules in the above diagram:

�� ��
�� N10

��

��

N00

��

��

�� N11
��

��

N01

��

��

Simplifying our notation as at the end of § 3.1, we write N as

∂−→ N00 ⊕N11
∂−→ N01 ⊕N10

∂−→ .

Note that aP ⊗A Pa
∼= C(a)⊕CXa is a two-dimensional vector space. Let ζ : N11 → N00 be the

map

N11
∼= A

−∆a−−−→ Pa ⊗ aP −→ Pa ⊗ aP ⊗A Pa ⊗ aP,

where the last map takes u1⊗u2 to u1⊗(a)⊗u2. Let N ′ = {u+ζ(u) | u ∈ N11}. It is a subbimodule
of N11 isomorphic to A, and ∂N ′ = 0.

Let N ′′ = Pa ⊗ (a) ⊗ aP . It is a subbimodule of N00.
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Lemma 6.2. N is a direct sum of its three subduplexes

T−1 = {−→ N10 −→ ∂N10 −→},
T0 = {−→ N ′ −→ 0 −→},

T1 = {−→ N ′′ −→ ∂N ′′ −→}.

Since ∂ is injective on N10 and on N ′′, and both N10 and N ′′ are projective bimodules, the
duplexes T−1 and T1 are stably equivalent to the zero duplex. Therefore,N is equivalent in the stable
category to the bimodule duplex {−→ A −→ 0 −→}. �
Remarks. (i) Proposition 6.1 says that the functor R2

a

K2(A, c)
Ra−→ K2(A, sa(c))

Ra−→ K2(A, c)

is isomorphic to the identity functor, as long as sa(c) �= c (equivalently, if ca �= 0).
(ii) The isomorphism (6.5) holds for x = 0 as well, if we use (6.1), with x = 0, to define one of

the duplexes on the left-hand side of (6.5) and (6.2) to define the other.

Proposition 6.2. If a and b are not connected by an edge, for any x, y ∈ C there is an isomorphism
of bimodule duplexes

Ca,x ⊗A Cb,y
∼= Cb,y ⊗A Ca,x. (6.7)

Proof. Since aP ⊗A Pb
∼= 0 ∼= bP ⊗A Pa, left- and right-hand sides of (6.7) are isomorphic to
ma+mb−−−−−→ A

x∆a+y∆b−−−−−−→ (Pa ⊗ aP ) ⊕ (Pb ⊗ bP ) ma+mb−−−−−→ . �
Proposition 6.3. If a and b are connected by one edge, for any x, y ∈ C there is an isomorphism
in the stable category of bimodule duplexes

Ca,y ⊗A Cb,x+y ⊗A Ca,x
∼= Cb,x ⊗A Ca,x+y ⊗A Cb,y. (6.8)

Proof. Denote by N the duplex on the left-hand side of (6.8). It is built out of eight bimodules

Nijk = Ci
a,y ⊗A C

j
b,x+y ⊗A C

k
a,x, i, j, k ∈ {0, 1}.

The differential ∂ of N is injective onN000 (the componentN000 → N010 of ∂ is already injective).
Let

T−1 = { ∂−→ N000
∂−→ ∂N000

∂−→}
be the subduplex of N generated by N000.

Let N ′ = Pa ⊗ (a) ⊗ aP ⊂ Pa ⊗ aP ⊗A Pa ⊗ aP ∼= N010. The differential is injective on N010

(since the component N010 → N110 of ∂ is injective). Let

T1 = { ∂−→ ∂N ′ ∂−→ N ′ ∂−→}
be the subduplex of N generated by N010.

The algebra A is Frobenius, and each projective A-module is injective. In particular, Pa, Pb are
injective A-modules, and N ′, N000 (both isomorphic to Pa ⊗ aP ) are injective A⊗Ao-modules (that
is, injective A-bimodules). Moreover, T1 ∩ T−1 = 0. Applying Proposition 4.1 twice, we see that
duplexes N and Ñ = N/(T−1 ⊕ T1) are isomorphic in the stable category of duplexes of bimodules.

Let h be the edge with o(h) = a and i(h) = b. The duplex Ñ is isomorphic to

∂̃1

−→


Pa ⊗ aP

⊕
Pb ⊗ bP


 ∂̃0

−→



Pa ⊗ bP

⊕
A
⊕

Pb ⊗ aP




∂̃1

−→ (6.9)
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with the differential ∂̃ given by matrices of bimodule maps

∂̃0 =


ε(h)y id ⊗ h ε(h)yh⊗ id

ma −mb

ε(h)xh⊗ id ε(h)x id ⊗ h


 (6.10)

∂̃1 =
(

id ⊗ h (x+ y)∆a −h⊗ id
h⊗ id −(x+ y)∆b −id ⊗ h

)
. (6.11)

The following example explains our notations: the entry ε(h)y id ⊗ h in the top left corner of
(6.10) is a bimodule map Pa⊗ aP −→ Pa⊗ bP which takes u⊗v ∈ Pa⊗ aP to ε(h)yu⊗hv ∈ Pa⊗ bP .

Denote by M be the duplex on the right-hand side of (6.8). Since the right-hand side is obtained
from the left-hand side by switching a with b, x with y, and h with h we see that M is isomorphic
in the stable category to the duplex M̃ defined by making these switchings in formulas (6.9), (6.10),
(6.11). It is easy to check that duplexes Ñ and M̃ are isomorphic. Therefore, duplexes N and M
are isomorphic in the stable category of duplexes. �

We may restate the above results in the following form.

Theorem 1. The functors Ra : Mod2(Ãc) → Mod2(Ãsa(c)) define a braid group action on the

family of categories Mod2(Ãw(c)) for w ∈ W; in other words, we have, for any c ∈ Z2(A) isomor-
phisms of functors

Ra ◦ Rb ◦ Ra 	 Rb ◦ Ra ◦ Rb : Mod2(Ãc) → Mod2(Ãsasbsa(c))

if a and b are connected by one edge, and

Ra ◦ Rb 	 Rb ◦ Ra : Mod2(Ãc) → Mod2(Ãsasb(c))

if a and b are not connected. Moreover, if c lies in a generic orbit then this action factors through
a Weyl group action, i.e. we have

Ra ◦ Ra 	 Id : Mod2(Ãc) → Mod2(Ãc)

for any a ∈ I.

Passing to the homotopy categories K2(A, c) we obtain the following.

Theorem 2. The functors Ra : K2(A, c) → K2(A, sa(c)) define a braid group action on the family
of categories K2(A,w(c)) for w ∈ W. This action factors through to a Weyl group action if c lies in
a generic orbit.

Remark. In order to ensure that the above braid group action on the set of categories Mod2(Ãw(c))
or K2(A,w(c)) factors through the Weyl group it is enough to impose the following weaker condition:
no point of the orbit of c under W is fixed by any of the reflexions sa for loopless vertices a.

7. Weyl group actions on Nakajima varieties

7.1 Let us say that ζC = −
∑

a ζC,aXa ∈ A is generic if ζC is generic in the sense of § 1.1. If N is
any (A, ζC)-duplex with ζC generic and a ∈ I we set Ra(N) = Ca,ζC,a

⊗N .
It follows from the results in § 6 that this defines an action of the Weyl group W on the set of

objects of Mod2(Ãc) for all generic c.
So let us assume that ζC is generic, and let us identify the points of Mζ(v,w) with isomorphism

classes of data (M,ψ) as in Proposition 5.3.

Theorem 3. The functor Ra induces a bijection of sets from Mζ(v,w) to Msa(ζ)(sa(v,w)), which
coincides with the isomorphism κsa.
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Proof. Let us describe the action of Ra in more details. For notational convenience we will write
N⊕V for the tensor product N ⊗C V when N is an Ãc-module and V a C-vector space. We will also
denote by (M,d) the objects of Mod2(Ãc). If (M,d) ∈ Mod2(ÃζC) then by definition Ra(M,d) =

(M ′, d′) ∈ Mod2(ÃsaζC) where

M ′ =


 A⊗M

⊕
(Pa ⊗ aP )[1] ⊗A M




and

d′ =
(

1 ⊗ d ma ⊗ 1
∆a ⊗ 1 1 ⊗ d

)
.

Let us write

M =
⊕
k∈I

(P⊕Vk
k ⊕ S⊕Wk

k [1]).

Observe that

A⊗ P⊕Va
a

∆a⊗1−−−→ (Pa ⊗ aP )[1] ⊗A P
⊕Va
a

is injective. This implies that A⊗P⊕Va
a ⊕ d′(A⊗P⊕Va

a ) is stably trivial. Hence, by Proposition 4.1,
(M ′, d′) 	 (M ′′, d′′) where M ′′ = M ′/(A⊗P⊕Va

a ⊕d′(A⊗P⊕Va
a )). A direct computation shows that

(Pa ⊗ aP )[1] ⊗A M =




P⊕Va
a [1]
⊕

P⊕Va
a [1]
⊕

P⊕Wa
a

⊕⊕
b−a

P⊕Vb
a




(7.1)

and

M ′′ 	




⊕
k �=a

P⊕Vk
k

⊕⊕
k �=a

S⊕Wk
k

⊕
S⊕Wa

a

⊕
Pa[1]⊕Va

⊕
P⊕Wa

a

⊕⊕
b−a

P⊕Vb
a




.

We have

d′′ =




B i 0 0 −Bi λa Id−εBB
j 0 0 0 0 0
0 0 0 0 λa Id−ji −jB
0 0 0 0 −i 0
0 0 Id j 0 0
Id 0 0 B 0 0



. (7.2)
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From the relation µ(B, i, j) = λ and from the fact that λ is generic it follows that the fourth column
of (7.2) is nonsingular. In particular, d′′|Pa[1]⊕Va is injective and Pa[1]⊕Va ⊕ d′′(Pa[1]⊕Va) is stably
trivial.

Thus, (M ′′, d′′) is isomorphic, in Mod2(Ãsa(ζC)), to

(M ′′′, d′′′) = (M ′′/(Pa[1]⊕Va ⊕ d′′(Pa[1]⊕Va), d′′)). (7.3)

Moreover, there is a canonical isomorphism u : R((M,d)) 	 R((M ′, d′)) 	 R((M ′′′, d′′′)) and we
may set ψ′ = u ◦ ψ. Let

(B′, i′, j′) ∈ Msa(ζ)(sa(v,w))

be the element corresponding to (M ′′′, d′′′, ψ′). Comparing with the construction of § 1.4 we see that
κsa(B, i, j) = (B′, i′, j′), which proves the theorem. �

8. Nakajima varieties for affine quivers

In this section we restrict ourselves to the case when (I,E) is an affine bipartite Dynkin diagram,
and reinterpret the above construction in terms of the McKay correspondence. This section, and
the following section, can be read independently of the rest of the paper, with the exception of § 9.3.

8.1 Let {±1} ⊂ Γ ⊂ SL(2,C) be a finite group and let {ρa}a∈I be the set of its irreducible
representations. We also let ρ0 and ρ be the trivial (respectively the natural two-dimensional)
representation. Let Q = (I,E) be the (unoriented) affine quiver associated to Γ via the McKay
correspondence, with I as the set of vertices and with Tab arrows between a and b, where

Tab = dim HomΓ(ρa ⊗ ρ, ρb).

8.2 Let us consider the algebra AΓ := ΛC2 � C[Γ], and set ÃΓ = AΓ ⊗̇ C[d]/d2 	 ΛC3 � Γ with
relations dz = −zd for any z ∈ C2 and dγ = γd for any γ ∈ Γ. Both AΓ and ÃΓ are naturally
Z-graded. We denote by Mod(AΓ) and Mod2(AΓ) (respectively Mod(ÃΓ) and Mod2(AΓ)) the
categories of Z-graded and Z/2Z-graded AΓ-modules (respectively ÃΓ-modules). We will reformulate
the definition of Mζ(v,w) entirely in terms of representation theory of AΓ and ÃΓ.

The link with the setting of § 5 is as follows. Let I± be the set of indices a such that ρa(−1) = ±1.
Then I = I+ � I− and

Tab �= 0 ⇒ a ∈ I+, b ∈ I− or a ∈ I−, b ∈ I+. (8.1)

In particular, the Dynkin diagram (I,E) is bipartite. Write A(Q) for the zigzag algebra corre-
sponding to (I,E). Recall that {ρa}a∈I denotes the set of simple left Γ-modules. Then {ρ∗a} is the
set of right simple Γ-modules. Consider the right projective AΓ-modules aP = ρ∗a ⊗ ΛC2, and put
P =

⊕
a aP.

It is easy to check that A(Γ) 	 EndAΓ
(P). Moreover, the functor P ⊗ − induces a Morita

equivalence

Mod(AΓ) 	 Mod(A(Q)). (8.2)

8.3 Note that AΓ and ÃΓ are symmetric algebras. In particular, AΓ and ÃΓ are self-injective
algebras (i.e projective and injective objects coincide). If M is a graded AΓ (respectively ÃΓ)-module
then the graded dual space M∗ is again an AΓ (respectively ÃΓ)-module.

If U is any Γ-module, we will regard ΛC2 ⊗ U and (ΛC2 ⊗̇ C[d]/d2) ⊗ U as graded AΓ-module
and ÃΓ-module, respectively, where Λ0C2 ⊗ U is placed in degree 0. Note that any projective
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indecomposable AΓ-module (respectively ÃΓ-module) is isomorphic to (ΛC2 ⊗ ρa)[n] (respectively
((ΛC2 ⊗̇ C[d]/d2) ⊗ ρa)[n]) for some a ∈ I and n ∈ Z.

Let us fix a basis {x, y} in C2. For any a ∈ I, let us fix intertwiners⊕
(a,b)∈H

ϕab :
⊕

(a,b)∈H

ρb
∼→ C2 ⊗ ρa. (8.3)

Define a function ε : H → C∗ by the following condition: π ◦ ϕba ◦ ϕab = ε(a,b)x ∧ y, where π :
C2 ⊗ C2 ⊗ ρb → Λ2C2 ⊗ ρb is the projection. Note that ε(h) + ε(h) = 0 for any h ∈ H.

8.4 Let Mod(AΓ) denote the stable category of Z-graded AΓ-modules (see § 4.).

Lemma 8.1. Let U be a Γ-module and let us consider it as a AΓ module by trivially extending the
action to AΓ. If M 	 U in Mod(AΓ) then M 	 U ⊕P in Mod(AΓ) for some projective module P .

Proof. Let f : M → U and f ′ : U → M such that ff ′ = IdU and f ′f = IdM in Mod(AΓ). Note
that, for any projective module P , any composition of morphisms U → P → U is zero. Hence,
HomMod(AΓ)(U,U) = HomAΓ

(U,U) and ff ′ = IdU in Mod(AΓ). However, then M 	 U ⊕ Ker f in
Mod(AΓ) and the lemma follows. �

Similarly, we let Mod(ÃΓ) stand for the stable category of Z-graded ÃΓ-modules. Replacing Z

by Z/2Z, we also define the categories Mod2(AΓ) and Mod2(ÃΓ). The stable categories Mod(AΓ)
and Mod(ÃΓ) are endowed with structures of triangulated categories (see [Hap88]).

Note that ÃΓ is a free AΓ-module. This gives rise to functors

R : Mod(ÃΓ) → Mod(AΓ), R : Mod2(ÃΓ) → Mod2(AΓ).

8.5 In this section we give the realization of Mζ(v,w) in the § 1.1 case (ii), i.e. ζR is arbitrary and
ζC is generic.

For every a ∈ I we let pa ∈ C[Γ] be the (central) primitive idempotent corresponding to ρa.
Set ca = x ∧ y · pa. Then {1} ∪ {ca}a∈I forms a basis of the center of AΓ. Consider the following
deformation of ÃΓ:

ÃΓ,ζC = (ΛC2 � Γ) ⊗̇ C[d]
/〈

d2 −
∑

a

ζC,aca

〉
.

Let Mod2(ÃΓ,ζC) be the stable categories of Z/2Z-graded ÃΓ,ζC-modules. As in § 8.4, the embedding
AΓ ⊂ ÃΓ,ζC gives rise to a restriction functor R : Mod2(ÃΓ,ζC) → Mod2(AΓ). As in the undeformed
case, the algebra ÃΓ,ζC is symmetric and self-injective.

Let us fix w ∈ NI , W =
⊕

aWa such that dimW = w and let W =
⊕

aWa ⊗ ρa be the
corresponding Γ-module. We will regard W as a graded AΓ-module, where ΛC2 acts trivially, placed
in degree 0. Let Nζ(w) be the set of pairs (u,M) where M ∈ Mod2(ÃΓ,ζC) and u : W → R(M) is
an isomorphism.

Lemma 8.2. Let M be any ÃΓ,ζC-module such that R(M) 	 0. Then M is projective.

Proof. By Lemma 8.1 we have M 	 (ΛC2 ⊗ V1)⊕ (ΛC2 ⊗ V2)[−1] for some Γ-modules V1 and V2.
We may assume that

d(V1) ⊂ C2 ⊗ V1. (8.4)

Indeed, any v ∈ V1 not satisfying (8.4) generates a projective submodule M ′ of M . Consider the
linear map s : Λ2C2 → C, x ∧ y �→ 1. From (8.4) and the relation dz = −zd for z ∈ C2 we deduce
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that Tr |V (s ◦ d2) = 0. However, by definition,

Tr |V (s ◦ d2) =
∑

a

ζC,a dimHom(ρa,V1),

and the genericity of ζC implies that V1 = 0. Similarly, V2 = 0 and we are done. �

Theorem 4. There is a natural bijection between the set of isomorphism classes of elements in
Nζ(w) and the set of points of

⊔
v Mζ(v,w).

Proof. Let (u,M) ∈ Nζ(w). By Lemma 8.1, we may assume thatM = (ΛC2⊗V1[1])⊕W⊕(ΛC2⊗V0)
as an AΓ-module. We can also assume that

d(V0) ⊂ (C2 ⊗ V0) ⊕ (Λ2C2 ⊗ V1). (8.5)

Indeed if not then any element v0 ∈ V0 not satisfying (8.5) will generate a projective ÃΓ,ζC-module
N1 and M 	M/N1 in Mod2(ÃΓ,ζC). Similarly, we can assume that

d(V1) ⊂ (C2 ⊗ V1) ⊕ (Λ2C2 ⊗ V0) ⊕ W. (8.6)

However, then d(Λ2C2 ⊗ V1) = 0 and, in particular, the composition of maps V1
d→ C2 ⊗ V1

d→
Λ2C2 ⊗ V1 endows ΛC2 ⊗ V1 with a structure of ÃΓ,ζC-module. By Lemma 8.2, this implies that
V1 = 0.

Let us fix some decomposition

V =
⊕

a

Va ⊗ ρa (8.7)

and set V =
⊕

a Va. Let us split the map d : V → C2 ⊗V⊕W as d = d0 +d1 where d0 : V → C2⊗V

and d1 : V → W. Then the maps d0 and d1 give rise, via the identification (8.7), the fixed intertwiners
(8.3) and the map u, to elements B =

⊕
h∈H xh ∈ E(V, V ) and j ∈ L(V,W ), respectively. Similarly,

the map d : C2 ⊗ V ⊕ W → Λ2C2 ⊗ V 	 V gives rise to elements C =
⊕

h∈H yh ∈ E(V, V ) and
i ∈ L(W,V ). From the relation dz = −zd for u ∈ C2 we deduce that yh = ε(h)xh where ε : H → C∗

is defined in § 8.3. Similarly, from d2 =
∑

a ζC,aca we deduce the relation µ(B, i, j) = ζC.
Note that the assignment M → (B, i, j) depends on a choice of the decomposition (8.7), but that

two such decompositions give rise to the same element in Mζ(v,w). Hence we have obtained in this
way a well-defined map from the set of isomorphism classes of objects in Nζ(w) to

⊔
v Mζ(v,w).

Conversely, it is clear that any point (B, i, j) ∈ Mζ(v,w) gives rise, via the above construction, to
an ÃΓ,ζC-module structure on the AΓ-module M = Λ(C2 ⊗ V)[1] ⊕ W. Moreover, this module M
is equipped with a canonical isomorphism u : W

∼→ R(M). Thus, M ∈ Nζ(w). This map assigns
distinct points in Mζ(v,w) to nonisomorphic objects in Nζ(w) and the theorem follows. �

Remark. Theorem 4 is equivalent to Proposition 5.3.

9. Koszul duality and sheaves on P2

9.1 In this section we clarify the relation between the construction of § 8 and the moduli space
of coherent sheaves on some noncommutative deformations of the projective plane, as studied in
[BGK].

Let Mod0(ÃΓ) be the full subcategory of Mod(ÃΓ) consisting of objects V satisfying

Ext l+n

ÃΓ
(C, V [−l]) �= 0 ⇒ n = 0, (9.1)

where C denotes the trivial module. The category Mod0(AΓ) is defined in a similar way.
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To any ÃΓ module V =
⊕

n∈Z Vn is associated a complex of Γ-equivariant coherent sheaves
on P2

· · · d→ Li(V ∗) d→ Li+1(V ∗) d→ · · ·
where Li(V ∗) = (V ∗)i ⊗O(i) and where the differential is defined by (dζ)(x) = x · ζ(x) for x ∈ P2

and any section ζ ∈ Γ(Li(V )). Here V ∗ denotes the ÃΓ-module dual to V . A well-known theorem
of Bernštĕın et al. [BGG78] generalizing the classical Koszul duality between C[x, y, z] and ΛC3

asserts that the assignment Φ : V → L•(V ∗) induces an equivalence between Mod(ÃΓ)op and
the Γ-equivariant derived category Db

Γ(Coh(P2)) of coherent sheaves on P2. In particular, under
this equivalence condition (9.1) corresponds to H i(L•(V ∗)) �= 0 ⇒ i = 0 (see [BGS96, § 2.13]),
and Mod0(ÃΓ)op is equivalent to the category CohΓ(P2) of Γ-equivariant coherent sheaves on P2.
Therefore, it is an abelian category. Similar statements hold for Mod(AΓ) and Db

Γ(P1).

The functor R restricts to a functor Mod0(ÃΓ) → Mod0(AΓ). It corresponds to the functor of
restriction

Db
Γ(Coh(P2)) → Db

Γ(Coh(P1))

induced by the embedding P1 	 P((C2)∗) ↪→ P((C2 ⊕ Cd)∗) 	 P2.
Let us denote by ΠΓ the preprojective algebra of the affine quiver (I,E) (see, e.g., [Maf02]). It

is well known and easy to check that A(Γ) is Koszul and that its quadratic dual is ΠΓ (see, e.g.,
[HK01]). Thus, altogether we get the following diagram relating various algebras.

ΛC2 � C[Γ]
Koszul duality ��

Morita eq.

��

C[x, y] � C[Γ]

Morita eq.

��
A(Q)

Koszul duality �� ΠΓ

Similarly, there is the following diagram.

ΛC3 � C[Γ]
Koszul duality ��

Morita eq.
��

C[x, y, z] � C[Γ]

Morita eq.

��

Ã(Q)
Koszul duality �� ΠΓ[z]

(9.2)

Our construction in § 8 is based on a deformation of the left column of diagram (9.2). The
corresponding right column consists of the homogeneous coordinate ring of the noncommutative P2

studied in [BGK], and the (graded) deformed preprojective algebra (see [CH98]).

9.2 In this section we show how to recover the description of Nakajima varieties as moduli space
of torsion-free sheaves on P2 with fixed framing at ∞, using the representation theory of ÃΓ. This
corresponds to § 1.1 case (i), i.e. ζC = 0 and ζR ∈ (N+)I .

Let T be the full subcategory of Mod0(ÃΓ) consisting of modules T such that Φ(T ) is a torsion
sheaf on P2. We will say that an object M of Mod0

Z(ÃΓ) is torsion-free if for any T ∈ T we have
Hom

Mod0(ÃΓ)
(M,T ) = 0.

Lemma 9.1. Let N be a graded ÃΓ-module such that N = ΛC2 ⊗ V as a AΓ-module. If V �= {0}
then H0(Φ(N)) is a nontrivial torsion sheaf.

Proof. This follows from a direct computation. �

Lemma 9.2. Let N ∈ Mod0(ÃΓ) such that Ni = 0 for i > 0 and such that R(N) 	 0. Then N 	 0.
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Proof. Suppose N �	 0. By Lemma 8.1, N decomposes as a AΓ-module as N =
⊕−2

i=r ΛC2 ⊗ Vi for
some Γ-modules Vi and some r � −2. We can assume

d(Vr) ⊂ C2 ⊗ Vr. (a)

Indeed, any vr ∈ Vr not satisfying (a) generates a projective ÃΓ-module N ′ and N 	 N/N ′ in
Mod0(ÃΓ). However, then it follows from the previous lemma thatH−r(Φ(N)) �= 0, in contradiction
with the assumption that N ∈ Mod0(ÃΓ). �

As in § 8.4 we fix w ∈ NI and associate to it a Γ-module W. We will regard also W as a graded
AΓ-module, where ΛC2 acts trivially, placed in degree 0. Note that W is naturally an object of
Mod0(AΓ). Let N (w) denote the set of pairs (u,M) where M ∈ Mod0(ÃΓ) is torsion-free and
u : W

∼→ R(M) is an isomorphism. We say two elements (u1,M1) and (u2,M2) are isomorphic if
there exists an isomorphism j : M1 →M2 such that u2 = R(j) ◦ u1.

Theorem 5. There is a natural bijection between the set of isomorphism classes of elements in
N (w) and the set of points of

⊔
v Mζ(v,w).

Proof. Let (u,M) ∈ N (w). We first show the following.

Lemma 9.3. There exists a Γ-module V and M ′ ∈ Mod(ÃΓ) such that M 	 M ′ and M ′ =
ΛC2 ⊗ V[+1] ⊕ W as an AΓ-module.

Proof. By Lemma 8.1, there exists Γ-modules Vi, i ∈ Z such that M 	
⊕

i ΛC2 ⊗ Vi[−i] ⊕ W as
an AΓ-module. Observe that

d(V−1) ⊂ Λ2C2 ⊗ V−2 ⊕ C2 ⊗ V−1 ⊕ W. (9.3)

Indeed, if not, then any v−1 ∈ V−1 such that (9.3) does not hold generates a projective submodule
N of M , and M 	 M/N in Mod0(ÃΓ). Let T be the ÃΓ-module obtained by restricting the
ÃΓ-action to

⊕
i�0 ΛC2 ⊗ Vi[−i]. Note that T ∈ T . Indeed, we have H i(Φ(T )) = 0 for i > 0

and H i(Φ(T )) = H i(Φ(M)) = 0 for i < 0, so that T ∈ Mod0(ÃΓ), and H0(Φ(T )) is torsion by
Lemma 9.1. However, M is assumed to be torsion-free. This forces T 	 0.

A reasoning similar to (9.3) shows that

d(V−2) ⊂ C2 ⊗ V−2 ⊕ Λ2C2 ⊗ V−3. (b)

Now observe that N =
⊕

i<−1 ΛC2 ⊗ Vi is in Mod0(ÃΓ) and that R(N) 	 0. Thus N 	 0 by
Lemma 9.2, and the lemma follows. �

Note that by Lemma 9.2 again, the following holds:

for all N ⊂M, R(N) = 0 ⇒ N 	 0 (9.4)

and that condition (9.4) is equivalent to the stability condition of § 1.1, case (i).
The rest of the proof of the theorem now closely follows the proof of Theorem 4. �

Remark. The above description of torsion-free sheaves on P2 with fixed framing at infinity is equiv-
alent to the classical one in terms of Beilinson’s monads (see, e.g., [Nak99, Ch. 2]) but its derivation
does not use spectral sequences.

From the above proof one easily deduces the following result.

Corollary 1. The variety Mζ(v,w) is isomorphic to the set of all ΛC2�C[Γ]-derivations (of degree
one) of the module ΛC2⊗V⊕W satisfying the following condition: if V′ ⊂ V is a Γ-submodule such
that ΛC2 ⊗ V′ is d-stable then V′ = 0.
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9.3 Denote by ιa : End(ρa) → C[Γ] 	
⊕

a End(ρa) the canonical embedding, and let πa : C[Γ] →
End(ρa) be the canonical projection. We call

m : ΛC2 ⊗ C[Γ] ⊗ ΛC2 → ΛC2 ⊗ C[Γ]

the multiplication map and we define

∆ : ΛC2 ⊗ C[Γ] → ΛC2 ⊗ C[Γ] ⊗ ΛC2

to be its adjoint. Consider the following maps of AΓ-bimodules:

d1 : ΛC2 ⊗ ρa ⊗C ρ∗a ⊗ ΛC2 	 ΛC2 ⊗ End(ρa) ⊗ ΛC2 m◦(1⊗ιa⊗1)−−−−−−−−→ ΛC2 ⊗ C[Γ]

d2 : ΛC2 ⊗ C[Γ]
(1⊗πa⊗1)◦∆−−−−−−−−→ ΛC2 ⊗ End(ρa) ⊗ ΛC2.

As in § 6, this gives rise, for any x �= 0 to a duplex of AΓ-bimodules

Ca,x :d2→ ΛC2 ⊗ End(ρa) ⊗ ΛC2 d1→ ΛC2 ⊗ C[Γ] d2→ .

One checks that the AΓ bimodule duplex Ca,x corresponds to the A(Q)-bimodule duplex Ca,x under
the equivalence Mod(AΓ) 	 Mod(A(Q)). In particular, the collection of duplexes Ca,x satisfy the
braid relations of § 6.3 (in the stable category of bimodule duplexes). Thus, as in § 7, tensoring
by Ca,x for a ∈ I and generic x defines an action of the Weyl group W on the set of objects of
Mod2(AΓ,ζC) for all generic ζC.

In other words, (for generic ζC) and a ∈ I we have a functor

Ra : Mod2(ÃΓ,ζC) → Mod2(ÃΓ,sa(ζC)),

and the collection of such functors satisfy the braid relations. Moreover, there is a canonical natural
transformation R◦Ra → R, and for any given fixed w ∈ NI , Ra acts on the set of objects of Nζ(w).
The following proposition is a consequence of Theorem 1.

Proposition 9.1. The action of Ra on Nζ(w) coincides with the action of κa under the identifica-
tion Nζ(w) 	

⊔
v Mζ(v,w).
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