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CO-RANK OF A COMPOSITION OPERATOR 

BY 

DAVID J. HARRINGTON 

ABSTRACT. A composition operator CT on L2(X, 2,ra) is a bounded 
linear transformation induced by a mapping T : X —> X via CTf = f° T. 

If m has no atoms then the co-rank of CT (i.e., dim R(CT)±) is either zero 
or infinite. As a corollary, when m has no atoms, Cr is a Fredholm operator 
iff it is invertible. 

Let (X,2,m) be a sigma-finite measure space and r : I ^ I a 2-measurable map
ping. Then T induces a bounded linear composition operator CT on L2(X, 2,m) via 
C/-/ — f°T iff (i) the measure m T 1 = m°T~] is absolutely continuous with respect to 
m and (ii) the Radon-Nikodym derivative h = [dmT~l /dm] is in L°(m). In this case 
IICVll = WW'2 ([1], pp. 663-665, and [4]). We shall assume in what follows that these 
conditions are satisfied. 

It proves useful ([6]) to consider the sigma field T~l(X) = {T~lE:E E 2}. (Since 
L2(m) consists of equivalence classes of functions equal a.e. [m], we will, strictly 
speaking, consider the relative completion of T~l(2) in 2 , i.e., the sigma field gener
ated by 7_ 1(2) and {F E 2: mF = 0}, once again calling it 7_1(2).) We will use the 
fact that the closure R(CT) of the range of CT equals the subspace of L2(m) consisting 
of r~'(2)-measurable functions [2]. 

Recall that G E 2 is called an atom of m in case (i) mG > 0 and (ii) F E 2 , F C 
G imply mF = 0 or mF = mG. 

1. LEMMA. If m has no atoms then mT~l has no atoms in 2 of finite ml ~x-measure. 

PROOF. Suppose the contrary, that is, that there exists G E 2 with 0 < 
mT~lG < oo such that G is an atom of mT~\ Since 

0 < mT~lG = hdm, 
JG 

there exists F E 2 with F C G and mF > 0 such that h is (essentially) bounded below 
by, say, 8 > 0 on F. Since m has no atoms we can choose E E 2 , E C F such that 
0 < mE < mF. We have 

mT~lE = /*dm > ôm£ > 0 
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and so mT XE = mT XG. This implies, in particular, that 

0 - mT-\F\E) = j hdm > bm(F\E) > 0, 

a contradiction. D 

2. EXAMPLE. Under the hypotheses of the Lemma, mT~x may have atoms of infinite 

mT [-measure. LetX = [0, oo), X = /tore/ seta and /ef m Z?e Lebesgue measure. Define 

T on [n, n + I) for each n > 0 by 

(x - n, n even 
TM = I/i + 1 - x , «odd . 

77ien (0, 1) is an atom ofmT~x (as is any subset of(0, 1) with positive m-measure) and 

m r ' ( 0 , 1) - oo. 

In general, if m is a measure with no atoms and G0 E X with 0 < raG0 < °°, then 
one can choose G\ E X such that G\ C G0 and 0 < mGx < mG0. Similarly, there exists 
G2 E S with G2CGi and 0<mG2<tnG\. Proceeding inductively we obtain a strictly 
decreasing sequence of subsets Gn of G0, each with positive measure. Setting Fn — 
Gn\Gn+{ forn > 0 yields the partition 

G0 = U F „ u f l Gn 
«>o „>o 

consisting of disjoint 2-measurable subsets of G0, each having positive measure (except 

possibly the intersection). We use this simple construction below. 

3. THEOREM. If m has no atoms, the dimension of R(Cr)1 is either zero or infinite. 

PROOF. Assume/E R(CT)L,f^ 0. Let P denote the projection on R(CT). Note that 
P ( | / | ) > 0 a . e . | > ] . ForifN = { J C 6 X : P ( | / | ) ( J C ) < 0} thenN E 7_ 1(S), asP( | / | ) 
is 7~'(^-measurable. By sigma-finiteness we may write 

N = U Nk 
k>\ 

where Nk E r _ 1 ( 2 ) and mNk < oo for each k. Since \Nk E R(CT), 

0 > J P(|/|jdm - J |/|dm > 0. 

Equality holds and so mNk = 0 for all k. In general, if A E 7 _ 1 ( 2 ) then, again by 

sigma-finiteness, we can choose An E T~](%) with mAn < oo and An C Art+i for each 

n such that 

A - U A„. 

As above, 

f P(|/|)d/n - f \f\dm 
K An 
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for each n so that 

f P(\f\)dm = f \f\dm 
JA JA 

by the Monotone Convergence Theorem. In particular, 

j P(\f\)dm = j \f\dm>0. 

(Both integrals may be infinite.) It follows that we can choose A E r - 1 ( 2 ) , 0 < 
m A < oo and 8 > 0 such that P ( | F | ) > ô a . e . on A. Furthermore, from the definition 
of T~l (2) as a relative completion, there exists E E 2 with 0 < m r _ 1 £ < o o such that 
m(A&T~lE) = 0. By the Lemma and comments above, we may write 

T]E = U TlEn 

where En E 2 , mT~lEn > 0 and En H Em = <j> for « =£ m. Set/n = /xr-'E,,, « — 1. 
We have 

f |/J<//n= f |/|d/n 
•/ JT~]F 

> bmT~lEn > 0 

for each n. Therefore the/„, having disjoint supports, constitute a sequence of non-zero 
orthogonal elements of R ( CT ) x . • 

It has been observed elsewhere ([3], [5]) that if m has no atoms, the nullity of CT 

(i.e., dim Ker(C7)) is either zero or infinite. This follows from the basic relation 

(*) \\CTff = f \foT\2dm = f \f\2hdm. 

For if CTf — 0, / =£ 0, then h must vanish on a set E E 2 of positive m-measure. It 
then follows that Ker(Cr) contains the infinite dimensional subspace of elements of 
L2(m) supported on E. 

Recall that an operator with closed range and finite co-rank and nullity is called a 
Fredholm operator. In these terms, the Theorem has the following consequence. 

4. COROLLARY. If m has no atoms, CT is Fredholm iff it is invertible. 

The left shift operator on the space €2(r\l) of square summable complex sequences 
indexed by N = {1,2 ,3 , . . .} {CT induced by T{n) = n + 1, m being the counting 
measure) shows the situation to be quite different for atomic measures. In that case, dim 
Ker(Cr) = 1 and R(CT) = t2(N), so that CT is Fredholm but not invertible. 

The Corollary was proved in [3] for the special case X = [0,1], 2 = Borel sets and 
m — Lebesgue measure using techniques less elementary than those used here. 

https://doi.org/10.4153/CMB-1986-005-0 Published online by Cambridge University Press

file:///f/dm
https://doi.org/10.4153/CMB-1986-005-0


36 D. J. HARRINGTON 

5. EXAMPLE. Take (X, 2,m) as in Example 2. Set T(x) — ex — 1, x > 0. 77*eft 
r_1(jc) = ln(jc + \)andh{x) = 1/(JC + 1) on [0,oo). tfyEgn. (*),A>0fl.g. /mp/ie-s 
Ker(C7) = {0}. Smce r _ 1 (S) contains all open subintervals and, therefore, all open 
subsets of[0, ooj, it follows that r _ 1 (2 ) = 2 am/ 5(9 Cr has dense range. However, since 
h is not essentially bounded below, CT is not bounded below, this again following from 
Eqn. (*). Hence, CT is neither invertible nor, by the Corollary, a Fredholm operator. 
We conclude that R(CT) is not closed. 
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