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Duality for generalized problems

in complex programming

D.G. Mahajan and M.N. Vartak

Weak duality and direct duality theorems are proved, under

appropriate assumptions, for the following pair of programming

problems in complex space:

minimize F(z, z) = Re f(z, z) + max{Re k z \ k € K}

subject to Az - b + m € S for some m (. M , z € T ;

maximize g{u, u, u) = Re\f(u, l O - w V ^ U , H)-uHV2f(u, ~u)+b v\

- max{Re m v \ m € M}

subject to -AHv + V' f(u, u) + V / ( M , U) + k € T*

for some k € K ,

V Z S* .

The objective function may be nondifferentiable and the

constraints are of a more general nature than those considered

earlier by various authors. Several well-known results are

shown to be special cases of the results proved here.

Introduction

Duality relations for various classes of complex programming problems

have appeared in literature [J-7 5]. Here we establish weak duality and
*

direct duality theorems for a pair of programming problems in complex

space whose objective function and constraints are of a more general

nature than those considered recently by Mond [17]. The primal, dual
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12 D . G . M a h a j a n and M.N . V a r t a k

problems and the weak and direct duality theorems established in [2-15]

turn out to be special cases of the results proved in this paper.

Notations and terminology

For a complex function f[W , w ) analytic in the 2n variables

(w1, W2) at the point [z°, s°) € (f1 x (f1 , we define

Vf(z°, 7) -= Vzf(z°, 7 ) E fi£. (W\ W
2)} _ for i = 1, ...,„,

x ^au. • ' 1 0 2 0

t w =z ,w =z

and

° 7) (° 7) [Jt (\ 2) | _ for i = 1, ...,„.

The superscripts H and t will denote complex conjugate transpose and

transpose respectively, when applied to vectors or matrices. The

superscript * will be used to denote polar of a polyhedral cone. For

x, y € C let {x, y) denote their inner product; that is,

(x, y) = x y . A nonempty set S c C is called a polyhedral cone if, for

some positive integer k and A £ C ,

S = A^+ = {Ax | x € ̂ } ;

that is, S is generated by finitely many vectors (the columns of A ).

The polar of a polyhedral cone S c (f is denoted by 5* and is defined

as

5* = {s € d1 | w € 5 =» Re A > 0} .

A polyhedral cone in C i s a closed convex cone.

Abrams [7] has defined convexity of a complex valued function as

follows.

DEFINITION. Let f : (P*Cn -* C and l e t Sac he a closed convex

cone. Then f i s convex with respect to S on the manifold

W = {{w1, w2) € C2n | w2 = w1} i f
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(1) X/ ( s 1
> 31) + ( l - X ) / ( s 2 , s 2 ) - / • (X2

1+(1-X)s2 , Xs1+(1-X)32) € S

for a l l 0 5 * 5 1 , z~, z2 € C* .

When f[u , w ) i s a n a l y t i c , a cond i t ion equ iva len t t o ( l ) i s

/(a1, 7) - f{z2, 7) - ( a 1 - . 2 ) ^ 2 , 7) - (s1-.2)* S
If / is real and S = B+ then (l) and (2) reduce to the classical

definition of convexity. When referring to the objective function of a

programming problem, convexity of the real part will be of interest. Thus,

if S c: # , the real part of an analytic function f[w , W ) is convex

with respect to 5 on the manifold W = {{w1, W ) € Crn \ w = W1} if,

1 2for any z , z ,

[2 T j o 1 2 ) V ( 2 ^ V a ) V ( 2 ^ ] € s •
With S = R , (2) is the definition of convexity of a complex valued

function given by Hanson and Mond [6], and Mond [ H ] .

The complex programs considered in this paper are the following.

PROBLEM P (Primal):

minimize F(z, z) = Re f{z, z) + max{Re k z \ k £ K.\

(3) subject to Az - b + m € S for some m € M ,

(JO z i T ;

PROBLEM D (Dual):

maximize (w, w", u) = Re\f(u, Z)-ifl^u, i7)-uffVg/(w, I7)+fcffu

- max{Re m v | m € M\

(5) subject to - A + Vxf{u, u) + V2f{u, u) + k € T* for some k Z K ,

(6) D f S ' ;

where A € c"1*" , b £ (f , z and w e e " , y f C ^ c J f c f / 1 , W e t / "

are bounded closed convex sets; S cz (f , T c c" are polyhedral cones',

f '• C •*• C is analytic and has convex real part with respect to R on

the manifold
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r/ 1 2i , .,2M I 2 "Ti

P r e l i m i n a r y r e s u l t s

Mahajan and Vartak LSI studied the following pair of symmetric

problems:

PRIMAL PROBLEM I:

maximize $(2) = Re(c, z) + min{Re(s, k) \ k € K]

subject to -Az + b - m d S for some m € M ,

z € T ;

DUAL PROBLEM I I :

minimize ty(y) = Re(j/, b) - min{Re(j/, m) \ m € M}
TJ

subject to Ay-c-kdT* for some k £ K ,

y t s* .

They have also established, among other results, the following.

RESULT I. The supremum of $(x) over the constraint set of Primal

Problem I is less than, or equal to, the infimum of 4>(y) over the

constraint set of Dual Problem II.

RESULT 2. If Primal Problem I has an optimal solution, then Dual

Problem II also has an optimal solution, and the two extrema are equal, if

the following hypothesis is satisfied.

HYPOTHESIS HI. For all y £ D , min{Re(!/, m) \ m i. M} is attained

at a point m € PM , where

D = iy I y satisfies the dual constraints for some k € K} ,

P - {m € M I m satisfies the primal constraints for some z € T] .

RESULT 3. If Dual Problem II has an optimal solution, then Primal

Problem I also has an optimal solution, and the two extrema are equal, if

a hypothesis dual to HI is satisfied.

In what follows, we shall need Result 2 in a slightly different form,

which is, therefore, stated below for easy reference and use.

THEOREM 1 . Let z be an optimal solution of the problem
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minimize $(2) = Re(c, 3) + max{Re(s, k) \ k € K)

subject to Az ~ b + m € S for some m d M ,

z 6 T .

Then the problem

maximize ty(y) = Re(i/, b) - max{Re(i/, m) | m t M]
TJ

subject to -A y + a + k € T* for some k € K ,
h € S* ,

has an optimal solution y , and $(2 ) = ty[y ) , if the following

hypothesis is satisfied:

for all y € D 3 max{Re(j/, m) \ m € M) is attained at a point

Theorem 1 is easily deducible from Result 2 by converting the minimum

problem into a maximum problem.

Dua l i t y

THEOREM 2. The infimwn of Problem P is greater than, or equal to,

the supremum of Problem D.

Proof. Let [z , z , m ) be a feasible solution for Problem P and

[u , u , V , k ) be a feasible solution for Problem D. Then

*(.°. 7) - g{u°, 7 , v°]

,°. 7)-/(u°, 7)+u°\f(u°, 7)+u°%2f(u°, 7)] - Re bHv°

+ max{Re kHz° \ k € K} + max{Re mHV° | m € M\

- Re bHv° + Re k° z° + Re m° V° (by (2))

= Re[2° Vlf{u°, u°)+z° V2f[u°, u°)+k° a°] - Re bBv° * Re m° v°

> R e [ 2 A v ] - Re b v + R e m v ( b y { k ) a n d ( 5 ) )

2 0 ( b y ( 3 ) a n d ( 6 ) ) .
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THEOREM 3. (s°, z°) is an optimal solution for Problem P iff s°
is an optimal solution of the following problem:

PROBLEM PI

minimize H{z) = Re Thy" (s°, s°)j z+\v2f[z°, z°)} z~\

+ max{Re kHz | k € K)

subject to Az - b + m € S for some m (. M ,

z e T .

Proof. The proof is similar to that of a theorem proved by Mond

([77], Theorem k, p. H8l).

(i) P ** PI. Suppose [z , z ) is an optimal solution for Problem P,

but there exists some feasible z such that H[z ) < H[z ) ; that is,

(7) Btf) - H{z°) = Re[(v(.°. 7)) V-2V(v2f(3°, ^ ] V - ° ) ]
+ max{Re kKzX \ k i K] - maxJRe kHz° \ k € K)

s1-,0) \f{z°, ^ + ̂ -°)V(«°. ^ ]
+ max{Re k^z1 \ k (. K.} - max{Re kHz° \ k Z K}

< 0 .

Since [z , z ) and ( 3 , 3 ) are feasible solutions for Problem P it

follows that for

= Xz1 + (1-X)z° , 0 5 X 5 1 ,

2 2̂
( 3 , 2 ) is also feasible for Problem P.

Now consider

(8) F{z2, z2) - F{z°, Z°) = Re[f(2
2, 3

2)-/(3°, 3°)] + max{Re kHz2 \ k Z K}

- max{Re kHz° \ k € K} .

Expanding in a Taylor series, with R denoting the appropriate

remainder, we have
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(9) Re[f(2
2, 7)-f(z°, 7)]

k k
2 01 1 \ 2

"\ "1 • • • \n n

= X

where fe- are non-negative integers.
If

Also

' (10) max{Re fe^2 | k i K) - max{Re kHz° | H X|

= max{Re kH{Xz1+{l-\)z°) \ k € K) - maxfRe fefl3° | k i K]

S X max{Re fe^s1 | fe € K] + (l-X)max(Re kHz° \ k £ K]

- max{Re kHz° \ k I K.)

= X[max{Re k^z1 \ k € #}-max{Re kHz° | k € K}~\ .

From ( 8 ) , (9)5 and (10) we have

F{z2, 7) - F{z°, 7 ) = (9) + (10) .
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Now, s ince ^»»+1 ~*~ 0 a s iV -*• °° , by choosing X > 0 s u f f i c i e n t l y smal l ,

F{z2, z2) - F[z°, Z°) will have the sign of

_, \( i 0\t~ „(• o ~~oi r i Oiffn „,- o "o i l
Re (z -3 J V /(s , s J + (s -s J V f[z , 2 j

L J

+ max{Re k z \ k £ K.\ - max{Re k z \ k (. 1

which is negative by (7).

Hence, we have i ? ( z , j s ) - F ( z , z ) < 0 , which contradicts the

assumption that [z , z ) is an optimal solution &f Primal Problem P.

Hence z is an optimal solution for Problem PI.

(ii) PI =* P. Let z be an optimal solution of Problem PI. Then

for any feasible solution z we have

(11) B(B) - H{z°) = Re[(3-30)\f(3
0, 7 ) + (3-3°)\/(3°, 7)]

+ max{Re kHz | k € K} - max{Re kEz° \ k € I

> 0 .

Now

F(z, ~z) - F[z , z ) = Re[f(z, z)-f[z , z ]] + max{Re k z \ k f K}

- max

> Re[(3-H°)\/(30, 7 ) + ( 3 - 3 ° ) \ /

+ max{Re kHz \ k € K.) - maxfRe kHz° \ k 6 X} (by (2)]

> 0 (by (11)).

Thus ( 3 , 3 ) i s an optimal solution of Problem P.

REMARK. In what follows, we wil l use only the f i r s t part of the

theorem; namely, P =* PI .

THEOREM 4. If [z , z ) is an optimal solution of Primal Problem P

then there exists a V such that [z , z , v ) is an optimal solution
for Dual Problem D and the extreme values of the two objective functions
are equal, if the following hypothesis is satisfied:

{Re kHz° \ k $ K]
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for all u € 0 — , max{Re(y, m) \ m € U) is attained at a
z ,z ,v

point m (. P , where D . —r- denotes the set of all v

z ,z ,v

which satisfy the dual constraint with u = z

Proof. By Theorem 3> part (i), z is an optimal solution for

Problem PI. By Theorem 1, the dual of Problem PI is the following problem,

denoted by Problem Dl.

PROBLEM Dl

maximize G(v) = Re(u, b) - max{Re(u, m) \ m € M)

(12) subject to -AHV + V2/(s°, 2°) + V1/(s°, z°) + k € T*

for some k € K ,

(13) V € S* .

By Theorem 1, there exists V optimal for Problem Dl and such that

H{z°) = G[v°) ; that i s ,

(HO Ke^ / tz 0 , 7)]V+[v2/(3°, ? ) ) V ] + max{Re kHz° \ k €

= Re(u° , b) - max{Re(u°, m) \ m d M] .

From (12) and (13), [z , z , v } is a feasible solution for Problem D.

Now

g[z , z , v J

= Re[/(2
0, B°)-8°\f{B°, z°)-z°HV2f{z°, a°)+Z,V] - max{Re(m, v°) \m t M)

= Re f[z°, z°) + Re bHv° - max{Re(m, v°) \ m (. M)

+ max{Re kHz° \ k d K.) - Re(u° , b) + max{Re(y°, m) | m € U\ (by

= Re f{z°, z°) + max{Re kHz° \ k € K)

Thus we have a feasible solution [z , z , v ) for Dual Problem D which

further satisfies
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g\z , z , v J = F(z , 3 J .

Thus, by Theorem 2, it follows that [z , z , v ) is an optimal solution

for Problem D.

Special cases

If M = {0} , we observe that Problems P and D reduce to those

considered by Mond [/J]. We further note that in such a case the

hypothesis in Theorem k is automatically satisfied and hence, Mond's

Theorem ([7 7], Theorem 5) turns out as a special case of Theorem k proved

above.

If /( s, z) = a 2, Problems P and D reduce to those considered by

Mahajan and Vartak [S].

TJ

If in addition to M = {o} , f{z, z) = a z , we take S = {0} then

Problems P and D reduce to those considered by Smi ley [15]. If M = {0}

and

r . . . .
(15) K = Y « V with V1- = [u € Cn I uQ\ 5 1}

i=l

where Q € C , i = X, ..., r are positive semidefinite hermitian,

then it can be shown as in Smi ley [15] that Problems P and D reduce to

those considered by Mond [70].

If M = (o> and

(16) f(z, J) ~ hzHBz + pHz ,

where B is hermitian positive semidefinite, then Problems P and D reduce

to those considered by Mond [72].

If M = (o) , K is defined by (15), and f(z, 7) is given by (l6),

then Problems P and D reduce to those considered by Rani [73]. If also

(17) S = [z i Cf | |arg z\ < a} ,

(18) T = {w € C* | |arg w\ S &} ,

for given a i rf" , & € rf\ , a ± TT/2 , i = 1, . . . , m , 6. 5 TT/2 ,
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i = 1, ..., n , then the problems considered by Rani and Kaul [74] are

obtained.

If M = {0} , K is defined by (15) with r = 1 and f(z, 7) = pHz ,

Problems P and D reduce to those considered by Mond [9]. If also S and

T are defined by (17) and (l8), the problems of Bhatia and Kaul [4] are

obtained.

If M = {0} , K = {0} , and S and T are defined by (17) and (l8)

the problems considered by Hanson and Mond [6] are obtained.

If M = {0} , K = {o} , and f(z, z) is given by (16) the complex

quadratic programming problems of Abrams and Ben-Israel [2] are obtained.

If also S and T are given by (17) and (l8) , Problems P and D reduce to

those of Hanson and Mond [5].

If M = {0} , K = {0} , f(z, 1) = pHz , the complex linear

programming problems of Ben-Israel [3] are obtained. If also 5 and T

are given by (17) and (l8), we obtain the problems of Levinson [7].
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