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The conformal constraint equations

This chapter analyses the intrinsic equations implied by the conformal Einstein
field equations on non-null hypersurfaces. These equations are known as the con-
formal constraint equations. They play an essential role in the construction
of initial data sets for the conformal field equations and in the identification of
boundary conditions. Not surprisingly, these conformal constraint equations are
closely related to the standard Einstein constraint equations — consequently,
this chapter starts by considering the properties of the latter.

The solvability and behaviour of solutions to the conformal constraint
equations is closely related to the nature of the underlying three-dimensional
manifold on which the equations are imposed. As a consequence, this chapter
also provides a discussion of general properties of asymptotically Euclidean and
asymptotically hyperboloidal 3-manifolds from a conformal point of view. The
systematic analysis of the constraint equations relies on methods of elliptic
partial differential equations. Hence, this chapter provides a discussion of some
of the basic notions of this theory.

An important aspect of the conformal constraint equations — the so-called
propagation of the constraints — is discussed in Chapter 13. The analysis of the
constraint equations on null hypersurfaces is treated in Chapter 18.

11.1 General setting and basic formulae

Let (/\;l, g) denote a spacetime satisfying the Einstein field equations. In what
follows, it will be assumed that (M,g) can be conformally extended to an
unphysical spacetime (M, g). Accordingly, there exists an embedding ¢ : M=
M and a conformal factor = such that ¢*g = Z2g. Now, let S denote a three-
dimensional submanifold of M and let Y : S — M denote the associated
embedding. As the composition ¢ o ¢ : S — M is also an embedding, the
three-dimensional manifold S can be regarded, in turn, as a submanifold of M.
As discussed in Section 2.7.3, the spacetime metric g induces a metric hon S via

https://doi.org/10.1017/9781009291347.015 Published online by Cambridge University Press


https://doi.org/10.1017/9781009291347.015

248 The conformal constraint equations

h = p*g. Similarly, regarding Sasa hypersurface on M, the unphysical metric
g also induces a metric h via the pull-back h = (¢ o p)*g. A calculation shows
that

h=(pop)g=(p"0d")g="(E%s9) = g

where Q = Z?| & is the restriction of ZE to the hypersurface S. Following the
conventions of previous chapters, h = Q%p*g will often be written as

h = Q%g.
Now, let & and v denote, respectively, the g-unit and g-unit normals of S and
define
c=§(0,0) = g(v,v)
In accordance with the signature convention (+ — ——), the hypersurface S is

spacelike if € = 1 and timelike if ¢ = —1. It follows that

1’))1

[1]

v==ED, Vi =2"

or, using index notation, v, = 2, and v® = Z~'0%. In what follows, the indices
of objects in M are raised /lowered using the metric g, while the indices of objects
on M are moved using g.

11.1.1 The transformation formulae for the extrinsic curvature

Having discussed the relation between the 3-metrics and the unit normals to S,
one is in the position to consider the relation between the extrinsic curvatures
K and K. Given spatial vectors u, v € T(S) — so that (D, u) = (,v) =0 — one
has that

K(u,v) = (Vyp,v),  K(u,v) = (Vyv,v);

see Equation (2.43). Recalling that V — ¥V = S(Y) one readily has that

Vuv =V —S(YT,v;u);

the minus sign arises from the fact that v is a covector. In abstract index notation
S(Y,v;u) is given by Sap @Y .vqu? from where a short calculation gives that

SadeTCVdub = Sade@CEﬁdub,
= VpEau’ — Gapul GV By
= (UVE)Tq — EXgacti’,
where

Y = g®V,E, = ¢*(d=,v) = 27 'g(dE, D)
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is the derivative of = in the direction of the g-unit normal to S. Accordingly, one
has that

S(T7 v; u) = U(E)I) - EEQ(U, ')a

from where, recalling that u, v € T(S) so that §(u,v) = h(u,v), it follows that
K (u,v) = (Vuv,v) — u(E)(D,v) + Q5(g(u, ), v)
UV o, v) + QSh(u,v)
o (k(u,u) + Yh(u, v)) :

where to pass from the first to the second line it has been used that (©,v) =0
as T(S).

Summarising, the calculations in the previous paragraphs show that
hij = Q%hij, (11.1a)
Kij = Q(Ki; + Shyj). (11.1b)
These are the basic transformation formulae for the remainder of this chapter.

Taking the trace of the transformation formula for the extrinsic curvature,
Equation (11.1Db), it follows that

OK = K + 3%,

where K = if’jf(ij and K = hinij — these scalars are sometimes called,
respectively, the physical and unphysical mean curvature of S . The scalars
>, K admit a geometric interpretation: if > = K = 0, then, necessarily, K = 0

and the hypersurface S is mazimal in M with respect to both the metrics §
and g — that is, it encloses a maximum volume for a given area.

11.1.2 Decompositions in electric and magnetic parts

A key ingredient in the analysis of the conformal constraint equations is the
decomposition in electric and magnetic parts of tensors with antisymmet-
ric pairs of indices. Let S denote a hypersurface on a spacetime (M, g), and let
v denote the unit normal to the hypersurface. The projector to S is the tensor
h,® given by

It follows that
ho’vy = 0, holhy® = hyC.

Furthermore, using the properties of the spacetime volume form e€,p.q — see
Section 2.5.3 — one can deduce that

1
holhy® = fieabeECde, (11.2)
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where €440 = € fabel/f is the three-dimensional volume form.

Now, let F,, denote an antisymmetric tensor of rank 2 and let F, =
—%eadech denote its Hodge dual. Its electric and magnetic parts are defined,
respectively, to be

F, = Fvh,°, Fr = Fc*bz/bhac.
It can be verified that
Fu" = Ffv* =0, ho’F, = F,, h'Fy = F7,

so that the electric and magnetic parts are said to be spatial tensors. Together,
F,, and F} encode the same information as the original tensor Fy;. In order to
see this, one writes

Fo = chéacébd = cd(hac =+ €UaVC)(hbd + EVde)
= cdhachbd + GchhaCVbl/d + GFthbdljal/C

= 2¢Fjat) + Feahahy?. (11.3)
The term F,g4h,°hy? is, in turn, manipulated using the identity (11.2) as follows:
Fegha®he® = Frghahy® = _%chedeerGabe
= Fvlea® = Flea®. (11.4)
Thus, combining Equations (11.3) and (11.4), one concludes that
Fap = 2eFiquy) + FJ e qp.

The decomposition in electric and magnetic parts can be extended to tensors
Wabea With the same symmetries as the Weyl tensor; such tensors are sometimes
known as Weyl candidates. By analogy to the rank-2 case one defines the
v-electric and v-magnetic parts of Wypeq to be

Wae = Weppar'v?hahe? Wr. = W*bfdybl/dhaehcf,

ac €

with W), ., = —%ecdefWabef denoting the right Hodge dual of Wapeq. In the
subsequent discussion it is convenient to consider

Wabe = Wepgn ha®hp?h.".
It can be verified that

1
d
;b = *§Wacd€bc .
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As in the rank-2 case, the tensors W,, and W}, (or, alternatively, Wy,
and W) encode the same information as Wypeq. The argument to show this
equivalence is similar to that of the rank-2 case:

Wabed = Wegn0a 657 .964"
= Wesgn(ha® + evov®) (! + evyv? ) (he? + ever?) (hg™ + evgr™)
= Wepgnha®hy! he9ha" + eWeapva — Waenhave + eWacav
+ Waethva — Waavnve — eEWheava — WielVaVa + WealaVe. (11.5)

From the definition of the magnetic part W7, it follows that
Wabe = €pc W (11.6)
Moreover, using that
€apee?®l = —66,196,¢6.11, (11.7)
it follows that

1 .
Wefghhaehbfhcghdh = Z efgheefzeabzeghlecdx

— *W*

TZST

- Wcahbd + dehac - chhad - Wdahbc- (118)

T8 z T __ z T
V'V €gp €cd = _szeab €cd

Combining Equations (11.5), (11.6) and (11.8) one obtains the desired decom-

position of Wepeq in terms of Wy, and W:

Wabed = 26(lb[ch]a — la[ch]b) — Q(V[CW;]eeeab + V[aWb*ieeecd), (11.9)
where I, = hgp — €V A similar computation renders

W*bcd = 2V[aWb]eeecd — 4We[aeb]e[cl/d] - 4V[an:i[ch] - W*feeabefcd. (11.10)

a €

Ezxpressions in terms of an adapted frame

The decomposition discussed in the previous paragraphs acquires a particularly
simple form when supplemented with a frame {e,} adapted to the hypersurface
S. For such a frame, the projection of a particular index with respect to the
normal corresponds to replacement of the corresponding frame index with
while the spatial part of a tensor is given by the replacement of the spacetime
frame indices 4, b, ¢, ... with the spatial frame indices ;, j, g, ... In particular,
the three-dimensional volume form satisfies €;j, = €4k, and the electric and
magnetic parts of the antisymmetric tensor F,; are represented, respectively, by
F;=F;,, Ff=F;] .

K2
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252 The conformal constraint equations

In the case of the Weyl candidate Wgp.q one has that the tensors Wy, W and
Wape correspond to

* *
Wi =Wirtie,  Wi5=Wi, Wik =WiLjk.

7

11.2 Basic notions of elliptic equations

Elliptic differential operators arise naturally in the study of the constraint
equations of general relativity on spacelike hypersurfaces. In view of this,
some basic properties of elliptic operators on Riemannian manifolds are briefly
discussed.

Let (S, h) denote a Riemannian three-dimensional manifold with h a negative
definite metric. A linear differential operator of order M over S is a map
between tensor bundles

L: “S“,S(S) — ‘Ikr-'k?j\r (S), S, N e N,

of the form
M
(L) kg = D a7 90008 Dy Dy g i (11.11)
r=0

for a smooth v;,....c € Tj,...is(S) and where the coefficients @1 Jrit=is, =

are smooth functions over S. The principal part of L consists of the terms in

Equation (11.11) with the highest order derivatives, that is,
IS ey Dy Dy Vi i

Closely related to the principal part is the symbol of L, or,(€), defined pointwise

on S, for & € T*|,(S) as the linear map

UL(&) : ,TZ1ZS|P(S) - Tk’l"'kN‘P(S)’

given by

(TL(E)0)ky by = @IS &y g Vi i

Observe that the symbol is obtained by the formal replacement of the
derivatives D; — &; in the principal part of the operator. The symbol oy,(€)
determines the nature of the differential operator. In particular, L is said to
be underdetermined elliptic at p € S if oL (§) is surjective for all & # 0;
L is overdetermined elliptic at p € S if or(§) is injective. Finally, L is
elliptic if o (€) is bijective, that is, if it is injective and surjective. If the
coefficients a/tJré1is, 4 in the operator (11.11) depend not only on the
point on S but also on the derivatives Dj;, ---D;,, | < r, then L is said to
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be quasilinear. The definitions of (underdetermined, overdetermined) elliptic
differential operators extend in a natural way to the quasilinear case.

The paradigmatic example of an elliptic operator is the Laplace operator of
the metric h:

Ano = h"D;D;¢, ¢ € X(S).

In this case the operator is equal to its principal part. Moreover, its symbol
is given by h"&;&; < 0 for & # 0 (as a consequence of negative-definiteness),
from where it follows that the symbol is a bijection and, hence, Ay, is an elliptic
operator. Particular examples of overdetermined and underdetermined elliptic
operators are discussed in Section 11.3.3.

Associated to the differential operator L in (11.11) one has its formal adjoint
L* given by

M
(L*u)is = Z(*l)TDjl Dy (PSR,
r=0

for smooth u*1F~x ¢ ThFx (S). The above expression comes from the identity
between inner products

/(Lv)kl...kNukl"'kNd,uh:/vil...iS(L*u)il"'isd,uh, (11.12)
s s

which is obtained by repeated integration by parts. In the previous expression,
dpy, denotes the volume element of h. For simplicity, in the identity (11.12)
it is assumed that S is a compact manifold so that the integrals are well
defined. Important for the subsequent discussion is the fact (verifiable using
the definitions given in the previous paragraphs) that L is an underdetermined
elliptic operator if and only if L* is overdetermined elliptic. Moreover, if L is
underdetermined elliptic, then L o L* is elliptic.

The interested reader is referred to appendix II in Choquet-Bruhat (2008) for
further details on the theory of elliptic equations. An alternative summary can
be found in the appendix of Besse (2008).

11.3 The Hamiltonian and momentum constraints

Before proceeding to analyse the conformal constraint equations, it is convenient
to discuss the intrinsic equations implied by the Einstein field equations

1~ -
Rab - iRgab + Agab =T

on a non-null hypersurface of a spacetime (M,§) — the so-called Einstein
constraint equations.
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11.3.1 Derivation of the Finstein constraint equations

Starting from the Gauss-Codazzi identity, Equation (2.47) and contracting with
h* one obtains

. . - R
T+ KKj — K*j K = h*" Rijk
b= _
=n""Rajor —€R1j11
=R —eRyiju.

Contracting this last equation with hit one finally obtains

P4+ K? — Ky K%' = h9'Rj; — ehd' R, ;1
= nabRab - GRLJ_ - EnabRLaJ_b
= R - 2ER_LL.

Similarly, starting from the Codazzi-Mainardi identity, Equation (2.48), and
contracting with h* one has that

= niniJ_jk = RJ_k,

where to pass from the first to the second line one uses that R 1156 =0.
Using the Einstein field equations in the frame component form

1 ~ -
Rab - inabR + )\nab = Tab

one obtains the so-called Finstein constraint equations

P+ K2 — KKt = 2(\ — €), (11.13a)
DIKyj — DpK = j, (11.13b)
where
o0=Ty, e =Tk

are, respectively, the energy density and the components of the energy flux
vector of the energy-momentum tensor in the direction of &. Equations (11.13a)
and (11.13b) are known, respectively, as the Hamiltonian constraint and
the momentum constraint. The tensorial version of Equations (11.13a) and
(11.13b) is given by

F+K? - KyK' =2\ —€g), D'Kyj — DK = jy. (11.14)

Finally, it is observed that in index-free notation the constraint equations can
be written as

r[h] + (tr; K)? — |I~{|?;L = 2(\ — €9), div; K —gradtr;, K = j.
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In what follows, a collection (S,iz,f{ , é,j') such that the negative definite
metric b and the symmetric rank-2 tensor K satisfy the Einstein constraints
(11.14) with € = 1 on the three-dimensional manifold S will be known as an
initial data set for the Einstein field equations. If = 0 and j = 0, one speaks
of a vacuum initial data set.

An important class of initial data sets is that for which K = 0 and j = 0, so

that one is left only with the Hamiltonian constraint in the form
rlh] = 2(A — p).

Such an initial data set is called time reflection symmetric (or time
symmetric for short); it follows from the properties of the Einstein reduced
equations that for this type of initial data one has Oihoag = 0 on the initial
hypersurface S so that the resulting solution to the Einstein field equations is
invariant under the replacement t — —t.

11.3.2 The conformal Hamiltonian and momentum
constraint equations

Regarding, as in Section 11.1, the three-dimensional manifold S as a hypersurface
on both (M, g) and (M, g), it follows from a computation using the transfor-
mation rules (11.1a) and (11.1b) together with the transformation rules for the
Ricci scalar, Equation (5.16¢), that Equation (11.14) can be reexpressed in terms

of unphysical quantities as:

20D, D) — 3D,QD'Q + %Q% — 3ex?

+ %QQ (K? — K;;K7) + 205K = X — o, (11.15a)

Q*D Q%K) — Q(DpK — 207 ' DY) = Q% (11.15b)
where

0=07"5, gk = Q3 y, (11.16)

denote, respectively, the unphysical energy density and the flux vector.

11.3.83 The Hamziltonian and momentum constraint
as an elliptic system

The Einstein constraint Equations (11.14) on a spacelike manifold S (i.e. € = 1)
have been studied extensively in the literature; see, for example, Bartnik and
Isenberg (2004) for a review of the topic and see also Choquet-Bruhat (2008),
chapter 7, and Choquet-Bruhat and York (1980). In this section an adaptation
of the so-called conformal method of Licnerowicz, Choquet-Bruhat and York
to analyse the conformal Hamiltonian and momentum constraints (11.15a) and
(11.15b) will be discussed; see, for example, York (1971, 1972). This approach
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works directly on a compact wunphysical manifold S which is a conformal
extension of the physical manifold S. The key idea in this analysis is to show
that these constraint equations imply an elliptic system of equations for suitable
conformal fields. Proceeding in this way, one also obtains an insight into the
nature of the freely specifiable data in the Einstein constraints. The use of a
compact manifold S simplifies some of the technical aspects of the analysis. This
approach to the Einstein constraint equations has been advocated in Friedrich
(1988, 1998c, 2004, 2013), Dain and Friedrich (2001) and Beig and O’Murchadha
(1991, 1994).

Following the discussion of the previous paragraph, let (S, h) denote a compact
Riemannian manifold with h negative definite and set ¢ = 1 so that S can be
regarded as a spacelike hypersurface of an unphysical spacetime (M, g). In what
follows, for simplicity, it is assumed that the matter fields o and j are known
on S.

The first step to transform Equations (11.15a) and (11.15b) into an elliptic
system is given by the transformation law of the three-dimensional Ricci scalar,
Equation (5.17), which suggests introducing a conformal factor ¢ satisfying
Q=1972. By substituting this definition into Equation (11.15a) one finds that

1 1 g 1 1
Apd — gr[h]ﬁ = g(Kin” - K*)9 + Z(ﬁ*% —9°0) + %22195 - 519321(,
(11.17)

where, as before, Ay, = h¥D;D; and the notation r[h] has been used to make
explicit the dependence of the Ricci scalar on the metric h. Following the
standard use in the literature, this equation will be known as the Licnerowicz
equation. If the fields h (and hence r[h]), K;;, K, ¢ and ¥ are known, this last
equation can be read as a non-linear elliptic equation determining . For future
use, it is convenient to define the Yamabe operator Ly, : X(S) — X(S) as

1
Lpd = Apd — g?‘[h]ﬁ, (11.18)

so that Equation (11.17) can be rewritten as

1 | 1 1 1
Lnd = 2 (Kiy K" — K?)9 + il A2 + 52193 (K - 61922)-

The Yamabe operator has nice conformal transformation properties; see
Equation (11.23) below.

Equation (11.15b) suggests that the extrinsic curvature K;; should be split
into a trace-free part multiplied by a power of the conformal factor and a pure
trace part. In this spirit one writes
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—4 1 ij
Kij =973 + g Khij, h¥i; =0,
which, substituted into (11.15b), yields
. 2
Dy = g196Dj(q9—2K) —297°D;% + j;.

In view of the latter, it is convenient to reintroduce the physical trace K =0QK =
Y72K so that one obtains

. 2 ~
D' = gﬁﬁDjK —2074D;% + ;. (11.19)

This last equation is to be read as an equation for the trace-free tensor ;. If
K is a constant and ¥ = 0, then Equations (11.17) and (11.19) decouple.

Following the discussion of Section 11.2 it can be verified that the principal part
of Equation (11.19) is underdetermined elliptic. To transform Equation (11.19)
into an elliptic equation one makes use of a so-called York splitting; see York
(1973). One considers an ansatz for v;; of the form

2
Yij = Digj + Djsi — ghijDka + ¥ (11.20)

where ¢; is some covector on S and ng is a freely specifiable symmetric and
trace-free tensor. The operator (Lps); defined by

2
(Lrs)i = Dis; + Djs; — ghijDMk’

is called the conformal Killing operator. It can be verified to be the
formal adjoint of the divergence operator acting on symmetric trace-free tensors.
Substituting the ansatz (11.20) into Equation (11.19) one obtains

: 2 2 . ,
Aps; + D'Djs; — ngDkgk = gq<}6DjK —207'D;% + j; — D'y, (11.21)

The symbol of this equation can be seen to be
i i 2.k
(@aivor(€)s); = £'6isj + €765 — &€ G-
Contracting with &/ one immediately finds that

(Faivec (@))€ = EE)(as) + 3(GEP >0 for &5 A0

Thus, it follows that (11.21) is a linear elliptic equation for the covector ;.
The freely specifiable data for this equation is the symmetric trace-free tensor

ij- As in the case of Equation (11.19) it decouples from the Licnerowicz
Equation (11.17) if K is constant and ¥ = 0. The analysis of the coupled system
(11.17)—(11.19) is much more challenging; see, for example, Holst et al. (2008a,b).
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Gauge freedom

The conformal method described in the previous paragraphs has a conformal
gauge freedom. More precisely, if ¢ is a positive function on S, then a direct
computation shows that the transitions

hij = ¢4hij? Yij — ¢_2wij7 Q- ¢ZQ7 Kij— ¢2Kij, (11.22a)
L ¢’ o ¢ %, i 0% (11.22b)

yield another solution to the conformal constraint Equations (11.15a) and
(11.15b) with the same physical data (h,K). This gauge freedom can be
exploited to simplify certain specific computations. In particular, letting
h' = ¢*h, a calculation using the transformation laws for conformal transfor-
mations shows that
_ 1 1 _

¢ % (Ap — gr[h])ﬁ = (Ap — gr[h/])(gé 1), (11.23)

that is,

¢~ °Lp[0] = Ly (¢19).

11.3.4 The Yamabe problem

A classic question of Differential Geometry is the so-called Yamabe problem
which, given a compact three-dimensional Riemannian manifold (S, h), asks
whether it is possible to conformally rescale the (smooth) metric h to a metric
with constant Ricci scalar; see Yamabe (1960). This problem requires finding a
positive conformal factor w and a constant r, satisfying the equation

Apw = %(r[h]w — rew®), (11.24)

which follows from the transformation equation for the three-dimensional Ricci
scalar Equation (5.17). The Yamabe problem has been solved in the affirmative;
see Trudinger (1968), Aubin (1976) and Schoen (1984). In particular, one has
the following (e.g. Lee and Parker (1987); O’Murchadha (1988)):

Theorem 11.1 (resolution of the Yamabe problem) Let h be a smooth
Riemannian metric on a compact manifold S. There exists a smooth, positive
definite function w on S such that r[w*h] is constant.

Theorem 11.1 allows the classification of Riemannian metrics according to
whether they can be rescaled to a metric with constant Ricci scalar which is
positive, negative or zero — a given metric h cannot be rescaled to two different
metrics with constant curvature of different signs. Thus, the resulting Yamabe
classes are conformal invariants. As will be seen in Section 11.5, this observation
plays a role in the construction of initial data sets on compact manifolds.
Remarkably, the analogous Yamabe problem on mon-compact manifolds turns
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out not to be true as shown by a number of counterexamples; see, for example,
Zhiren (1988).

11.4 The conformal constraint equations

Having analysed the standard Einstein constraint equations, focus is now on the
constraint equations implied by the conformal Einstein field equations. These
equations can be regarded as an extension of the conformal Hamiltonian and
momentum constraints (11.15a) and (11.15b).

11.4.1 The derivation of the equations

In this section the frame version of the conformal Einstein field equations,
Equations (8.32a) and (8.32b), are considered. By making use of an orthonormal
frame adapted to the geometry of the hypersurface under consideration, as
described in Section 2.7.3, the split of the equations follows almost directly.

In what follows, let (M, g) denote an unphysical spacetime and let S denote a
hypersurface thereof. As in Section 11.1.1, let 3 denote the covariant derivative
in the direction of the g-unit normal. The evaluation of a spacetime frame index
in the direction of the unit normal (i.e. the values 0 or 3 depending on the causal
character of S) will be indicated by the symbol | .

The constraints implied by Z;,. Given
- = 1_5
Zab = VaVpZ +ELgp — $Nab — 5':' T{ab}7 (1125)

the information of the conformal equation Z,p = 0 which is intrinsic to the
hypersurface § is encoded in the components

Zij =0,  Zi;=0. (11.26)

In order to obtain explicit intrinsic expressions for these equations it is observed
that

VaVbZE = €,%€" Vo Vi Z = eq(es(Z)) — ['aCpec ().

Hence, in particular, one has that

N
<
<
[
Il
o
o
Q.
w
|
b
k\.n
®
N
w

= ei(DjE) — ’Yiijk:E' —+ GKijZ
= DiDjE + EK.,;J'Z, (11.27)
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where, in the last term of the last line, Equation (2.45) for the extrinsic curvature
has been used. A similar computation shows that

Vi:ViE= ei(eJ_(E)) - FicJ_ec(E)
= 61(2) — FikLek(E) — FiJ__J_E
= D;X — eK;*DyE, (11.28)

where, in the third line, it has been used that I'y; -, = 0 as a consequence of the
metricity of the connection and the fact that K;* =T;% .

Substituting the above expressions into Equation (11.26) and taking into
account definition (11.25) one obtains the constraint equations

1 1
DiDjQ = —EKijE — QLiJ‘ + Shij + 29<Tij — 4Thij),
1 4.
where

LiELiJ_, QEE‘S.

The constraints implied by Z,. Given
— = loogen [
Zg =Vas+ LacVEE — 3= V=T (qe) — 6: VTcay, (11.29)
the intrinsic information of the equation Z, = 0 is encoded in the components
Z; = 0. (11.30)

Now, the spatial components of the term L,V in Equation (11.29) can be
expanded as

LipVPQ = Lipn®*V o
=Lyt tV1Q+ Lygn™VviQ
= eL;¥ + Lii, D*Q.

By similar arguments one concludes that
1
VeET ey = €255 — Ty D*Q — ZD,-T,
1
VT (i} = €V 1j; + D*The; — 1 DiT-

It is important to observe in V¢T(;. the presence of the term V,j; which
requires further information about the matter model in order to be cast in a
form intrinsic to the hypersurface S. In the case of trace-free matter, one has
that VT, = 0, so that no further considerations are required.
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From the discussion in the previous paragraphs it follows that Equation (11.30)
can be reexpressed as

1 1
D;s = —eL;¥ — Ly D*Q + 592 (€S4; — Ty D*Q — 1DiT)

1 1
+ 693 (eV Lji + D*Ty; — ZDiT).

The constraints implied by Acgp. Given
Acab = VeLlap — VaLey — VaZEd*veda — ETcap, (11.31)

the information intrinsic to the hypersurface S of the conformal equation
Acgp = 0 is encoded in the components

Ajjr =0, A =0. (11.32)
A calculation similar to that leading to Equations (11.27) and (11.28) yields

Viij = Diij + GKiij,
ViLj = DiLj + Kikij.

Given the components dgpeq Of the rescaled Weyl tensor with respect to the
adapted frame {eq}, it is convenient to define

dij =d;ij1, dijr = di 1 jk.

Following the discussion of Section 11.1.2, d;; corresponds to the components of
the electric part of the rescaled Weyl tensor, while d;;, encodes the information
of the magnetic part. It can be verified that

dij =dji, =0,  digk=—dirj,  djiji =0, (11.33a)
dijrr = 2(hidy; + hjudps)- (11.33b)

It follows from the latter expressions, together with (11.31), that the
constraints (11.32) can be reexpressed as

D;Lji, — DjLip, = —eXd;jr + Dlelkij — €(Kiij — KjkLi) + QT 5k,
DiLj — DjLi = Dlﬂdlij + Kiijk — KjkLik + QJij7

where
ij = Tij_.
The constraints implied by Apcq. Given

Aped = Vad®bved — Tedn,
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as a consequence of the decomposition of the Weyl tensor in electric and magnetic
parts, it follows that the information of the equation Ape.q = 0 which is intrinsic
to the hypersurface S is contained in the components

Mg =0, AijL=0. (11.34)
Observing that
Vedaijk = 1 (ea(dbijk) — Tabdeije — Taidbejk — La®jdbick — Do kdbije),

one concludes, by arguments similar to those used to obtain Equations (11.27)
and (11.28), that

Vad® 1k = Didijr + e(K'pdj; — K*jdps),
Vad®1j1 = Didij — K*djy.

It follows from the previous discussion that the constraint Equations (11.34) can
be reexpressed as

Didijk, = G(Kijdk:i - Kikdji) + Jjk,
Dzdl] = Kikdijk: + Jj7
where
Jik = Tjk, Ji =T

The explicit form of Jj, and J; depends on the matter model under considera-
tion. In the case of the electromagnetic field, they can be expressed in terms of the
electric and magnetic parts of the Faraday tensor and their spatial derivatives.

The constraint Z = 0. Recall that
1
Z = 625 — 3V .EV°E + 154T — A

As discussed in Section 8.2.4 the equation Z = 0 is, in fact, a constraint
equation whose propagation is ensured by the other conformal field equations;
see Lemma 8.1. Following the procedure employed in the decomposition of the
other conformal equations, it can be expressed in terms of quantities intrinsic to
the hypersurface S as

1
A = 6Qs — 3¢X? — 3DL,QD*Q + ZQ‘*T.

11.4.2 The Gauss-Codazzi and Codazzi-Mainardi equations in terms
of conformal fields

The intrinsic equations discussed in the previous section are supplemented by
the Gauss-Codazzi and Codazzi-Mainardi equations, Equations (2.47) and (2.48)
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Rijrr = riji + Ki K1 — Ka K,
R;1jk = DjKki — DeKji,
expressed in terms of conformal fields. As a consequence of the decomposition of

the four-dimensional Riemann tensor Rgpeq in terms of the Weyl and Schouten
tensor, Equation (2.21b), one has that

Rabcd = Edabcd + nachb - nachb + Lacndb - Ladncba

while the three-dimensional Riemann tensor 7;5,; can be expressed in terms of
the three-dimensional Schouten tensor /;; as

1
Tijll = Riklyy — Rl + Pjiles — hjelis, lij =ri; — ZThijJ

see Equation (2.40). A direct calculation using the above expressions yields the
two additional constraint equations

DjKyi — DiKji = Qdijk + hij Lk — hik L,

1 1
lig = Qdij + Lij — Ki* (Kij — { Khig) + KiiKG* = 2 Kia K hij.

These equations provide the link between the spatial curvature tensor /;; and
the spacetime curvature as described by dup, dape, Lap and L.

11.4.3 Summary of the equations and basic properties of the
conformal constraint equations

As a summary of the discussion of the previous sections, the conformal constraint
equations are collected:

1 . 1
D; D) = —eXK;5 — QL5 + shyj + 593 (Tij — 4Thij>, (11.35a)

1
D;Y = K;*DpQ — QL; + 5933',-, (11.35b)

1 1
D;s = —el;> — L,kaQ -+ 592 (62], — leDkQ — 4DZT)

1 1
+ 693 <EVJ_ji + Dkai — 4D,,;T), (11.350)
Diij — DjLik = —GdeiJ‘ + Dlelkij
— E(Kiij — KjkLi) + QTijk, (11.35(31)
DiLj — DjLi = Dlel’ij + Kiijk — KjkLik + QTijJ_, (11.356)
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Dkdkij = E(Kkidjk — Kkjdik) + Jij, (11.35f)

Dids; = K*dijn, + Jj, (11.35g)
1

A = 6Qs — 3eX? — 3D, QD*Q + ZQ‘*T, (11.35h)

Dij,i — DkKj,,; = Qdijk + hiij — hiij, (11351)

1 1 .
lij = Qdij + Lij — K(K;j — 1Khij) + Kpi K% — ZKleklhij. (11.35j)

Using the identity (11.7) and recalling that d;; = —%diklejkl, Equations (11.35f)
and (11.35g) can be rewritten in the alternative form

D'd;; = —ee; M K pdy; — §€jkl=]kl, (11.36a)
Didy; = e s K™*dy + J;. (11.36b)

The conformal constraint Equations (11.35a)—(11.35j) are not independent
since integrability conditions have been used in their derivation. A list of various
relations between the vacuum constraint equations can be found in Friedrich
(1983). In particular, it can be shown that

D; (693 — 3eX? — 3D, ODFQ + iQ‘*T) =0,

consistent with the fact that the left-hand side of Equation (11.35h) equals the
cosmological constant .
For future reference, it is observed that from Equation (11.35j) it follows that

Tij = Qdij + Lij + kahij — KKij + Kik,Kkj, (11.37&)
r=A4Lp* — K? + Kj; K9, (11.37b)

The vacuum version of the conformal constraint equations is obtained by
setting the matter fields T;;,
the conformal constraint Equations (11.35a)—(11.35j), it has been assumed that
the connection D is the Levi-Civita connection of the intrinsic metric h. Thus,

T, ji, Tijk, Ji, Jij equal to zero. In the derivation of

by analogy to the full conformal field equations one also has the relations
of5 =0, T =%, (11.38)

where oikj, Hk”j and wklij denote, respectively, the components of the torsion,
the geometric curvature and the algebraic curvature of the connection D.
Explicitly, one has that

Uikjek = [es, 5] — (%‘kj - %’ki)ek,
%15 = es(15%1) — €5 (3"1) + 9 ™1 (3™ = %™ 3) + %™ 1%  m = %™ 17 ms

Trtij = Nikliy — hatlkg + Pjiles — hjrlis.
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Given a collection of matter fields on S,
m, = (T35, T, 0,75,V LJi, Ji, Jij),

by a solution to the conformal constraint equations on S it will be
understood a collection

u, = (Q,%, s, e5,%:" 4, Kij, Lij, Li, dij, dij)

satisfying Equations (11.35a)—(11.35j) together with the supplementary condi-
tions (11.38).

The relation between the conformal constraint Equations (11.35a)—(11.35j)
and the conformal Hamiltonian and momentum constraints (11.15a)—(11.15b) is
summarised in the following lemma.

Lemma 11.1 (relation between the solutions to the Einstein constraints
and the conformal constraints) A solution to the conformal constraints
(11.35a)—(11.35j) for a collection m, of matter fields implies a solution to
the conformal Hamiltonian and momentum constraints (11.15a) and (11.15b).
Conversely, a solution of (11.15a) and (11.15b) together with a collection of
matter fields m, gives rise to a solution to (11.35a)—(11.35j) on the points of S
for which Q # 0.

Proof Using Equations (11.35a) and (11.35h) to eliminate Lg* one readily
obtains the conformal Hamiltonian Equation (11.15a). Similarly, starting from
Equation (11.35i) and using Equation (11.35b) to eliminate L; one obtains the
conformal momentum constraint (11.15b). Thus, any solution to the conformal
constraints (11.35a)—(11.35j) implies a solution to the conformal Hamiltonian
and momentum constraints, Equations (11.15a) and (11.15b).

Assume now one has a collection (9, h, K, %, p,j;) satisfying Equa-
tions (11.15a) and (11.15b) together with a collection (T3;,T, Js, Js5,V 17s)
consistent with the matter fields g and j; . Let now {e; } denote an h-orthonormal
frame. Using this frame one can compute the components l;; and K;; of the
three-dimensional Schouten tensor and of the extrinsic curvature. If Q # 0,
one can use the conformal constraint (11.35h) to compute the field s. Next,
one makes use of Equations (11.35a) and (11.35b) to compute L;; and L;. A
computation using the commutator of the covariant derivative D; shows that
Equation (11.35¢) is automatically satisfied. Once the components L;; and L;
are known, one can use Equations (11.351) and (11.35j), respectively, to compute
dijr and d;; — it can be verified that the resulting fields are trace free. A final
computation using the three-dimensional Bianchi identity in the form

. 1
DzT'ij = ZDJ'?",

together with the irreducible decomposition of the three-dimensional Riemann
tensor 7ijk1, the decomposition of djjr; into the electric and magnetic parts
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and the commutator of D; shows that Equations (11.35d)—(11.35g) are also
automatically satisfied. Thus, the fields obtained constitute the required solution
to the conformal constraint equations; see Friedrich (1983) for further details. O

Remark. In order to make assertions about the behaviour of solutions to
the conformal constraint equations at points where 2 = 0, the equations
need to be supplemented with boundary conditions. Several different classes of
boundary conditions on three-dimensional manifolds will be considered: com-
pact manifolds, asymptotically FEuclidean manifolds and hyperboloidal
manifolds.

11.4.4 The conformal constraints at the conformal boundary

By construction, the conformal constraint equations can be evaluated in a regular
manner at a non-null hypersurface belonging to the conformal boundary of
spacetime. By definition such a hypersurface satisfies the conditions

Q=0 dQ#£0.

Following the convention introduced in Chapter 6 this hypersurface will be
denoted by .#. The null case will be discussed in Chapter 18.

The defining properties of the hypersurface .# lead to a number of simplifi-
cations in the conformal constraint equations. In particular, df) is normal to .%#
so that, in terms of a tetrad adapted to the hypersurface, one has D;2 = 0.
Assuming that the matter fields T35, 7' and Tjji are smooth at .# one finds
that on the hypersurface the conformal constraints (11.35a)—(11.35j) imply the

equations
shij ~ eXK;j, (11.39a)
D;¥ ~ 0, (11.39b)
Dis ~ —eL;%, (11.39¢)
D;Ljx — DjLit ~ —eSdijr, — e(KiLj — Kji L), (11.39d)
D;Lj — DjL; ~ K;*Ljy — K;* Ly, (11.39)
D¥*dy;j ~ e(K*idji — K*dir) + Jij, (11.39f)
Did;j ~ K*djp, + J;, (11.39g)
A~ —3ex?) (11.39h)
DjKyi — DiKji =~ hijLi, — hixLj, (11.391)
lij ~ Lyj — K(Kij - iKhij> + K K% — iKleklhij, (11.39j)

where ~ denotes equality at the conformal boundary. From Equations (11.39b)
and (11.39h) it follows that ¥ is a constant on .# with a value given by
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¥ = \/—€e)\/3 — observe that if e = 1, then A < 0, and if ¢ = —1, then A > 0,
for the previous expression to make sense. Moreover, from Equation (11.39a) the
extrinsic curvature of .# is proportional to the intrinsic metric.

A procedure for constructing solutions to Equations (11.39a)—(11.39j) in the
vacuum case (so that Jj, = 0, J; = 0) has been given in Friedrich (1986a, 1995).
The fundamental idea is to identify the function s and the 3-metric h on .# as
freely specifiable data. Instead of working directly with s, it is more convenient
to use a smooth function s € X(S) such that

s~ Y. (11.40)

It follows directly from Equations (11.39a), (11.39¢) and (11.39j) that

1
Kij ~ E%hij, L; ~ —€Dj;n, Lij ~ lij + 5%2h7;j. (1141)
Substituting these expressions into Equation (11.39d) one obtains, after some

simplification, that
dijk ~ —Ez_lyijk (11.42)

where y;5k = D;lji — Djlsr denote the components of the Cotton tensor of the
metric h; see Section 5.2.2. Alternatively, one can write

* -1
d’LJ ~ _62 erJ,

with y;; = —%ykljeikl the components of the Bach tensor. It can be verified
that the integrability conditions (11.39¢), (11.39f) and (11.39i) are automatically
satisfied by (11.41) and (11.42). Finally, by substituting into Equation (11.39g)
one obtains that

Dd;; ~ 0.

This is the only differential condition that has to be solved in this procedure.
This can be done by means of a York splitting so as to obtain an elliptic equation
for the components of a covector.

The discussion of the previous paragraph is summarised in the following:

Proposition 11.1 (solutions to the conformal constraint equations
at the conformal boundary) Given a three-dimensional metric h, an
h-divergence-free and trace-free field d;; and a smooth function s, the fields s,
Kij, Li, Lij, diji. as given by Equations (11.40), (11.41) and (11.42) constitute
a solution to the vacuum conformal constraint equations with Q = 0.

As will be seen in later chapters, a solution to Equations (11.39a)—(11.39j)
constitutes, in the case of e = 1 (i.e. .# spacelike), initial data at, say, past null
infinity for de Sitter-like spacetimes. In the case e = —1 (i.e. .# timelike), the
solution gives boundary data for an anti-de Sitter-like spacetime.
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Remark. The procedure indicated in the previous paragraphs can be extended
to the matter case if the field J; is known.

Exploiting the conformal freedom

The conformal freedom inherent to the conformal field equations can be employed
to express the solution to the conformal constraint equations at the conformal
boundary in an even simpler form. Recall the discussion in Section 8.2.5 on the
transformation properties of the various fields appearing in the conformal field
equations. In particular, it follows from Equation (8.29b) that, under a rescaling
of the form g’ = ¥?g which implies a rescaling

R ~9?h
of the intrinsic metric of .#, the field s on .# transforms as
s~ (19_13 + ﬁ_QVaﬁVaE).
In particular, it is always possible to choose ¥ at & so that locally
s’ ~0.

Accordingly, in this particular conformal gauge one has that Equation (11.40)
implies s = 0 and, moreover,

! !~ N
KZJ_()? .L,,‘_O7 L’L]_l"fﬂ'

11.5 The constraints on compact manifolds

An important class of initial data sets for the Einstein field equations involves
physical 3-manifolds S which are compact. This type of initial data set is of
relevance in the discussion of cosmological models. In particular, in the vacuum
case with negative cosmological constant one expects these initial data sets to
give rise to de Sitter-like spacetimes. Initial data sets on compact manifolds have
been studied extensively in the literature, and there is a good understanding of
the required conditions on the free data in order to ensure existence of solutions
to the Einstein constraint equations; see, for example, Isenberg (1995).

For this type of initial data one can set, without loss of generality, 2 = 1 and
¥ =0 and let S = S. For simplicity of the presentation, in the remainder of this
section the discussion is restricted to the vacuum case. Furthermore, it is assumed
that the physical mean curvature K is constant so that Equations (11.17) and
(11.21) decouple from each other. The fundamental tool in the analysis of the
solvability of the constraint equations is given by the maximum principle for
the Laplacian of a Riemannian metric. A convenient formulation of this result is
given by (see Isenberg (1995)):
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Proposition 11.2 (maximum principle for compact manifolds) Let
(S, h) denote a Riemannian manifold with S compact. Given a smooth 1) € X(S)
such that Apt has the same sign on the whole of S, then v must be a constant.

As a consequence of the above principle, the equation

Ah/w = F(.’E,?/J),

with ¢ > 0 has no solution if F(x,1) does not change sign on S except
for the case where F'(z,v) = 0. Using this observation it is easy to see that
certain combinations of free data cannot give rise to solutions of the constraint
equations. As an example, consider time-symmetric data (i.e. K = 0) with
vanishing cosmological constant on a compact manifold S. As a consequence
of the conformal gauge freedom given in Equations (11.22a) and (11.22b) and
of the Yamabe theorem, Theorem 11.1, one can assume that r[h] is a negative
constant on & — such a metric is said to be of positive Yamabe class. An
example of this situation is S? with its standard metric. One is then left with a
Licnerowicz equation of the form

And) = <r[R]o.
8
If ¥ is required to be positive everywhere on S, it follows that A ¥ < 0 everywhere
so that no positive solution can exist since, as a consequence of the maximum
principle, ¥ must be a constant so that Ap¥ = 0 which is a contradiction. To
get around this situation one can consider initial data with a negative (i.e. de
Sitter-like) cosmological constant. Keeping the time symmetry of the initial data
and the condition r[h] < 0, one obtains the Licnerowicz equation

Apd = %r[h]ﬁ — %w?’. (11.43)

The right-hand side of this equation has no definite sign for positive ¢}, so there
is no obstruction to the existence of solutions. In any case, a further argument
(not discussed here) is required to show that Equation (11.43) does indeed have
a solution.

The methods in Isenberg (1995) allow one to prove the following proposition:

Proposition 11.3 (solvability of the Einstein constraints with cosmolog-
ical constant on a compact manifold) Let (S, h) be a Riemannian manifold
with S ~ S* and h conformal to a metric with constant negative Ricci scalar
(positive Yamabe class). Then the vacuum Einstein constraints with de Sitter-
like cosmological constant have a solution for an arbitrary choice of the seed
metric h, trace-free tensor 1/)2]» and constant physical mean curvature K .

The initial data sets given by this proposition will be used to construct de
Sitter-like spacetimes in Chapter 15.
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11.6 Asymptotically Euclidean manifolds

Spacetimes with A = 0 can be thought of as describing isolated systems for which
the effects of cosmological expansion are neglected. An important class of these
spacetimes consists of those solutions to the Einstein field equations which are
asymptotically simple in the sense of Definition 7.1, that is, asymptotically simple
and empty. Proposition 14.3 shows that these spacetimes are globally hyperbolic,
suggesting a systematic procedure for their construction through suitable initial
data prescribed on a Cauchy hypersurface.

In order to develop intuition, it is convenient to look at the Minkowski
spacetime (R*, 7). A foliation of this spacetime is given by the hypersurfaces
of constant time ¢. These hypersurfaces are Riemannian manifolds of the form
(R3,—§). It can be verified that these hypersurfaces are extrinsically flat; that
is, their extrinsic curvature K = 0 vanishes. Of course, these are not the only
possible types of Cauchy hypersurfaces in this spacetime.

As a second example, consider the Schwarzschild spacetime. In terms of the
so-called Schwarzschild isotropic radial coordinate

= %(r—m—l— r(r —2m)),
the line element of the spacetime can be rewritten as
2
Gy = (%) dt © dt — (1 + %)4(df®dr_+F20).
An example of a Cauchy hypersurface for this spacetime is given by the ¢ = 0
hypersurface. One can verify that the intrinsic metric and the extrinsic curvature
of this hypersurface are given, respectively, by

3 ma 4 5
hyZ—(l—F%) 5. Kg=o0 (11.44)

The most general form of the above initial data set is obtained by performing a
translation of the radial coordinate to obtain

4

- m

hy = — (1 + ) s, 11.45

2Ty~ wo (49

with [y —yol® = (v —0)* + (" — 43)* + (4° — y5)* where (y*) = (y', 4% ¥%)

are standard Cartesian coordinates and (y§') € R? arbitrary. Observe that the

metric h s is, in fact, conformally flat and that hs» — —8 as ¥ — oco. Moreover,
one has that

m\4 2m 1
1+22) =1+ 240 (). 11.46
( o TE T (f2) (11.46)

To understand the behaviour as 7 — 0, it is observed that under the coordinate
inversion ¥ = m? /47 one has that

- mA 4
hy == (14 52) (dF @ di+7%0).
T
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Figure 11.1 Embedding diagram of the Einstein-Rosen bridge in the standard
time-symmetric Schwarzschild hypersurface. The diagram is obtained as the
surface of revolution of the curve z = £In(1++/r2 — 1); see Morris and Thorne
(1988) for more details.

Thus, the behaviour of the metric h is identical for both 7, 7 — o00. There
is a discrete reflexion symmetry with respect to the two-dimensional surface
{r = m/2}. Thus, the topology of the hypersurface is S &~ R x S?. One says that
S has a non-trivial topology with two asymptotically flat regions (see next
section) joined by a so-called Einstein-Rosen bridge. A representation of this
is given in Figure 11.1.

An example of an initial data set with non-vanishing extrinsic curvature is
given by the family of conformally flat initial data sets for the Schwarzschild
spacetime with extrinsic curvature given by

K8 = (3l 4 yP26e9),
lyl?
where |y|? = 6,5y°y” and (y®) are, again, standard Cartesian coordinates; see
Beig and O’Murchadha (1998), Estabrook et al. (1973) and Reinhart (1973). Tt
can be verified that K = h** K5 = 0 as hasy®y® = —|y|2. This hypersurface
has the nontrivial topology of R x S2. However, in contrast to the time-symmetric
case, the conformal factor ¥ cannot be written in a closed form. Nevertheless, the
leading terms of its asymptotic expansion are the same as in Equation (11.46)
with |y| playing the role of the radial coordinate 7.

11.6.1 Definition in terms of physical fields

The hypersurfaces discussed in the previous paragraphs are examples of asymp-
totically Fuclidean manifolds. Given a three-dimensional manifold S, an
asymptotic end is a subset £ C S which is diffeomorphic to the complement

of a closed ball on R?; that is,

Er{y*) eR® ||yl >0},

where 7 is some positive real number and |y|? = d,5y%y”. By identifying € with
the complement of a ball, the triple y = (y*) can be used as coordinates on

the asymptotic end — so-called asymptotically Cartesian coordinates. The
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hypersurfaces of the Minkowski and Schwarzschild spacetimes have, respectively,
one and two asymptotic ends. More generally, a three-dimensional manifold Sis
said to have N asymptotically flat ends if there exists a ~compact subset of
S such that its complement is the union of disjoint subsets &, k = 1,2,..., N,
each of which is an asymptotic end. In terms of the above concepts one can now
introduce the key definition of this section:

Definition 11.1 (asymptotically FEuclidean manifolds) An initial data set
for the vacuum FEinstein field equations (S, il, K) is said to be asymptotically
Euclidean if S is a three-dimensional manifold with N asymptotically flat
ends &, k = 1,...,N such that on each &, the 3-metric and the extrinsic
curvature satisfy, in terms of asymptotically Cartesian coordinates on the end,
the asymptotic behaviour

s = <1+ " )6a5+02 <|y1|2) (11.47a)

~ 1
Kop =01 (2) , (11.47b)
[yl
where my, k=1,...,N are constants.

The notation Oy and Os in Equations (11.47a) and (11.47b) is explained in the
Appendix to this chapter. More general notions of asymptotic flatness for three-
dimensional manifolds have been considered in the literature; see, for example,
Chaljub-Simon (1982), Chaljub-Simon and Choquet-Bruhat (1980), Choquet-
Bruhat and York (1980) and Christodoulou and O’Murchadha (1981). Their
precise formulation require the use of the notion of weighted Sobolev spaces; see,
for example, appendix I of Choquet-Bruhat (2008) and Bartnik (1986). These
definitions are tailored for the analysis of the elliptic equations arising from the
constraint equations.

The asymptotic conditions in Definition 11.1 ensure the finiteness of the
ADM-linear momentum and ADM-angular momentum' of each asymp-
totic end. These asymptotic quantities are given, respectively, by the surface

integrals
1 - -
Py = o lim (Kop — Khap)n?dS;,
87T S,
1 B - s
Jo = & dim 5 €apry’ (K7° — KRY)n;sdS;,
with

Sr={(y*) eS|yl =r},

1 ADM stands for Arnowitt-Deser-Miser, pioneers of the Hamiltonian formulation of general
relativity; see Arnowitt et al. (1962) and Arnowitt et al. (2008) for a republication of this
classical review.
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n® its outward pointing normal and dSj, the surface element induced by hon S,.
The constants my in Definition 11.1 correspond to the ADM mass of each of
the asymptotic ends. They are also computable as surface integrals of the sphere
at infinity via the expression
- Ly hB(Oahgy — Oyhag)ndS;,

m 160 et s (Oahpy hap)ndSy,.
Strictly speaking, m is the time component of a 4-vector, the ADM
4-momentum, whose spatial components are given by P¢; thus, it is more
accurately described as an energy.

Definition 11.1 can be extended to initial data sets with matter. In these
situations, decay conditions for the matter sources which are compatible with
the decay for h and K are given by (11.47a) and (11.47b). Direct inspection of
the constraint Equation (11.14) suggests that

1 - 1
5=0(—), =0(—].
¢ <y|3> / <|y|3>

These conditions can be refined via a more careful analysis of the constraint
equations.

It is possible to have an initial data set with several asymptotic ends, some
of which are not asymptotically Euclidean. The simplest example is given by
the extremal Reissner-Nordstrom spacetime; see Equation (6.43). The intrinsic
metric of the hypersurface ¢ = 0 is given, in terms of the extremal Reissner-
Nordstrom zsotropic radial coordinate © = r — m, by

. ma 2
h=— (1 + ?) 5. (11.48)
Clearly
2 2 1
<1+@) —1+m+0<2> as T — 00.
7 7 7

Thus, for large 7, the extremal Reissner-Nordstrém 3-metric (11.48) has an
asymptotically Euclidean end. To discuss the behaviour as 7 — 0, consider the
new radial coordinate ¥ = —In7, so that ¥ — oo as 7 — 0. It follows that in
terms of this coordinate the metric (11.48) can be rewritten as

h=—(m+e")(di ®dF + o).

This metric approaches a constant multiple of the standard metric of the cylinder
Rt xS? as # — 0o. Accordingly, one speaks of a cylindrical asymptotic end. A
similar type of asymptotic behaviour can be found, for example, in hypersurfaces
of the extremal Kerr spacetime; see, for example, Dain and Gabach-Clement
(2011).
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11.6.2 Definition using conformal rescalings

The notion of asymptotically Euclidean manifolds can be strengthened by
requiring the physical hypersurface S to have a conformal extension which is
a point compactification. This approach provides a more geometrical setting
for the discussion of the asymptotic behaviour of the various fields, that is,
independent of the use of particular asymptotically Cartesian coordinates. This
point of view was first introduced by Geroch (1972Db).

Definition 11.2 (asymptotically Euclidean and regular manifolds) A
three-dimensional Riemannian manifold (5’, fL) will be said to be asymptotically
FEuclidean and regular if there exists a three-dimensional, orientable, compact
manifold (S,h) with points i, € S, k = 1,...,N with N some integer, a
diffeomorphism ¢ : S\ {i1,...,in} = S and a function Q € C? such that:

(Z) Q(’Lk) = 0, dQ(Zk) = 0, Hess Q(Zk) = —Qh(lk)
(it) >0 on S\ {i,...,in}.
(iii) h = Q%¢p*h on S\ {i1,...,in} with h € C*(S)NC®(S\ {i1,...,in}).

More generally, a function A'/2 such that A satisfies conditions (i) in the above
definition is called an asymptotic distance function. The function A does not
need to be defined globally on S.

When no confusion arises, condition (iii) in Definition 11.2 will simply be
written as h = Q2h so that S\ {i1,...,iny} and S are identified. As will
be seen in the following, for asymptotically Euclidean and regular manifolds,
suitable neighbourhoods of the points iy — the points at infinity — are mapped
to the asymptotic ends of S. Thus, one can use local differential geometry to
discuss the asymptotic properties of the initial data set (S,fz) The question
of the differentiability of Q2 and h at i1,...,i5 will be addressed later in this
subsection. Definition 11.2 is purely Riemannian; that is, it makes no reference
to the extrinsic curvature. The behaviour of the extrinsic curvature at the points
at infinity will be discussed in the subsequent paragraphs.

There is some conformal gauge freedom in Definition 11.2. A replacement
of the form

h— ¢*h, Q- ¢%Q, (11.49)

with @(ir) = 1 gives rise to the same physical metric h = O *h and preserves
the boundary conditions in point (i) of the definition. This gauge freedom can
be used to select conformal metrics with special properties. For example, given
a particular point at infinity 4, and choosing ¢ such that

Apo — ér[hw =0 on B.(7), (11.50)

with B (i) the ball of radius e centred at i for some £ > 0, it follows from
Equation (11.23) that
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rh'1=0 on B.(3).

A general property of elliptic equations with smooth coefficients is that they
can always be solved locally; see, for example, Besse (2008) and Garabedian
(1986). Thus, the requirement (11.50) can always be satisfied. In other words, the
conformal metric h can always be chosen so that it vanishes in a neighbourhood
of one of the points at infinity. In general, this statement is not true globally.

Normal coordinates around i

The consequences of Definition 11.2 are better analysed by means of normal
coordinates. Consider the set of h-geodesics v, C S starting at a particular
point at infinity ¢ (i.e. 75,(0) = ) with initial velocity v € T|;(S). Moreover, let
T denote the subset of T'|;(S) defined by

T = {v € T|;(S) | 1 is defined on an interval containing [0, 1]}.

On the set T one can define the exponential map at i, exp, : T — S, through
the condition exp,(v) = 7, (1); that is, the exponential map sends the vector v to
the point at a unit parameter distance along the unique geodesic through ¢ with
initial velocity v. It can be shown that there ezxists a neighbourhood Q C T|;(S)
of the vector 0 such that the exponential map at i gives a diffeomorphism onto a
neighbourhood U C S of i; see, for example, O’Neill (1983) for a proof. If v € Q
implies that Av € Q for all A € [0,1], then one says that Q is star shaped
and U = exp,;(Q) is called a normal neighbourhood of i. In particular, if
U = B.(i), the open ball of radius £ > 0 with respect to h, one has a geodesic
ball.

In what follows, assume one has a normal neighbourhood U around ¢ and that
one is given an orthonormal basis {e;} for T|;(S). Given p € U and v such that
p = exp(v), then writing v = z%e; one can use the components z = (z%) € R?
as coordinates for the point p — these are the normal coordinates determined
by the basis {e;}. For consistency, the normal coordinates will be written as
(x®) rather than (z%). In terms of normal coordinates a geodesic through the
origin has the form x(s) = (sa®) where s is an affine parameter. As & = (z%)
and & = 0, it follows from the geodesic equation that v3%,(i)z°zY = 0 with
78~ being the Christoffel symbols of the metric h. As this has to hold for any
geodesic on U, one concludes that v, (i) = 0. It also follows that J,hgy = 0,
so that one can write

hap = —0ap + O(|2|?) close to 1, (11.51)
where |2|2 = 645727, Moreover, from the above construction it follows that

l‘ahaﬁ = —5a5$a. (11.52)
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For future use it is observed that, in terms of normal coordinates and sufficiently
close to i, one has

dup, = |z|*do + O(|z?), (11.53)

where duyp, is the volume element of the metric h and do denotes the area element
of the unit 2-sphere S2.

For later use, it is convenient to define the (square of the) geodesic
distance T? = |z|2. One has that I'? is a smooth function of the normal
coordinates. It can be verified that

h*® D ' Dl = —AT (11.54)
and that
T(i)=0, DaI'(i)=0,  DuDgl(i) = —2hsp,  DaDgD,T(i)=0.

Hence, I' satisfies the boundary conditions (i) in Definition 11.2 so it is an
asymptotic distance function. Observe that, in general, I' is not defined globally
on S.

Remark. The results obtained using normal coordinates can be strengthened
by exploiting the conformal freedom in (11.49). In particular, a conformal factor
can always be found such that the Riemann curvature tensor of the resulting
rescaled metric vanishes at 7. In order to see this, given the metric h, let ' = ef
with f € X(S) such that

1
f= 5:c%:ﬁzw(z') on B.(i),

where l,5(7) denotes the components with respect to the normal coordinates of
the three-dimensional Schouten tensor at i. A calculation shows that

Q@) =1, Da(i)=0,  DaDs(i) = las(i).

Hence, using the conformal transformation formula for the Schouten tensor
(5.16b) one finds that the metric A’ = Q'?h satisfies I,,5(i) = 0. As in dimension
3 the Riemann tensor is completely determined by the Schouten tensor one
concludes that 1,5 (i) = 0 as claimed. The metric h' satisfies the improved
expansion

hiyg = —6ap + O(|z[?) close to 4

compare with (11.51).

The construction described in the previous paragraph is not the only possible
way of exploiting the conformal gauge freedom. Depending on the particular
analysis, other choices may be more convenient — for example, the conformal
normal gauge introduced in Friedrich and Schmidt (1987) and Friedrich (1998c)
or the central harmonic gauge used in Friedrich (2013).
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Asymptotically Euclidean data versus asymptotically Euclidean
and regqular data

It is useful to compare the two definitions of asymptotic flatness presented in
this Section: Definitions 11.1 and 11.2. Condition (i) in Definition 11.2 restricts
the form of the conformal factor Q in a neighbourhood B, (i) of a given point
at infinity ;. More precisely, one has that

Q= |z[*f(z) near i, (11.55)

where f is continuous with f(0) = 1. Given the normal coordinates (z%) on
B, (i1), one can introduce inversion coordinates y* = x%/|x|? so that

hap =Q 2hag = —6as + O(ly|™") as |y| — oo.

Thus, to recover the mass term in the expansion (11.47a) one requires further
information about the fields Q and h.

With regards to the second fundamental form, it follows from the transforma-
tion rules discussed in Section 11.1.1 that

Raﬂ = Q_lKaﬁ = Mpqap.

Hence, if the physical field f(ag satisfies the decay given by condition (11.47b),
then

Kaop = O(|z]°), VYap = O(|z|™4), as |z| — 0.

Consequently, the decay conditions of Definition 11.1 imply a tensor g which
is singular at the points at infinity. To have a regular 1,3 one needs the stronger
decay condition K5 = O(1/]y|®). This decay excludes the possibility of a non-
vanishing ADM linear momentum and ADM angular momentum.

The reqularity at the points at infinity

The regularity requirements on 2 and h of Definition 11.2 are given with respect
to some suitable coordinate system. A natural choice is the normal coordinates
x = (%) centred at the point at infinity — intuitively, one expects the regularity
with respect to normal coordinates to be optimal. In these coordinates the
function |z| is not smooth at i as its second derivative is not well defined there.
More generally, even powers of |x| will be smooth, while odd ones will be only
C*, for some k.

Initial data sets for static vacuum spacetimes admit a conformal metric which
is, in fact, analytic at the point at infinity; see Beig and Simon (1980b) and Beig
and Schmidt (2000). Remarkably, this is not the case for stationary solutions
which can be seen to be only C? at the point at infinity; see Dain (2001b).
More precisely, any asymptotically Euclidean data set for a stationary spacetime
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(and in particular for the Kerr solution!) has a conformal metric of the form h
which, in a suitable neighbourhood B, (i) of infinity, takes the form

h=h'+|z[*n",

with b’ and h” analytic tensors with respect to normal coordinates.

11.6.3 Fundamental solutions and punctures

Consider now, for simplicity, an asymptotically Euclidean and regular manifold
(8, h) with a single point at infinity i. Suppose, for ease of the presentation, that
the conformal factor Q = 92 satisfies the Yamabe equation

Anid — ér[h]ﬂ 0 onS\{i} (11.56)

Condition (i) of Definition 11.2 implies a singular behaviour for the conformal
factor ¢¥. Indeed, from Equation (11.55) it follows that
x| — 1 as |z| — 0. (11.57)

In order to develop a better understanding of the singular behaviour at ¢ consider
the integral

1
I. = / (Ahﬂ - T[h]ﬂ) dpn
B.() 8

over an open ball B, (i) of a suitably small radius € > 0 centred at i. To simplify
the evaluation of the integral it is assumed that the metric h has been chosen
such that r[h] = 0 on B.(7); as seen in Section 11.6.2 this is is always possible
locally. Using the divergence theorem (see the Appendix to this chapter), one has
that

IE = Ahﬂd,uh = —/ <d’L9,TL>dSh,
B.(i) B_(i)

where n is the outward-pointing unit normal to dB.(i) and doy, is the surface
element of 0B.(i¢) implied by h. From the expansion (11.53) it follows for
sufficiently small e that dSp = e2do + o(¢?) with do the surface element of
S2. Moreover, as a consequence of (11.57) one has

1 -2
(dY,n) = =2 +o(e™7).
Putting everything together one concludes that
IE:f/ do +o(e) — 47 as € — 0,
0B (i)
so that

/ Ahﬁduh = 4.
S
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The latter implies that one can write
Ah’ﬂ = 47‘(6(7;),

where 6(¢) denotes the Dirac’s delta distribution with support at the
point i; see the Appendix to this chapter for more details and references. To
obtain the expression for a generic metric with a non-vanishing Ricci scalar in
a neighbourhood of ¢ one makes use of the transformation law for the Yamabe
equation, Equation (11.23), to obtain

(Ah/ - ;r[h’]) (¢~ 19) = dmwep55(i)  with b’ = ¢*h.
As §(7) has support only on ¢ and ¢(i) = 1 one finally concludes that
1
(Ah/ — 8r[h’]>19' =4m(i)  with ' = ¢~ 0.

This expression provides an alternative description of the singular behaviour of
solutions to the Yamabe equation which satisfy the boundary condition (i) of
Definition 11.2. The previous discussion can be generalised to manifolds (S, h)
with several points at infinity. For example, if S = S? and h = —h the standard
metric of S3, then the Yamabe equation

(A_h - ?[—h])ﬁ —4r (5(¢N) + 5(1'5)),

where d(iy) and d(ig) are supported, respectively, at the north and south
poles of S3, describes the conformal factor ¢ for time-symmetric data for the
Schwarzschild spacetime. Letting ¢ = 1 4+ m/2r, it follows from combining the
first equation in (11.44) with the conformal factor w compactifying R? into S3
given in (6.5) that

h=-O%h, Q=wo 2.

Setting o = 1 in Equation (6.5), one has that
2 ¥

2s8in® —
Q= 2

5
(1+T;tan12p)

One can verify that Q and d2 vanish at ¢» = 0, = (the north and south poles of
S?). Moreover, one has

Q=9 +0?%), Q=@w-m)2+0({x-7)®),

—1/2

so that the fundamental solution ¥ = 2 has the expected singular behaviour.
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Conformal decompactification of initial data sets on compact manifolds

From a geometric point of view, the purpose of introducing a conformal
factor ¥ which is singular at the point at infinity is to produce a conformal
decompactification of the manifold §. As an example, consider a vacuum
mazimal initial data set (S h, K ) with S compact. Under these assumptions
one has that the Einstein constraints (11.14) reduce to

T[h] = _f(ijl%ijv sz(z] =0, f( = ilijkij =0.
If given a point i € S one can find a solution ¥ to the equation

AL - ér[ﬁw - %r[ﬁ]§_7 — 4md(3),

it follows from a calculation involving the conformal transformation properties
of the various fields that

h = dh, K =97°K,

gives rise to an asymptotically Fuclidean and regular solution to the Einstein
constraints

T[h] = 7]’?7;]‘17(”, Dikij = 0, K = }_lijkij =0.

As pointed out in O’Murchadha (1988), this construction can be used to argue
that, in a certain sense, there are more asymptotically flat initial data sets than
initial data sets on compact surfaces.

The Yamabe invariant

The possibility of conformally decompactifying a compact Riemannian manifold
(S,h) to obtain a physical manifold (S,h) which is asymptotically Euclidean
and regular depends on being able to solve the equation

1
(Ah - 8r[h])19 = 47 (i). (11.58)
The discussion in Section 11.5 suggests that this may not be possible for all

cases. To explore this further, consider a test function ¢ € X(S). A calculation
shows that

/|D(19(Z5)|2d,uh:/ (192|D¢|2+¢2|D19|2)duh+/ﬁDiﬂDingdph
S S S
:/ (192|D¢|2+¢2|D19|2)duh—/Di(ﬂDm)gbzduh
S S

— [ 1DoPdun ~ [ 96 Anvdun,
S S
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where the second equality follows by integration by parts on a compact manifold
of the last integral in the first line. As |D¢|? = D;¢D'¢ < 0 and 9 > 0 it follows
that

- [1D0e)Paun > [ 96 Andn
> 47 /S 19¢25(i)duh+é /S 92 p?r[h)du,
> 4m0(0)0%(0) + . [ IR,
> 5 [,

where the last inequality follows from the fact that ¢ is an arbitrary test function.
Thus setting ( = ¥¢ one concludes that

: 2 2
nt [ I+ 1) > 0
where inf denotes the infimum, that is, the biggest lower bound. The latter is a
necessary condition for the existence of a solution to Equation (11.58). Under
some further technical assumptions, it can be shown to be a sufficient condition;
see, for example, Friedrich (2011). The above expression can be reformulated
in a conformal way by adding a suitable normalisation factor. Accordingly, one
defines the Yamabe invariant (number) of h as

/S (8K Di¢D;¢ + r[h]¢?)dpun
inf

cex(s) . 1/3
( / ¢ duh)
S

The conformal invariance of the above expression follows from the transformation
properties of the three-dimensional Ricci scalar and of the volume element.
Accordingly, the Yamabe number is, in fact, a property of the conformal class
[R]. In particular, if (S, h) is such that Y[h] > 0, then there exists h € [h] such

that r[h] < 0 on S; see Lee and Parker (1987).

Y[h] = -

11.6.4 Constructing solutions to the constraint equations using
fundamental solutions

As already mentioned, fundamental functions of the Yamabe equation on
compact manifolds allows one to obtain solutions to the Hamiltonian and
momentum constraints by means of a procedure of conformal decompactification.
In this section an overview of some of the technical details of this construction
is provided.

In the first instance, attention is restricted to the time-symmetric case.
Furthermore, it is assumed that there is only one point at infinity. Given a
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compact Riemannian manifold (S, h) and a point at infinity 4, the construction
of a time-symmetric initial data set (S , ﬁ) requires a global solution to
Equation (11.58). As already observed, the function I' = |z|, defined only in
a neighbourhood B, (i) with a > 0, satisfies the required boundary conditions
for a solution to Equation (11.58). Indeed, it can be shown that the solution ¢
satisfies
9=T"" —&—%—I—O(I‘% near i,

where m is a constant; see Lee and Parker (1987). The above expansion is also
valid for any other choice of asymptotic distance function — the constant m is
independent of the particular choice. As I'? is a smooth function on its domain
of definition, it can be extended to a smooth function (to be denoted again by
I'?) on the whole of the compact manifold S; see the Appendix to this chapter
for further discussion. To obtain the global solution to Equation (11.58), one
considers the ansatz

19=F‘1+%+W, (11.59)

with W some smooth function on S. To make effective use of this ansatz it
is assumed, without loss of generality, that the conformal metric h satisfies
Tagys (i) = 0 so that one can write

hap = —0ap + hag, hap = O(|z[?).

Hence, using the identity

1

ApY = ——
" v—deth

O (V=deth P00,

it follows that

1
Lh = Ah — g?"[h]
=A_s+ L + T[h},

with
L = h*? 0,05 + b0, ho? = O(|z]*), b = O(|z|*)
and r[h] = O(|z|). Using the above expressions one can compute that

Ln G) =A_s (;) +7  with f=O(|z]°).

Now, a calculation similar to the one discussed in Section 11.6.3 shows that

seo(2) - it
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so that substitution of ansatz (11.59) into Lp¥ = 4wd(i) leads to the regular
equation

ARW — %r[h]W —f  with f = O(la]%), (11.60)

for which a suitable existence theory is readily available. A unique smooth
solution to Equation (11.60) exists if the Yamabe number of the metric h
satisfies Y[h] > 0; see Beig and O’Murchadha (1991) and Friedrich (1998c).
A further argument using the maximum principle shows that 9 — as given by
Equation (11.59) — with W solving Equation (11.60) is positive on S\ {¢} and
gives the unique global solution to Equation (11.58). It follows that (S,9*h) is
an asymptotically Euclidean and regular time-symmetric initial data set.

Data with a non-vanishing extrinsic curvature

The procedure to solve the Yamabe equation described in the previous section
can be extended to the case of an initial data set with a trace-free extrinsic
curvature. One first needs a solution to the momentum constraint. Several
procedures to construct solutions to the maximal momentum constraint (and in
particular of the elliptic Equation (11.21)) have been considered in the literature;
see, for example, Beig and O’Murchadha (1996), Chaljub-Simon (1982) and Dain
and Friedrich (2001). In particular, it is well understood how to specify the
free datum t;; in Equation (11.21) so as to ensure non-vanishing ADM linear
momentum and ADM angular momentum.

In what follows, assume that Equation (11.21) has been solved for a particular
choice of the free datum 1/)1’-]-. Substituting the transverse and trace-free tensor v;;
obtained from the York splitting (11.20) into the Licnerowicz Equation (11.17)
yields the equation

1 1 g
ARt — gr[h]ﬁ = gmjwﬁ—?.

As in the case of the Yamabe equation, one can incorporate the singular
behaviour of the conformal factor required to decompactify the compact manifold
S via a Dirac’s delta. This leads to the equation

Apd — ér[hw = 4m8(i) + %wijw-jﬂ‘?. (11.61)

To construct a solution to this equation one first considers a solution 1 to
Equation (11.58) — such solution exists if Y'[h] > 0. One uses 1, to write the
ansatz

V=10, +V

with V' a smooth function to be determined. Equation (11.61) yields

1 1 y
ARV = orRlV = 20 T (L4 91V) T (11.62)
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Observe that if 1;; = O(|z|™*), then, in principle, 314977 = O(|z|™!) so
that the right-hand side of Equation (11.62) is still singular. This singularity is,
nevertheless, mild, and suitable existence results are available; see theorem 12
in Dain and Friedrich (2001) and also the appendix in Beig and O’Murchadha
(1994). The solution ¥ is smooth, and, again, it can be verified that it satisfies
¥ >0o0n S\ {i}.

11.7 Hyperboloidal manifolds

In certain applications of the conformal field equations it is convenient to consider
initial data sets prescribed on hypersurfaces similar to the hyperboloids of
the Minkowski spacetime discussed in Section 6.2.4. Hyperboloidal 3-manifolds
arise in the construction of asymptotically simple spacetimes with vanishing
cosmological constant and in the construction of anti-de Sitter like spacetimes.

11.7.1 Hyperboloidal initial data sets

For the sake of the presentation, the discussion in this section is restricted to
the vacuum case with vanishing cosmological constant. Based on the intuition
gained through the analysis of hyperboloids in the Minkowski spacetime one has
the following definition (see Friedrich (1983) and Kénnar (1996a)):

Definition 11.3 (hyperboloidal initial data sets) A triple (S, h, K) satisfy-
ing the vacuum FEinstein constraint equations is called a hyperboloidal initial
data set if:

(i) There exists a conformal compactification whereby S is diffeomorphically
identified with the interior of a manifold S with boundary 0S such that S
is diffeomorphic to the closed unit ball in R® (whence dS is diffeomorphic
to S?).

(ii) There exist functions Q and ¥ on S such that @ >0 on S and Q =0 and
>0 o0ndS.

(i4i) The conformal fields

h = Q2h, K = Q(K +Xh),
extend smoothly to S. Moreover, one has that h*(dS2, dQ) = %2 on 0S.

The simplest type of hyperboloidal initial data sets consists of the case where
the physical extrinsic curvature is pure trace; that is, one has

- 1 -~
K = o Kh. (11.63)

As a consequence of the momentum constraint and assuming (11.63) it follows
that K must be a constant. From the conformal Hamiltonian constraint (11.15a)
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one concludes that
40D;D'Q — 6D;QD'Q + 20%r = K2 (11.64)

In order to encode the right behaviour of the conformal factor Q2 at dS one
introduces a so-called boundary defining function p, that is, a real function
over S satisfying

plas =0, dplas # 0.

Given a Riemannian manifold (S, h), such a function can always be constructed.
Making use of the ansatz Q = p?~2 with ¢ > 0 on S, it follows from (11.64) that

. , 1 1 12
P2 ARY — pDipD' I + (2Dilep — gr[h]ﬂpQH — 2,0192Ahp>19 = 7§K21975.
(11.65)

The latter is an elliptic equation for ¥ which becomes singular at JS as its
principal part vanishes at this set.

The properties of solutions to Equation (11.65) have been analysed in
Andersson et al. (1992). One has the following:

Theorem 11.2 (existence of hyperboloidal initial data sets) Let (S, h) be
a smooth Riemannian manifold with boundary 0S. Then, there exists a unique
positive solution ¥ to Equation (11.65). Moreover, the following are equivalent:

(i) The function 9 and the tensors

1 1 2
Lij = _ﬁD{zD]}Q + E (7’ + 3K2> hij, (11663)
1 1
dij = G DD+ 5y (11.66D)

determined on S by h and Q = pd—2 extend smoothly to all of S.

(i) The Weyl tensor C%.q computed from the data on S vanishes on 0S.

(iii) The conformal class [h] is such that the extrinsic curvature of S with
respect to its embedding in (S, h) is pure trace.

The expressions for the fields L;; and d;; correspond to the spatial part
of the Schouten tensor and the electric part of the rescaled Weyl tensor as
determined by the conformal constraint equations of Section 11.4.3. Observe
that the expressions for the fields are formally singular at = 0, so that the
conclusion of the theorem is non-trivial and ensures the existence of regular
hyperboloidal data for the conformal field equations. Extensions of Theorem
11.2 to more general forms of the extrinsic curvature have been analysed in
Andersson and Chrusciel (1993, 1994).

https://doi.org/10.1017/9781009291347.015 Published online by Cambridge University Press


https://doi.org/10.1017/9781009291347.015

286 The conformal constraint equations

Initial data for anti-de Sitter-like spacetimes

By making the identification K2+ X with A>0 in Equation (11.64), hyper-
boloidal initial data sets can be interpreted as initial data sets for anti-de
Sitter-like spacetimes. Thus, all available knowledge about the existence of
hyperboloidal initial data sets can be transferred to this setting. This idea has
been investigated for a larger class of data than the one considered in this section
in Kénnér (1996a).

11.8 Other methods for solving the constraint equations

The analysis of the Einstein constraint equations carried out in the previous
sections relies on a systematic use of the conformal method of Licnerowicz,
Choquet-Bruhat and York. There are, however, other alternative procedures,
each providing a different insight into the properties of the solutions to the
constraint equations; see, for example, Bartnik and Isenberg (2004). In this
section, methods of particular relevance for the analysis of the conformal field
equations are briefly discussed: the first one based on the so-called extended
constraint equations, and the second one being the so-called exterior gluing
procedure.

11.8.1 The extended constraint equations

Given a solution to the conformal constraint equations, Lemma 11.1 shows
how to construct initial data for the conformal Einstein field equations. It
is, nevertheless, of interest to directly obtain a solution to the conformal
constraint equations without having to solve the Einstein constraint equations. A
construction of this type is of importance as the expressions for the rescaled Weyl
tensor and the Schouten tensor in terms of the conformal factor and the intrinsic
3-geometry of the hypersurface are formally singular at the points where Q2 = 0;
see, for example, Equations (11.66a) and (11.66b) in Theorem 11.2. Currently
available results in this direction are restricted to the case where the Q2 = 1;
see Butscher (2002, 2007). Despite this limitation, they provide insight into the
properties and structure of the conformal constraint equations and lead to a
procedure for the construction of initial data sets by perturbative methods.

Assuming that the matter fields vanish, and setting 2 = 1, ¥ = 0 in the
conformal constraint equations (11.35a)—(11.35j) one finds that the essential
equations of the system can be rewritten in tensorial form as

!
D;Ky; — DpKj; = € jxdyy,
k ik 1
D¥dy; = K7€ idy,
k il k
D de = —GiJ Kj Tkl

Tij = dij + KK;j — KikKkj.

11.67a
11.67b
11.67c
11.67d

~ o~~~
D D T
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These equations are known as the extended FEinstein constraints since a
solution thereof implies a solution to the Einstein vacuum constraints; see
Lemma 11.1 in this chapter and lemma 1 in Butscher (2007) for a more detailed
discussion. The first three equations constitute an underdetermined elliptic
system for the fields Kj;;, d;; and d;;.

A direct computation shows that the formal adjoint of the operator in the
principal part of Equation (11.67a) is the divergence with respect to the index
;- Applying this divergence to the equation and writing

1 ) i
Kij = Q/Jij — gKh” with T/J”h J = 0
one obtains the equation
_ . | .
DIDjtby; — D? Dyapy; = € jp D d3y + 3 (hiiD'D; K — D; Dy K).

If the fields d;; and K are known, this equation can be verified to be an elliptic
equation for the trace-free part v;;.

Equations (11.67b) and (11.67¢) can be transformed into fully elliptic equa-
tions by means of a York splitting of the fields d;; and d}; see Section 11.3.3.
Hence, writing

25 %
dij = Din + Dj’UZ‘ — ngU hij + d;j,

dfj = Diu]' + Djul- — ;Dkukhij + d:}/,
where dgj and dz‘j’- are freely specifiable symmetric trace-free tensors, one obtains
elliptic equations for the fields v; and w; whose principal part is identical
to that of Equation (11.21). Finally, Equation (11.67d) can be transformed
into an elliptic equation for the components of the 3-metric h by introducing
harmonic coordinates x = (z%), Apz® = 0; compare the analogous use
of wave coordinates in the case of a Lorentzian metric to obtain the reduced
Einstein field equation discussed in the Appendix to Chapter 13.

The system of elliptic equations for the fields K;j, v;, u;, hi; discussed in the
previous paragraphs is called the auxiliary system. Solutions to the auxiliary
system could be obtained, in principle, by means of perturbative methods relying
on the use of the implicit function theorem — see, for example, Ambrosetti and
Prodi (1995) — if some background solution is known. The solutions thus obtained
are not a priori solutions to the original Equations (11.67a)—(11.67d). Hence, in
a second step, one needs to investigate the conditions under which a solution to
the auxiliary system implies a solution to the extended Einstein constraints and,
consequently, a solution to the vacuum Einstein constraints. This strategy has
been investigated in Butscher (2002, 2007) to obtain asymptotically Euclidean
solutions to the extended constraints which are close to data for the Minkowski
spacetime. The particular details require the use of weighted Sobolev spaces
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to control the decay of the various fields. These methods can be adapted, in
principle, to obtain data on S? corresponding to perturbations of de Sitter initial
data.

11.8.2 Exterior asymptotic gluing

The exterior asymptotic gluing is a method to construct solutions to the
Einstein constraint equations by gluing the interior region of an asymptotically
Euclidean solution to the FEinstein vacuum constraints to an asymptotic end of
initial data for the Kerr spacetime or, in fact, of any stationary solution; see
Corvino (2000), Chrusciel and Delay (2003), Corvino and Schoen (2006) and
Corvino (2007). More precisely, given a smooth asymptotically Euclidean initial
data set for the vacuum Einstein field equations (S Jh, K ) and a given compact
subset & C S such that S \ U is an asymptotic end, it is possible to show that
there exists another smooth asymptotically Euclidean solution to the vacuum
Einstein constraints (S, h, K) which is identical to the original solution on U
and coincides with initial data for the Kerr spacetime on S \ U for some U C S.
In addition, the initial data set (3 ,h, K) contains an annular transition region
in which the initial data can be controlled. In the case of time-symmetric initial
data sets this method glues any interior region to an exterior region of a slice of
the Schwarzschild spacetime.

The underlying idea in the asymptotic exterior gluing method is to exploit the
underdetermined character of the Einstein constraints as a system of partial
differential equations for the fields (fl,f( ). Prior to the development of the
asymptotic exterior gluing methods Cutler and Wald (1989) have shown that it is
possible to make use of the standard conformal method to construct solutions to
the time symmetric constraints containing a Minkowskian interior region and a
Schwarzschildean exterior region joined together by an annular region containing
a purely magnetic solution to the Einstein-Mazwell constraints.

As will be discussed in Chapter 20, initial data sets obtained by means of
asymptotic exterior gluing play a key role in the construction of Minkowski-like
asymptotically simple spacetimes. For simplicity, in the remainder of this section
attention is restricted to the time-symmetric case for which the Einstein vacuum
constraints reduce to r[ﬁ] = 0. In the present context, one regards the Ricci
scalar as a map between the space of Riemannian metrics over S and %(S). Under
certain circumstances this mapping is an isomorphism; that is, given a metric h
and f € }I(S) such that r[h] = f and given a further g € Z{(S') close enough to f,
then there exists another metric h close to h such that r[h] = g. This property
of the Ricci scalar operator is the essential ingredient in the gluing procedure.
As part of the gluing construction, one connects the inner region (U, ﬁ) and an
asymptotic region (&, ﬁy) with k. as given in Equation (11.45) for some choice
(so far undetermined) of the constants m and (z§) through an annular region.
A positive definite symmetric tensor h is defined on S by requiring it to be
identical to h on U and to h. on &, while on the asymptotic region it is chosen

https://doi.org/10.1017/9781009291347.015 Published online by Cambridge University Press


https://doi.org/10.1017/9781009291347.015

11.8 Other methods for solving the constraint equations 289

so that it interpolates smoothly between h and hg. By construction r[ﬁ] =0in
both U and &, while r[ft] # 0 in the transitional annular region. Nevertheless, by
moving U suitably into the asymptotic region, one can make r[fb] small enough
so that the isomorphism properties of the Ricci scalar operator can be used to
ensure the existence of a tensor k with support on an annular region such that
h = h + k is a Riemannian metric with 7[h] = 0 on S.

The asymptotic exterior gluing construction requires a careful analysis of the
properties of the linearised Ricci operator

Rnlh) = —Ap(tr(R)) + divy (divy(h)) — k(h, Ric[h)).

For a fixed metric h, the latter is an underdetermined elliptic operator. It can
be transformed into an elliptic system by composition with its formal adjoint

F(f) = —(Anf)h + Hess(f) — [Ric[h].

The composite elliptic operator Z;, o % is a fourth-order partial differential
operator. Once the linearised problem is controlled, the non-linear problem is
then solved by means of an iteration. To conclude, one needs to show that the
metric h is indeed a solution to r[h] = 0. It is in this part of the construction
that the value of the constants m and (z§) are fixed. A refined version of the
original construction in Corvino (2000) has been given in Corvino (2007), from
which the following result has been adapted:

Theorem 11.3 (exterior asymptotic gluing construction) Let (S, h)
denote an asymptotically FEuclidean initial data set for the FEinstein vacuum
equations. Let £ C S be any asymptotically flat end of S. Given g > 0 let Ery CE
be an exterior region in £ expressed in asymptotically Cartesian coordinates by
Ero = {(z%) € R3||z| > r > ro}. Suppose, furthermore, that in these coordinates
the metric h has the form

haﬁ <1+ ‘ |)($a5+03(.’£|2).

Let k be a non-negative integer. Then for any € > O there exists v« > 0 and a
smooth metric h satisfying r|h] = 0 and ||hap — hag||cre) < € so that h is equal
toh onUd =8 \ &, and identical to an asymptotically flat end of a standard
Schwarzschild slice on Ea., .

The precise definition of the supremum norm || [[cr(g) is discussed in the
Appendix to this chapter. A schematic depiction of the construction of Theorem
11.3 is given in Figure 11.2. In the applications of this result to the existence of
asymptotically simple spacetimes, it is important to control the location of the
exterior region &, and to ensure that r. 4 oo as one moves along a family of
initial data sets tending, say, to data for the Minkowski spacetime. This possible
degeneracy has been dealt with by imposing some reflexion symmetry properties
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u

Figure 11.2 Schematic depiction of the exterior gluing construction given by
Theorem 11.3. It contains an inner region I where the 3-metric has a fixed
arbitrary value iL, an annular transition region between &, and &,, and an
exterior region £ where it is equal to data for a member of the Schwarzschild
family of solutions.

on the metric h; see Chrusciel and Delay (2003). An alternative solution has
been provided in Corvino (2007). This result makes use of symmetric (0, 2)-
tensors k satisfying the condition Z_s(k) = 0. Making use of a York splitting
the tensor k can be decomposed in a unique way into a traceless term with
vanishing divergence, a trace part and a part which is the conformal Killing
operator of a covector; see Chaljub-Simon (1982). The tensor k is said to be non-
degenerate if its transverse-traceless part is non-zero. Using this terminology
one has the following stability result (see Corvino (2007) for further details and its
proof):

Theorem 11.4 (stability of the exterior gluing construction) Let k be any
smooth, compactly supported symmetric (0,2)-tensor on R® with #_s(k) = 0.
Moreover, for sufficiently small € > 0 let

h = —0*(d + ck)

be asymptotically flat and satisfy T[ﬁ] = 0. If k is non-degenerate, there exists
7. > 0 so that for all ¢ small enough there is a metric h with r[h] = 0 which
agrees with h in the closed ball B.. (0) and is exactly Schwarzschild on s, .
Consequently, the Riemannian manifold (R3, h) admits a smooth conformal point
compactification in the sense of Definition 11.2.

This theorem guarantees the existence of time-symmetric solutions to the
vacuum Einstein constraint equations which are both close to data for the
Minkowski spacetime and exactly Schwarzschildean in a non-trivial exterior
region; see Section 20.5.

Versions of the asymptotic exterior gluing construction for initial data sets
with non-vanishing extrinsic curvature can be found in Chrusciel and Delay
(2003) and Corvino and Schoen (2006). There are adaptations of the exterior
gluing method to the case of hyperboloidal initial data sets with constant scalar
curvature; see Chrudciel and Delay (2009).
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11.9 Further reading

The best point of entry to the extensive literature on the Einstein constraint
equations is through reviews such as those of Bartnik and Isenberg (2004) or
Isenberg (2013). An older, classical review on the topic is given in Choquet-
Bruhat and York (1980). An alternative review aimed at applications in
numerical relativity is Cook (2000). A detailed account of the conformal method
to solve the constraint equations, as seen by one of the main contributors of
the topic, can be found in Choquet-Bruhat (2008) — this reference contains, in
addition, a discussion of the basic aspects of weighted Sobolev spaces. Closely
related to the latter is the reference Choquet-Bruhat et al. (2000). A discussion
of basic aspects of the theory of elliptic differential equations and its application
to the analysis of the Einstein constraints can be found in Rendall (2008). An
alternative account of the basic aspects of the analysis of elliptic equations with
a number of worked-out examples is Dain (2006). Finally, a detailed account of
the conformal equations under the assumption of spherical symmetry is given in
Guven and O’Murchadha (1995).

By contrast, the accounts on the conformal Einstein constraints are much more
restricted in number. The original references are Friedrich (1983, 1984, 1986a,
1995, 2004); see also the discussion in Frauendiener (2004). A systematic analysis
of hyperboloidal initial data sets can be found in Andersson et al. (1992) and
Andersson and Chrusciel (1993, 1994).

The notion of asymptotically Euclidean and regular manifolds can be traced
back to the discussion in Geroch (1972b). These ideas have been further
elaborated in Friedrich (1988, 1998c). Accounts of the use of Dirac’s deltas to
represent the points at infinity can be found in Beig and O’Murchadha (1991,
1994). A neat application of this approach to the construction of initial data
sets with a conformal toroidal symmetry is given in Beig and Husa (1994).
Applications of the method to the construction of initial data for the collision
of Kerr-like black holes can be found in Dain (2001a,c). Finally, a detailed
construction of initial data sets admitting expansions in powers of the geodesic
distance is given in Dain and Friedrich (2001).

Appendix: some results of analysis

As in the main text of this chapter, let (S, h) denote a Riemannian manifold.
Moreover, let p € S denote a point and consider normal coordinates z = (z%)
centred at p; that is, z%(0) = 0.

Order symbols. The behaviour of functions f:S—R near p can be conve-
niently described by means of the big O and small o notations. More precisely,
given f,g : S — R, if for some z = (z%) sufficiently close to 0 there exists a
positive constant M such that

|f(2)] < Mlg()|,
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one writes f(z) = O(g(x)), and one says that f is at most of the order of g. If,
in addition, one has that

804f(l) = O(aag(l))v 80£1 80¢kf(l) = 0(8041 ao/kg(l))v

for some integer k one writes f(z) = Or(g(z)).
If given f, g one has f(z)/g(x) — 0 as z® — 0, then one writes

f(z) = o(g(z)),
and one says that the order of f is bigger than that of g. Again, if

Oaf(z) = 0(0ag(z)), -+ Oay 0oy f(2) = 0(0ay -~ Dy 9(2)),

one writes f(z) = or(g(x)). For further discussion, see, for example, Courant
and John (1989).

Taylor expansions. If a function f : R® — R is of class C* on the open ball
B.(0) C R™ one has that

£(2) = J(0) + 0 f0)2% + 00, Da [ (0)"12°

1 (5} Qg —1 k
+"'+maa1“‘5ak_1f(0)x ce =1 4 O(|x|F).

For further discussion, see, for example, Courant and John (1989).

Supremum norm. Given & C R" and f € C*(U), one defines the supremum
norm as

Ifllerey = Y sup{lda, - 0oy f(2)], z € U}

0<I<k

where U denotes the closure of . For further discussion on this and other related
norms, see, for example, Ambrosetti and Prodi (1995).

Extension of smooth functions. Let &/ C S denote a closed subset and f :
U — R* a smooth function. There exists a smooth function f : & — R* such
that f|u = f and whose support is contained in S \ U; in other words, fis
non-vanishing in S\ Y. In a slight abuse of notation f will be denoted, again, by
f. For more details on this result, see Lee (2002).

Dirac’s delta. Let now S denote a compact manifold and p € S a fixed point
within. The Dirac’s delta §(p) with support on p is the distribution (i.e. a linear
functional C°(S) — R) satisfying

/f p)dun = f(p), for all f € C°(S).

/ 6(p)dun = 1.
s

In particular, one has that
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If f(p) = 0, one has the distributional equality
f(2)d(p) = 0.
For further details, the reader is referred to Appel (2007).

Divergence theorem. Given (M, g) a manifold with metric (Riemannian or
Lorentzian) and, within, ¥ C M a compact subset and a smooth covector w,
one has

/divwduh:/ (w,v)dSh,
u ou

with v the outward pointing unit normal to OU; see, for example, Frankel (2003)
for further details.
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