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The conformal constraint equations

This chapter analyses the intrinsic equations implied by the conformal Einstein

field equations on non-null hypersurfaces. These equations are known as the con-

formal constraint equations. They play an essential role in the construction

of initial data sets for the conformal field equations and in the identification of

boundary conditions. Not surprisingly, these conformal constraint equations are

closely related to the standard Einstein constraint equations – consequently,

this chapter starts by considering the properties of the latter.

The solvability and behaviour of solutions to the conformal constraint

equations is closely related to the nature of the underlying three-dimensional

manifold on which the equations are imposed. As a consequence, this chapter

also provides a discussion of general properties of asymptotically Euclidean and

asymptotically hyperboloidal 3-manifolds from a conformal point of view. The

systematic analysis of the constraint equations relies on methods of elliptic

partial differential equations. Hence, this chapter provides a discussion of some

of the basic notions of this theory.

An important aspect of the conformal constraint equations – the so-called

propagation of the constraints – is discussed in Chapter 13. The analysis of the

constraint equations on null hypersurfaces is treated in Chapter 18.

11.1 General setting and basic formulae

Let (M̃, g̃) denote a spacetime satisfying the Einstein field equations. In what

follows, it will be assumed that (M̃, g̃) can be conformally extended to an

unphysical spacetime (M, g). Accordingly, there exists an embedding φ : M̃ →
M and a conformal factor Ξ such that φ∗g = Ξ2g̃. Now, let S̃ denote a three-

dimensional submanifold of M̃ and let ϕ : S̃ → M̃ denote the associated

embedding. As the composition φ ◦ ϕ : S̃ → M is also an embedding, the

three-dimensional manifold S̃ can be regarded, in turn, as a submanifold of M.

As discussed in Section 2.7.3, the spacetime metric g̃ induces a metric h̃ on S̃ via
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248 The conformal constraint equations

h̃ = ϕ∗g̃. Similarly, regarding S̃ as a hypersurface on M, the unphysical metric

g also induces a metric h via the pull-back h = (φ ◦ ϕ)∗g. A calculation shows

that

h = (φ ◦ ϕ)∗g = (ϕ∗ ◦ φ∗)g = ϕ∗(Ξ2|S̃ g̃) = Ω2ϕ∗g̃

where Ω ≡ Ξ2|S̃ is the restriction of Ξ to the hypersurface S̃. Following the

conventions of previous chapters, h = Ω2ϕ∗g̃ will often be written as

h = Ω2g̃.

Now, let ν̃ and ν denote, respectively, the g̃-unit and g-unit normals of S̃ and

define

ε ≡ g̃(ν̃, ν̃) = g(ν,ν).

In accordance with the signature convention (+ − −−), the hypersurface S̃ is

spacelike if ε = 1 and timelike if ε = −1. It follows that

ν = Ξν̃, ν� = Ξ−1ν̃�

or, using index notation, νa = Ξν̃a and νa = Ξ−1ν̃a. In what follows, the indices

of objects in M̃ are raised/lowered using the metric g̃, while the indices of objects

on M are moved using g.

11.1.1 The transformation formulae for the extrinsic curvature

Having discussed the relation between the 3-metrics and the unit normals to S̃,
one is in the position to consider the relation between the extrinsic curvatures

K̃ and K. Given spatial vectors u, v ∈ T (S̃) – so that 〈ν̃,u〉 = 〈ν̃,v〉 = 0 – one

has that

K̃(u,v) = 〈∇̃uν̃,v〉, K(u,v) = 〈∇uν,v〉;

see Equation (2.43). Recalling that ∇− ∇̃ = S(Υ) one readily has that

∇uν = ∇̃uν − S(Υ,ν;u);

the minus sign arises from the fact that ν is a covector. In abstract index notation

S(Υ,ν;u) is given by Sab
cdΥcνdu

b from where a short calculation gives that

Sab
cdΥcνdu

b = Sab
cd∇̃cΞν̃du

b,

= ∇̃bΞν̃au
b − g̃abu

bg̃cd∇̃cΞν̃d

= (uc∇̃cΞ)ν̃a − ΞΣg̃acu
c,

where

Σ ≡ gab∇aΞνb = g�(dΞ,ν) = Ξ−1g̃�(dΞ, ν̃)
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11.1 General setting and basic formulae 249

is the derivative of Ξ in the direction of the g-unit normal to S̃. Accordingly, one
has that

S(Υ,ν;u) = u(Ξ)ν̃ − ΞΣg̃(u, ·),

from where, recalling that u, v ∈ T (S̃) so that g̃(u,v) = h̃(u,v), it follows that

K(u,v) = 〈∇̃uν,v〉 − u(Ξ)〈ν̃,v〉+ΩΣ〈g̃(u, ·),v〉

= Ω〈∇̃uν̃,v〉+ΩΣh̃(u,v)

= Ω
(
K̃(u,v) + Σh̃(u,v)

)
,

where to pass from the first to the second line it has been used that 〈ν̃,v〉 = 0

as T (S̃).
Summarising, the calculations in the previous paragraphs show that

hij = Ω2h̃ij , (11.1a)

Kij = Ω
(
K̃ij +Σh̃ij

)
. (11.1b)

These are the basic transformation formulae for the remainder of this chapter.

Taking the trace of the transformation formula for the extrinsic curvature,

Equation (11.1b), it follows that

ΩK = K̃ + 3Σ,

where K̃ ≡ h̃ijK̃ij and K ≡ hijKij – these scalars are sometimes called,

respectively, the physical and unphysical mean curvature of S̃ . The scalars

Σ, K admit a geometric interpretation: if Σ = K = 0, then, necessarily, K̃ = 0

and the hypersurface S̃ is maximal in M̃ with respect to both the metrics g̃

and g – that is, it encloses a maximum volume for a given area.

11.1.2 Decompositions in electric and magnetic parts

A key ingredient in the analysis of the conformal constraint equations is the

decomposition in electric and magnetic parts of tensors with antisymmet-

ric pairs of indices. Let S denote a hypersurface on a spacetime (M, g), and let

ν denote the unit normal to the hypersurface. The projector to S is the tensor

ha
b given by

ha
b ≡ δa

b − ενaν
b.

It follows that

ha
bνb = 0, ha

bhb
c = ha

c.

Furthermore, using the properties of the spacetime volume form εabcd – see

Section 2.5.3 – one can deduce that

ha
[chb

d] = −1

2
εabeε

cde, (11.2)
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250 The conformal constraint equations

where εabe ≡ εfabeν
f is the three-dimensional volume form.

Now, let Fab denote an antisymmetric tensor of rank 2 and let F ∗
ab ≡

− 1
2εab

cdFcd denote its Hodge dual. Its electric andmagnetic parts are defined,

respectively, to be

Fa ≡ Fcbν
bha

c, F ∗
a ≡ F ∗

cbν
bha

c.

It can be verified that

Faν
a = F ∗

a ν
a = 0, ha

bFb = Fa, ha
bF ∗

b = F ∗
a ,

so that the electric and magnetic parts are said to be spatial tensors. Together,

Fa and F ∗
a encode the same information as the original tensor Fab. In order to

see this, one writes

Fab = Fcdδa
cδb

d = Fcd(ha
c + ενaν

c)(hb
d + ενbν

d)

= Fcdha
chb

d + εFcdha
cνbν

d + εFcdhb
dνaν

c

= 2εF[aνb] + Fcdha
chb

d. (11.3)

The term Fcdha
chb

d is, in turn, manipulated using the identity (11.2) as follows:

Fcdha
chb

d = Fcdha
[chb

d] = −1

2
Fcdε

fcdeνf εabe

= F ∗
efν

f εab
e = F ∗

e εab
e. (11.4)

Thus, combining Equations (11.3) and (11.4), one concludes that

Fab = 2εF[aνb] + F ∗
e ε

e
ab.

The decomposition in electric and magnetic parts can be extended to tensors

Wabcd with the same symmetries as the Weyl tensor; such tensors are sometimes

known as Weyl candidates. By analogy to the rank-2 case one defines the

ν-electric and ν-magnetic parts of Wabcd to be

Wac ≡ Webfdν
bνdha

ehc
f , W ∗

ac ≡ W ∗
ebfdν

bνdha
ehc

f ,

with W ∗
abcd ≡ − 1

2εcd
efWabef denoting the right Hodge dual of Wabcd. In the

subsequent discussion it is convenient to consider

Wabc ≡ Wefghν
fha

ehb
ghc

h.

It can be verified that

W ∗
ab = −1

2
Wacdεb

cd.
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11.1 General setting and basic formulae 251

As in the rank-2 case, the tensors Wab and W ∗
ab (or, alternatively, Wab

and Wabc) encode the same information as Wabcd. The argument to show this

equivalence is similar to that of the rank-2 case:

Wabcd = Wefghδa
eδb

fδc
gδd

h

= Wefgh(ha
e + ενaν

e)(hb
f + ενbν

f )(hc
g + ενcν

g)(hd
h + ενdν

h)

= Wefghha
ehb

fhc
ghd

h + εWcabνd − εWdebha
eνc + εWacdνb

+Wacνbνd −Wadνbνc − εWbcdνa −Wbcνaνd +Wbdνaνc. (11.5)

From the definition of the magnetic part W ∗
ab it follows that

Wabc = εebcW
∗
ae. (11.6)

Moreover, using that

εabcε
def = −6δa

[dδb
eδc

f ], (11.7)

it follows that

Wefghha
ehb

fhc
ghd

h =
1

4
Wefghε

efzεabzε
ghxεcdx

= ∗W ∗
rzsxν

rνsεab
zεcd

x = −Wzxεab
zεcd

x

= Wcahbd +Wdbhac −Wcbhad −Wdahbc. (11.8)

Combining Equations (11.5), (11.6) and (11.8) one obtains the desired decom-

position of Wabcd in terms of Wab and W ∗
ab:

Wabcd = 2ε(lb[cWd]a − la[cWd]b)− 2(ν[cW
∗
d]eε

e
ab + ν[aW

∗
b]eε

e
cd), (11.9)

where lab ≡ hab − ενaνb. A similar computation renders

W ∗
abcd = 2ν[aWb]eε

e
cd − 4We[aεb]

e
[cνd] − 4ν[aW

∗
b][cνd] −W ∗

ef ε
e
abε

f
cd. (11.10)

Expressions in terms of an adapted frame

The decomposition discussed in the previous paragraphs acquires a particularly

simple form when supplemented with a frame {ea} adapted to the hypersurface

S. For such a frame, the projection of a particular index with respect to the

normal corresponds to replacement of the corresponding frame index with ⊥
while the spatial part of a tensor is given by the replacement of the spacetime

frame indices a, b, c, . . . with the spatial frame indices i, j , k, . . . In particular,

the three-dimensional volume form satisfies εijk = ε⊥ijk, and the electric and

magnetic parts of the antisymmetric tensor Fab are represented, respectively, by

Fi = Fi⊥, F ∗
i = F ∗

i⊥.

https://doi.org/10.1017/9781009291347.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.015


252 The conformal constraint equations

In the case of the Weyl candidate Wabcd one has that the tensors Wab, W
∗
ab and

Wabc correspond to

Wij = Wi⊥j⊥, W ∗
ij = W ∗

i⊥j⊥, Wijk = Wi⊥jk.

11.2 Basic notions of elliptic equations

Elliptic differential operators arise naturally in the study of the constraint

equations of general relativity on spacelike hypersurfaces. In view of this,

some basic properties of elliptic operators on Riemannian manifolds are briefly

discussed.

Let (S,h) denote a Riemannian three-dimensional manifold with h a negative

definite metric. A linear differential operator of order M over S is a map

between tensor bundles

L : Ti1···iS (S) → Tk1···kN
(S), S, N ∈ N,

of the form

(Lv)k1···kN
≡

M∑
r=0

aj1···jri1···iSk1···kN
Dj1 · · ·Djrvi1···iS , (11.11)

for a smooth vi1···iS ∈ Ti1···iS (S) and where the coefficients aj1···jri1···iSk1···kN

are smooth functions over S. The principal part of L consists of the terms in

Equation (11.11) with the highest order derivatives, that is,

aj1···jM i1···iS
k1···kN

Dj1 · · ·DjM vi1···iS .

Closely related to the principal part is the symbol of L, σL(ξ), defined pointwise

on S, for ξ ∈ T ∗|p(S) as the linear map

σL(ξ) : Ti1···iS |p(S) → Tk1···kN
|p(S),

given by

(σL(ξ)v)k1···kN
≡ aj1···jM i1···iS

k1···kN
ξj1 · · · ξjM vi1···iS .

Observe that the symbol is obtained by the formal replacement of the

derivatives Di �→ ξi in the principal part of the operator. The symbol σL(ξ)

determines the nature of the differential operator. In particular, L is said to

be underdetermined elliptic at p ∈ S if σL(ξ) is surjective for all ξ �= 0;

L is overdetermined elliptic at p ∈ S if σL(ξ) is injective. Finally, L is

elliptic if σL(ξ) is bijective, that is, if it is injective and surjective. If the

coefficients aj1···jri1···iSk1···kN
in the operator (11.11) depend not only on the

point on S but also on the derivatives Dj1 · · ·Djl , l < r, then L is said to
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11.3 The Hamiltonian and momentum constraints 253

be quasilinear. The definitions of (underdetermined, overdetermined) elliptic

differential operators extend in a natural way to the quasilinear case.

The paradigmatic example of an elliptic operator is the Laplace operator of

the metric h:

Δhφ ≡ hijDiDjφ, φ ∈ X(S).

In this case the operator is equal to its principal part. Moreover, its symbol

is given by hijξiξj < 0 for ξi �= 0 (as a consequence of negative-definiteness),

from where it follows that the symbol is a bijection and, hence, Δh is an elliptic

operator. Particular examples of overdetermined and underdetermined elliptic

operators are discussed in Section 11.3.3.

Associated to the differential operator L in (11.11) one has its formal adjoint

L∗ given by

(L∗u)i1···iS ≡
M∑
r=0

(−1)rDj1 · · ·Djr (a
j1···jri1···iS

k1···kN
uk1···kN ),

for smooth uk1···kN ∈ Tk1···kN (S). The above expression comes from the identity

between inner products∫
S
(Lv)k1···kN

uk1···kNdμh =

∫
S
vi1···iS (L

∗u)i1···iSdμh, (11.12)

which is obtained by repeated integration by parts. In the previous expression,

dμh denotes the volume element of h. For simplicity, in the identity (11.12)

it is assumed that S is a compact manifold so that the integrals are well

defined. Important for the subsequent discussion is the fact (verifiable using

the definitions given in the previous paragraphs) that L is an underdetermined

elliptic operator if and only if L∗ is overdetermined elliptic. Moreover, if L is

underdetermined elliptic, then L ◦ L∗ is elliptic.

The interested reader is referred to appendix II in Choquet-Bruhat (2008) for

further details on the theory of elliptic equations. An alternative summary can

be found in the appendix of Besse (2008).

11.3 The Hamiltonian and momentum constraints

Before proceeding to analyse the conformal constraint equations, it is convenient

to discuss the intrinsic equations implied by the Einstein field equations

R̃ab −
1

2
R̃g̃ab + λg̃ab = T̃ab

on a non-null hypersurface of a spacetime (M̃, g̃) – the so-called Einstein

constraint equations.
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254 The conformal constraint equations

11.3.1 Derivation of the Einstein constraint equations

Starting from the Gauss-Codazzi identity, Equation (2.47) and contracting with

h̃ik one obtains

r̃jl + K̃K̃jl − K̃k
jK̃kl = h̃ikR̃ijkl

= ηabR̃ajbl − εR̃⊥j⊥l

= R̃jl − εR̃⊥j⊥l.

Contracting this last equation with h̃jl one finally obtains

r̃ + K̃2 − K̃jlK̃
jl = h̃jlR̃jl − εh̃jlR̃⊥j⊥l

= ηabR̃ab − εR̃⊥⊥ − εηabR̃⊥a⊥b

= R̃− 2εR̃⊥⊥.

Similarly, starting from the Codazzi-Mainardi identity, Equation (2.48), and

contracting with h̃ij one has that

D̃jK̃kj − D̃kK̃ = h̃ijR̃i⊥jk

= ηijR̃i⊥jk = R̃⊥k,

where to pass from the first to the second line one uses that R̃⊥⊥jk = 0.

Using the Einstein field equations in the frame component form

R̃ab −
1

2
ηabR̃+ ληab = T̃ab

one obtains the so-called Einstein constraint equations

r̃ + K̃2 − K̃jlK̃
jl = 2(λ− ε�̃), (11.13a)

D̃jK̃kj − D̃kK̃ = j̃k, (11.13b)

where

�̃ ≡ T̃⊥⊥, j̃k ≡ T̃⊥k

are, respectively, the energy density and the components of the energy flux

vector of the energy-momentum tensor in the direction of ν̃. Equations (11.13a)

and (11.13b) are known, respectively, as the Hamiltonian constraint and

the momentum constraint . The tensorial version of Equations (11.13a) and

(11.13b) is given by

r̃ + K̃2 − K̃jlK̃
jl = 2(λ− ε�̃), D̃jK̃kj − D̃kK̃ = j̃k. (11.14)

Finally, it is observed that in index-free notation the constraint equations can

be written as

r[h̃] + (trh̃K̃)2 − |K̃|2
h̃
= 2(λ− ε�̃), divh̃K̃ − grad trh̃K̃ = j̃.
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11.3 The Hamiltonian and momentum constraints 255

In what follows, a collection (S̃, h̃, K̃, �̃, j̃) such that the negative definite

metric h̃ and the symmetric rank-2 tensor K̃ satisfy the Einstein constraints

(11.14) with ε = 1 on the three-dimensional manifold S̃ will be known as an

initial data set for the Einstein field equations. If �̃ = 0 and j̃ = 0, one speaks

of a vacuum initial data set.

An important class of initial data sets is that for which K̃ = 0 and j̃ = 0, so

that one is left only with the Hamiltonian constraint in the form

r[h̃] = 2(λ− ρ̃).

Such an initial data set is called time reflection symmetric (or time

symmetric for short); it follows from the properties of the Einstein reduced

equations that for this type of initial data one has ∂thαβ = 0 on the initial

hypersurface S̃ so that the resulting solution to the Einstein field equations is

invariant under the replacement t �→ −t.

11.3.2 The conformal Hamiltonian and momentum

constraint equations

Regarding, as in Section 11.1, the three-dimensional manifold S̃ as a hypersurface

on both (M̃, g̃) and (M, g), it follows from a computation using the transfor-

mation rules (11.1a) and (11.1b) together with the transformation rules for the

Ricci scalar, Equation (5.16c), that Equation (11.14) can be reexpressed in terms

of unphysical quantities as:

2ΩDiD
iΩ− 3DiΩD

iΩ+
1

2
Ω2r − 3εΣ2

+
1

2
Ω2
(
K2 −KijK

ij
)
+ 2εΩΣK = λ− εΩ4�, (11.15a)

Ω3Di
(
Ω−2Kik

)
− Ω
(
DkK − 2Ω−1DkΣ

)
= Ω3jk, (11.15b)

where

� ≡ Ω−4�̃, jk ≡ Ω−3j̃k, (11.16)

denote, respectively, the unphysical energy density and the flux vector.

11.3.3 The Hamiltonian and momentum constraint

as an elliptic system

The Einstein constraint Equations (11.14) on a spacelike manifold S̃ (i.e. ε = 1)

have been studied extensively in the literature; see, for example, Bartnik and

Isenberg (2004) for a review of the topic and see also Choquet-Bruhat (2008),

chapter 7, and Choquet-Bruhat and York (1980). In this section an adaptation

of the so-called conformal method of Licnerowicz, Choquet-Bruhat and York

to analyse the conformal Hamiltonian and momentum constraints (11.15a) and

(11.15b) will be discussed; see, for example, York (1971, 1972). This approach
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works directly on a compact unphysical manifold S which is a conformal

extension of the physical manifold S̃. The key idea in this analysis is to show

that these constraint equations imply an elliptic system of equations for suitable

conformal fields. Proceeding in this way, one also obtains an insight into the

nature of the freely specifiable data in the Einstein constraints. The use of a

compact manifold S simplifies some of the technical aspects of the analysis. This

approach to the Einstein constraint equations has been advocated in Friedrich

(1988, 1998c, 2004, 2013), Dain and Friedrich (2001) and Beig and O’Murchadha

(1991, 1994).

Following the discussion of the previous paragraph, let (S,h) denote a compact

Riemannian manifold with h negative definite and set ε = 1 so that S can be

regarded as a spacelike hypersurface of an unphysical spacetime (M, g). In what

follows, for simplicity, it is assumed that the matter fields � and j are known

on S.
The first step to transform Equations (11.15a) and (11.15b) into an elliptic

system is given by the transformation law of the three-dimensional Ricci scalar,

Equation (5.17), which suggests introducing a conformal factor ϑ satisfying

Ω=ϑ−2. By substituting this definition into Equation (11.15a) one finds that

Δhϑ− 1

8
r[h]ϑ =

1

8
(KijK

ij −K2)ϑ+
1

4
(ϑ−3�− ϑ5λ) +

3

4
Σ2ϑ5 − 1

2
ϑ3ΣK,

(11.17)

where, as before, Δh ≡ hijDiDj and the notation r[h] has been used to make

explicit the dependence of the Ricci scalar on the metric h. Following the

standard use in the literature, this equation will be known as the Licnerowicz

equation. If the fields h (and hence r[h]), Kij , K, � and Σ are known, this last

equation can be read as a non-linear elliptic equation determining ϑ. For future

use, it is convenient to define the Yamabe operator Lh : X(S) → X(S) as

Lhϑ ≡ Δhϑ− 1

8
r[h]ϑ, (11.18)

so that Equation (11.17) can be rewritten as

Lhϑ =
1

8
(KijK

ij −K2)ϑ+
1

4
(�− λ)ϑ−3 +

1

2
Σϑ3

(
K − 1

6
ϑ2Σ

)
.

The Yamabe operator has nice conformal transformation properties; see

Equation (11.23) below.

Equation (11.15b) suggests that the extrinsic curvature Kij should be split

into a trace-free part multiplied by a power of the conformal factor and a pure

trace part. In this spirit one writes
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Kij = ϑ−4ψij +
1

3
Khij , hijψij = 0,

which, substituted into (11.15b), yields

Diψij =
2

3
ϑ6Dj(ϑ

−2K)− 2ϑ−6DjΣ+ jj .

In view of the latter, it is convenient to reintroduce the physical trace K̃ = ΩK =

ϑ−2K so that one obtains

Diψij =
2

3
ϑ6DjK̃ − 2ϑ−4DjΣ+ jj . (11.19)

This last equation is to be read as an equation for the trace-free tensor ψij . If

K̃ is a constant and Σ = 0, then Equations (11.17) and (11.19) decouple.

Following the discussion of Section 11.2 it can be verified that the principal part

of Equation (11.19) is underdetermined elliptic. To transform Equation (11.19)

into an elliptic equation one makes use of a so-called York splitting ; see York

(1973). One considers an ansatz for ψij of the form

ψij = Diςj +Djςi −
2

3
hijDkς

k + ψ′
ij , (11.20)

where ςi is some covector on S and ψ′
ij is a freely specifiable symmetric and

trace-free tensor. The operator (Lhς)i defined by

(Lhς)i ≡ Diςj +Djςi −
2

3
hijDkς

k,

is called the conformal Killing operator . It can be verified to be the

formal adjoint of the divergence operator acting on symmetric trace-free tensors.

Substituting the ansatz (11.20) into Equation (11.19) one obtains

Δhςj +DiDjςi −
2

3
DjDkς

k =
2

3
ϑ6DjK̃ − 2ϑ−4DjΣ+ jj −Diψ′

ij . (11.21)

The symbol of this equation can be seen to be

(σdiv◦L(ξ)ς)j = ξiξiςj + ξiξjςi −
2

3
ξjξ

kςk.

Contracting with ξj one immediately finds that

(σdiv◦L(ξ)ς)jξ
j = (ξiξ

i)(ςkς
k) +

1

3
(ςiξ

i)2 > 0 for ξi, ςj �= 0.

Thus, it follows that (11.21) is a linear elliptic equation for the covector ςi.

The freely specifiable data for this equation is the symmetric trace-free tensor

ψ′
ij . As in the case of Equation (11.19) it decouples from the Licnerowicz

Equation (11.17) if K̃ is constant and Σ = 0. The analysis of the coupled system

(11.17)–(11.19) is much more challenging; see, for example, Holst et al. (2008a,b).
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258 The conformal constraint equations

Gauge freedom

The conformal method described in the previous paragraphs has a conformal

gauge freedom. More precisely, if φ is a positive function on S, then a direct

computation shows that the transitions

hij �→ φ4hij , ψij �→ φ−2ψij , Ω �→ φ2Ω, Kij �→ φ2Kij , (11.22a)

Σ �→ φ2Σ, � �→ φ−8�, ji �→ φ−6ji, (11.22b)

yield another solution to the conformal constraint Equations (11.15a) and

(11.15b) with the same physical data (h̃, K̃). This gauge freedom can be

exploited to simplify certain specific computations. In particular, letting

h′ =φ4h, a calculation using the transformation laws for conformal transfor-

mations shows that

φ−5
(
Δh − 1

8
r[h]
)
ϑ =

(
Δh′ − 1

8
r[h′]

)
(φ−1ϑ), (11.23)

that is,

φ−5Lh[ϑ] = Lh′(φ−1ϑ).

11.3.4 The Yamabe problem

A classic question of Differential Geometry is the so-called Yamabe problem

which, given a compact three-dimensional Riemannian manifold (S,h), asks

whether it is possible to conformally rescale the (smooth) metric h to a metric

with constant Ricci scalar; see Yamabe (1960). This problem requires finding a

positive conformal factor ω and a constant r• satisfying the equation

Δhω =
1

8
(r[h]ω − r•ω

5), (11.24)

which follows from the transformation equation for the three-dimensional Ricci

scalar Equation (5.17). The Yamabe problem has been solved in the affirmative;

see Trudinger (1968), Aubin (1976) and Schoen (1984). In particular, one has

the following (e.g. Lee and Parker (1987); O’Murchadha (1988)):

Theorem 11.1 (resolution of the Yamabe problem) Let h be a smooth

Riemannian metric on a compact manifold S. There exists a smooth, positive

definite function ω on S such that r[ω4h] is constant.

Theorem 11.1 allows the classification of Riemannian metrics according to

whether they can be rescaled to a metric with constant Ricci scalar which is

positive, negative or zero – a given metric h cannot be rescaled to two different

metrics with constant curvature of different signs. Thus, the resulting Yamabe

classes are conformal invariants. As will be seen in Section 11.5, this observation

plays a role in the construction of initial data sets on compact manifolds.

Remarkably, the analogous Yamabe problem on non-compact manifolds turns
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out not to be true as shown by a number of counterexamples; see, for example,

Zhiren (1988).

11.4 The conformal constraint equations

Having analysed the standard Einstein constraint equations, focus is now on the

constraint equations implied by the conformal Einstein field equations. These

equations can be regarded as an extension of the conformal Hamiltonian and

momentum constraints (11.15a) and (11.15b).

11.4.1 The derivation of the equations

In this section the frame version of the conformal Einstein field equations,

Equations (8.32a) and (8.32b), are considered. By making use of an orthonormal

frame adapted to the geometry of the hypersurface under consideration, as

described in Section 2.7.3, the split of the equations follows almost directly.

In what follows, let (M, g) denote an unphysical spacetime and let S denote a

hypersurface thereof. As in Section 11.1.1, let Σ denote the covariant derivative

in the direction of the g-unit normal. The evaluation of a spacetime frame index

in the direction of the unit normal (i.e. the values 0 or 3 depending on the causal

character of S) will be indicated by the symbol ⊥.

The constraints implied by Zab. Given

Zab ≡ ∇a∇bΞ + ΞLab − sηab −
1

2
Ξ3T{ab}, (11.25)

the information of the conformal equation Zab = 0 which is intrinsic to the

hypersurface S is encoded in the components

Zij = 0, Z⊥i = 0. (11.26)

In order to obtain explicit intrinsic expressions for these equations it is observed

that

∇a∇bΞ ≡ ea
aeb

b∇a∇bΞ = ea(eb(Ξ))− Γa
c
bec(Ξ).

Hence, in particular, one has that

∇i∇jΞ = ei(ej(Ξ))− Γi
c
jec(Ξ)

= ei(ej(Ξ))− Γi
k
jek(Ξ)− Γi

⊥
je⊥(Ξ)

= ei(DjΞ)− γi
k
jDkΞ + εKijΣ

= DiDjΞ + εKijΣ, (11.27)
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where, in the last term of the last line, Equation (2.45) for the extrinsic curvature

has been used. A similar computation shows that

∇i∇⊥Ξ = ei(e⊥(Ξ))− Γi
c
⊥ec(Ξ)

= ei(Σ)− Γi
k
⊥ek(Ξ)− Γi

⊥
⊥Σ

= DiΣ− εKi
kDkΞ, (11.28)

where, in the third line, it has been used that Γa
⊥⊥ = 0 as a consequence of the

metricity of the connection and the fact that Ki
k = Γi

k⊥.

Substituting the above expressions into Equation (11.26) and taking into

account definition (11.25) one obtains the constraint equations

DiDjΩ = −εKijΣ− ΩLij + shij +
1

2
Ω

(
Tij −

1

4
Thij

)
,

DjΣ = Kj
kDkΩ− ΩLj +

1

2
Ω3jj ,

where

Li ≡ Li⊥, Ω ≡ Ξ|S .

The constraints implied by Za. Given

Za ≡ ∇as+ Lac∇cΞ− 1

2
Ξ2∇cΞT{ac} −

1

6
Ξ3∇cT{ca}, (11.29)

the intrinsic information of the equation Za = 0 is encoded in the components

Zi = 0. (11.30)

Now, the spatial components of the term Lab∇bΩ in Equation (11.29) can be

expanded as

Lib∇bΩ = Libη
ba∇aΩ

= Li⊥η⊥⊥∇⊥Ω+ Likη
kl∇lΩ

= εLiΣ+ LikD
kΩ.

By similar arguments one concludes that

∇cΞT{ic} = εΣji − TikD
kΩ− 1

4
DiT,

∇cT{ic} = ε∇⊥ji +DkTki −
1

4
DiT.

It is important to observe in ∇cT{ic} the presence of the term ∇⊥ji which

requires further information about the matter model in order to be cast in a

form intrinsic to the hypersurface S. In the case of trace-free matter, one has

that ∇cT{ic} = 0, so that no further considerations are required.
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From the discussion in the previous paragraphs it follows that Equation (11.30)

can be reexpressed as

Dis = −εLiΣ− LikD
kΩ+

1

2
Ω2
(
εΣji − TikD

kΩ− 1

4
DiT

)
+

1

6
Ω3
(
ε∇⊥ji +DkTki −

1

4
DiT

)
.

The constraints implied by Δcdb. Given

Δcdb ≡ ∇cLdb −∇dLcb −∇aΞd
a
bcd − ΞTcdb, (11.31)

the information intrinsic to the hypersurface S of the conformal equation

Δcdb = 0 is encoded in the components

Δijk = 0, Δij⊥ = 0. (11.32)

A calculation similar to that leading to Equations (11.27) and (11.28) yields

∇iLjk = DiLjk + εKikLj ,

∇iLj = DiLj +Ki
kLkj .

Given the components dabcd of the rescaled Weyl tensor with respect to the

adapted frame {ea}, it is convenient to define

dij ≡ di⊥j⊥, dijk ≡ di⊥jk.

Following the discussion of Section 11.1.2, dij corresponds to the components of

the electric part of the rescaled Weyl tensor, while dijk encodes the information

of the magnetic part. It can be verified that

dij = dji, dii = 0, dijk = −dikj , d[ijk] = 0, (11.33a)

dijkl = 2(hi[kdl]j + hj[ldk]i). (11.33b)

It follows from the latter expressions, together with (11.31), that the

constraints (11.32) can be reexpressed as

DiLjk −DjLik = −εΣdijk +DlΩdlkij − ε(KikLj −KjkLi) + ΩTijk,

DiLj −DjLi = DlΩdlij +Ki
kLjk −Kj

kLik +ΩJij ,

where

Jjk ≡ Tjk⊥.

The constraints implied by Λbcd. Given

Λbcd ≡ ∇ad
a
bcd − Tcdb,
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as a consequence of the decomposition of the Weyl tensor in electric and magnetic

parts, it follows that the information of the equation Λbcd = 0 which is intrinsic

to the hypersurface S is contained in the components

Λ⊥ij = 0, Λ⊥j⊥ = 0. (11.34)

Observing that

∇adaijk = ηab
(
ea(dbijk)− Γa

c
bdcijk − Γa

c
idbcjk − Γa

c
jdbick − Γa

c
kdbijc

)
,

one concludes, by arguments similar to those used to obtain Equations (11.27)

and (11.28), that

∇ad
a
⊥jk = Didijk + ε(Ki

kdji −Ki
jdki),

∇ad
a
⊥j⊥ = Didij −Kikdijk.

It follows from the previous discussion that the constraint Equations (11.34) can

be reexpressed as

Didijk = ε(Ki
jdki −Ki

kdji) + Jjk,

Didij = Kikdijk + Jj ,

where

Jjk ≡ Tjk⊥, Jj ≡ Tj⊥⊥.

The explicit form of Jjk and Jj depends on the matter model under considera-

tion. In the case of the electromagnetic field, they can be expressed in terms of the

electric and magnetic parts of the Faraday tensor and their spatial derivatives.

The constraint Z = 0. Recall that

Z ≡ 6Ξs− 3∇cΞ∇cΞ +
1

4
Ξ4T − λ.

As discussed in Section 8.2.4 the equation Z = 0 is, in fact, a constraint

equation whose propagation is ensured by the other conformal field equations;

see Lemma 8.1. Following the procedure employed in the decomposition of the

other conformal equations, it can be expressed in terms of quantities intrinsic to

the hypersurface S as

λ = 6Ωs− 3εΣ2 − 3DkΩD
kΩ+

1

4
Ω4T.

11.4.2 The Gauss-Codazzi and Codazzi-Mainardi equations in terms

of conformal fields

The intrinsic equations discussed in the previous section are supplemented by

the Gauss-Codazzi and Codazzi-Mainardi equations, Equations (2.47) and (2.48)
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Rijkl = rijkl +KikKjl −KilKjk,

Ri⊥jk = DjKki −DkKji,

expressed in terms of conformal fields. As a consequence of the decomposition of

the four-dimensional Riemann tensor Rabcd in terms of the Weyl and Schouten

tensor, Equation (2.21b), one has that

Rabcd = Ξdabcd + ηacLdb − ηadLcb + Lacηdb − Ladηcb,

while the three-dimensional Riemann tensor rijkl can be expressed in terms of

the three-dimensional Schouten tensor lij as

rijkl = hikllj − hillkj + hjllki − hjklli, lij ≡ rij −
1

4
rhij ;

see Equation (2.40). A direct calculation using the above expressions yields the

two additional constraint equations

DjKki −DkKji = Ωdijk + hijLk − hikLj ,

lij = Ωdij + Lij −Kk
k
(
Kij −

1

4
Khij

)
+KkiKj

k − 1

4
KklK

klhij .

These equations provide the link between the spatial curvature tensor lij and

the spacetime curvature as described by dab, dabc, Lab and La.

11.4.3 Summary of the equations and basic properties of the

conformal constraint equations

As a summary of the discussion of the previous sections, the conformal constraint

equations are collected:

DiDjΩ = −εΣKij − ΩLij + shij +
1

2
Ω3

(
Tij −

1

4
Thij

)
, (11.35a)

DiΣ = Ki
kDkΩ− ΩLi +

1

2
Ω3ji, (11.35b)

Dis = −εLiΣ− LikD
kΩ+

1

2
Ω2

(
εΣji − TikD

kΩ− 1

4
DiT

)

+
1

6
Ω3

(
ε∇⊥ji +DkTki −

1

4
DiT

)
, (11.35c)

DiLjk −DjLik = −εΣdkij +DlΩdlkij

− ε(KikLj −KjkLi) + ΩTijk, (11.35d)

DiLj −DjLi = DlΩdlij +Ki
kLjk −Kj

kLik +ΩTij⊥, (11.35e)
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Dkdkij = ε
(
Kk

idjk −Kk
jdik

)
+ Jij , (11.35f)

Didij = Kikdijk + Jj , (11.35g)

λ = 6Ωs− 3εΣ2 − 3DkΩD
kΩ+

1

4
Ω4T, (11.35h)

DjKki −DkKji = Ωdijk + hijLk − hikLj , (11.35i)

lij = Ωdij + Lij −K(Kij −
1

4
Khij) +KkiKj

k − 1

4
KklK

klhij . (11.35j)

Using the identity (11.7) and recalling that d∗ij = − 1
2diklεj

kl, Equations (11.35f)

and (11.35g) can be rewritten in the alternative form

Did∗ij = −εεj
klKi

kdli −
1

2
εj

klJkl, (11.36a)

Didij = εljkK
ikd∗il + Jj . (11.36b)

The conformal constraint Equations (11.35a)–(11.35j) are not independent

since integrability conditions have been used in their derivation. A list of various

relations between the vacuum constraint equations can be found in Friedrich

(1983). In particular, it can be shown that

Di

(
6Ωs− 3εΣ2 − 3DkΩD

kΩ+
1

4
Ω4T

)
= 0,

consistent with the fact that the left-hand side of Equation (11.35h) equals the

cosmological constant λ.

For future reference, it is observed that from Equation (11.35j) it follows that

rij = Ωdij + Lij + Lk
khij −KKij +KikK

k
j , (11.37a)

r = 4Lk
k −K2 +KijK

ij . (11.37b)

The vacuum version of the conformal constraint equations is obtained by

setting the matter fields Tij , T , ji, Tijk, Ji, Jij equal to zero. In the derivation of

the conformal constraint Equations (11.35a)–(11.35j), it has been assumed that

the connection D is the Levi-Civita connection of the intrinsic metric h. Thus,

by analogy to the full conformal field equations one also has the relations

σi
k
j = 0, Πk

lij = πk
lij , (11.38)

where σi
k
j , Π

k
lij and πk

lij denote, respectively, the components of the torsion,

the geometric curvature and the algebraic curvature of the connection D.

Explicitly, one has that

σi
k
jek ≡ [ei, ej ]− (γi

k
j − γj

k
i)ek,

Πk
lij ≡ ei(γj

k
l)− ej(γi

k
l) + γm

k
l(γj

m
i − γi

m
j) + γj

m
lγi

k
m − γi

m
lγj

k
m,

πklij ≡ hikllj − hillkj + hjllki − hjklli.
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Given a collection of matter fields on S,

m� ≡ (Tij , T, �, ji,∇⊥ji, Ji, Jij),

by a solution to the conformal constraint equations on S it will be

understood a collection

u� ≡ (Ω,Σ, s, ei, γi
k
j ,Kij , Lij , Li, dij , dijk)

satisfying Equations (11.35a)–(11.35j) together with the supplementary condi-

tions (11.38).

The relation between the conformal constraint Equations (11.35a)–(11.35j)

and the conformal Hamiltonian and momentum constraints (11.15a)–(11.15b) is

summarised in the following lemma.

Lemma 11.1 (relation between the solutions to the Einstein constraints

and the conformal constraints) A solution to the conformal constraints

(11.35a)–(11.35j) for a collection m� of matter fields implies a solution to

the conformal Hamiltonian and momentum constraints (11.15a) and (11.15b).

Conversely, a solution of (11.15a) and (11.15b) together with a collection of

matter fields m� gives rise to a solution to (11.35a)–(11.35j) on the points of S
for which Ω �= 0.

Proof Using Equations (11.35a) and (11.35h) to eliminate Lk
k one readily

obtains the conformal Hamiltonian Equation (11.15a). Similarly, starting from

Equation (11.35i) and using Equation (11.35b) to eliminate Li one obtains the

conformal momentum constraint (11.15b). Thus, any solution to the conformal

constraints (11.35a)–(11.35j) implies a solution to the conformal Hamiltonian

and momentum constraints, Equations (11.15a) and (11.15b).

Assume now one has a collection (Ω,h,K,Σ, �, ji) satisfying Equa-

tions (11.15a) and (11.15b) together with a collection (Tij , T, Ji, Jij ,∇⊥ji)

consistent with the matter fields � and ji . Let now {ei} denote an h-orthonormal

frame. Using this frame one can compute the components lij and Kij of the

three-dimensional Schouten tensor and of the extrinsic curvature. If Ω �= 0,

one can use the conformal constraint (11.35h) to compute the field s. Next,

one makes use of Equations (11.35a) and (11.35b) to compute Lij and Li. A

computation using the commutator of the covariant derivative Di shows that

Equation (11.35c) is automatically satisfied. Once the components Lij and Li

are known, one can use Equations (11.35i) and (11.35j), respectively, to compute

dijk and dij – it can be verified that the resulting fields are trace free. A final

computation using the three-dimensional Bianchi identity in the form

Dirij =
1

4
Djr,

together with the irreducible decomposition of the three-dimensional Riemann

tensor rijkl, the decomposition of dijkl into the electric and magnetic parts
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and the commutator of Di shows that Equations (11.35d)–(11.35g) are also

automatically satisfied. Thus, the fields obtained constitute the required solution

to the conformal constraint equations; see Friedrich (1983) for further details.

Remark. In order to make assertions about the behaviour of solutions to

the conformal constraint equations at points where Ω = 0, the equations

need to be supplemented with boundary conditions. Several different classes of

boundary conditions on three-dimensional manifolds will be considered: com-

pact manifolds, asymptotically Euclidean manifolds and hyperboloidal

manifolds.

11.4.4 The conformal constraints at the conformal boundary

By construction, the conformal constraint equations can be evaluated in a regular

manner at a non-null hypersurface belonging to the conformal boundary of

spacetime. By definition such a hypersurface satisfies the conditions

Ω = 0, dΩ �= 0.

Following the convention introduced in Chapter 6 this hypersurface will be

denoted by I . The null case will be discussed in Chapter 18.

The defining properties of the hypersurface I lead to a number of simplifi-

cations in the conformal constraint equations. In particular, dΩ is normal to I

so that, in terms of a tetrad adapted to the hypersurface, one has DiΩ = 0.

Assuming that the matter fields Tij , T and Tijk are smooth at I one finds

that on the hypersurface the conformal constraints (11.35a)–(11.35j) imply the

equations

shij � εΣKij , (11.39a)

DiΣ � 0, (11.39b)

Dis � −εLiΣ, (11.39c)

DiLjk −DjLik � −εΣdijk − ε(KikLj −KjkLi), (11.39d)

DiLj −DjLi � Ki
kLjk −Kj

kLik, (11.39e)

Dkdkij � ε
(
Kk

idjk −Kk
jdik

)
+ Jij , (11.39f)

Didij � Kikdijk + Jj , (11.39g)

λ � −3εΣ2, (11.39h)

DjKki −DkKji � hijLk − hikLj , (11.39i)

lij � Lij −K

(
Kij −

1

4
Khij

)
+KkiKj

k − 1

4
KklK

klhij , (11.39j)

where � denotes equality at the conformal boundary. From Equations (11.39b)

and (11.39h) it follows that Σ is a constant on I with a value given by
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Σ =
√
−ελ/3 – observe that if ε = 1, then λ < 0, and if ε = −1, then λ > 0,

for the previous expression to make sense. Moreover, from Equation (11.39a) the

extrinsic curvature of I is proportional to the intrinsic metric.

A procedure for constructing solutions to Equations (11.39a)–(11.39j) in the

vacuum case (so that Jjk = 0, Jj = 0) has been given in Friedrich (1986a, 1995).

The fundamental idea is to identify the function s and the 3-metric h on I as

freely specifiable data. Instead of working directly with s, it is more convenient

to use a smooth function κ ∈ X(S) such that

s � Σκ. (11.40)

It follows directly from Equations (11.39a), (11.39c) and (11.39j) that

Kij � εκhij , Li � −εDiκ, Lij � lij +
1

2
κ2hij . (11.41)

Substituting these expressions into Equation (11.39d) one obtains, after some

simplification, that

dijk � −εΣ−1yijk (11.42)

where yijk ≡ Diljk −Dj lik denote the components of the Cotton tensor of the

metric h; see Section 5.2.2. Alternatively, one can write

d∗ij � −εΣ−1yij ,

with yij ≡ − 1
2ykljεi

kl the components of the Bach tensor. It can be verified

that the integrability conditions (11.39e), (11.39f) and (11.39i) are automatically

satisfied by (11.41) and (11.42). Finally, by substituting into Equation (11.39g)

one obtains that

Didij � 0.

This is the only differential condition that has to be solved in this procedure.

This can be done by means of a York splitting so as to obtain an elliptic equation

for the components of a covector.

The discussion of the previous paragraph is summarised in the following:

Proposition 11.1 (solutions to the conformal constraint equations

at the conformal boundary) Given a three-dimensional metric h, an

h-divergence-free and trace-free field dij and a smooth function κ, the fields s,

Kij , Li, Lij , dijk as given by Equations (11.40), (11.41) and (11.42) constitute

a solution to the vacuum conformal constraint equations with Ω = 0.

As will be seen in later chapters, a solution to Equations (11.39a)–(11.39j)

constitutes, in the case of ε = 1 (i.e. I spacelike), initial data at, say, past null

infinity for de Sitter-like spacetimes. In the case ε = −1 (i.e. I timelike), the

solution gives boundary data for an anti-de Sitter-like spacetime.
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Remark. The procedure indicated in the previous paragraphs can be extended

to the matter case if the field Ji is known.

Exploiting the conformal freedom

The conformal freedom inherent to the conformal field equations can be employed

to express the solution to the conformal constraint equations at the conformal

boundary in an even simpler form. Recall the discussion in Section 8.2.5 on the

transformation properties of the various fields appearing in the conformal field

equations. In particular, it follows from Equation (8.29b) that, under a rescaling

of the form g′ = ϑ2g which implies a rescaling

h′ � ϑ2h

of the intrinsic metric of I , the field s on I transforms as

s′ �
(
ϑ−1s+ ϑ−2∇aϑ∇aΞ

)
.

In particular, it is always possible to choose ϑ at I so that locally

s′ � 0.

Accordingly, in this particular conformal gauge one has that Equation (11.40)

implies κ′ = 0 and, moreover,

K ′
ij � 0, L′

i � 0, L′
ij � lij .

11.5 The constraints on compact manifolds

An important class of initial data sets for the Einstein field equations involves

physical 3-manifolds S̃ which are compact. This type of initial data set is of

relevance in the discussion of cosmological models. In particular, in the vacuum

case with negative cosmological constant one expects these initial data sets to

give rise to de Sitter-like spacetimes. Initial data sets on compact manifolds have

been studied extensively in the literature, and there is a good understanding of

the required conditions on the free data in order to ensure existence of solutions

to the Einstein constraint equations; see, for example, Isenberg (1995).

For this type of initial data one can set, without loss of generality, Ω = 1 and

Σ = 0 and let S = S̃. For simplicity of the presentation, in the remainder of this

section the discussion is restricted to the vacuum case. Furthermore, it is assumed

that the physical mean curvature K̃ is constant so that Equations (11.17) and

(11.21) decouple from each other. The fundamental tool in the analysis of the

solvability of the constraint equations is given by the maximum principle for

the Laplacian of a Riemannian metric. A convenient formulation of this result is

given by (see Isenberg (1995)):
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Proposition 11.2 (maximum principle for compact manifolds) Let

(S,h) denote a Riemannian manifold with S compact. Given a smooth ψ ∈ X(S)
such that Δhψ has the same sign on the whole of S, then ψ must be a constant.

As a consequence of the above principle, the equation

Δhψ = F (x, ψ),

with ψ > 0 has no solution if F (x, ψ) does not change sign on S except

for the case where F (x, ψ) = 0. Using this observation it is easy to see that

certain combinations of free data cannot give rise to solutions of the constraint

equations. As an example, consider time-symmetric data (i.e. K̃ = 0) with

vanishing cosmological constant on a compact manifold S. As a consequence

of the conformal gauge freedom given in Equations (11.22a) and (11.22b) and

of the Yamabe theorem, Theorem 11.1, one can assume that r[h] is a negative

constant on S – such a metric is said to be of positive Yamabe class. An

example of this situation is S3 with its standard metric. One is then left with a

Licnerowicz equation of the form

Δhϑ =
1

8
r[h]ϑ.

If ϑ is required to be positive everywhere on S, it follows that Δhϑ< 0 everywhere

so that no positive solution can exist since, as a consequence of the maximum

principle, ϑ must be a constant so that Δhϑ = 0 which is a contradiction. To

get around this situation one can consider initial data with a negative (i.e. de

Sitter-like) cosmological constant. Keeping the time symmetry of the initial data

and the condition r[h] < 0, one obtains the Licnerowicz equation

Δhϑ =
1

8
r[h]ϑ− 1

4
λϑ3. (11.43)

The right-hand side of this equation has no definite sign for positive ϑ, so there

is no obstruction to the existence of solutions. In any case, a further argument

(not discussed here) is required to show that Equation (11.43) does indeed have

a solution.

The methods in Isenberg (1995) allow one to prove the following proposition:

Proposition 11.3 (solvability of the Einstein constraints with cosmolog-

ical constant on a compact manifold) Let (S,h) be a Riemannian manifold

with S ≈ S3 and h conformal to a metric with constant negative Ricci scalar

(positive Yamabe class). Then the vacuum Einstein constraints with de Sitter-

like cosmological constant have a solution for an arbitrary choice of the seed

metric h, trace-free tensor ψ′
ij and constant physical mean curvature K̃.

The initial data sets given by this proposition will be used to construct de

Sitter-like spacetimes in Chapter 15.
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11.6 Asymptotically Euclidean manifolds

Spacetimes with λ = 0 can be thought of as describing isolated systems for which

the effects of cosmological expansion are neglected. An important class of these

spacetimes consists of those solutions to the Einstein field equations which are

asymptotically simple in the sense of Definition 7.1, that is, asymptotically simple

and empty. Proposition 14.3 shows that these spacetimes are globally hyperbolic,

suggesting a systematic procedure for their construction through suitable initial

data prescribed on a Cauchy hypersurface.

In order to develop intuition, it is convenient to look at the Minkowski

spacetime (R4, η̃). A foliation of this spacetime is given by the hypersurfaces

of constant time t. These hypersurfaces are Riemannian manifolds of the form

(R3,−δ). It can be verified that these hypersurfaces are extrinsically flat; that

is, their extrinsic curvature K̃ = 0 vanishes. Of course, these are not the only

possible types of Cauchy hypersurfaces in this spacetime.

As a second example, consider the Schwarzschild spacetime. In terms of the

so-called Schwarzschild isotropic radial coordinate

r̄ ≡ 1

2

(
r −m+

√
r(r − 2m)

)
,

the line element of the spacetime can be rewritten as

g̃S =

(
1−m/2r̄

1 +m/2r̄

)2

dt⊗ dt−
(
1 +

m

2r̄

)4
(dr̄ ⊗ dr̄ + r̄2σ).

An example of a Cauchy hypersurface for this spacetime is given by the t = 0

hypersurface. One can verify that the intrinsic metric and the extrinsic curvature

of this hypersurface are given, respectively, by

h̃S = −
(
1 +

m

2r̄

)4
δ, K̃S = 0. (11.44)

The most general form of the above initial data set is obtained by performing a

translation of the radial coordinate to obtain

h̃S = −
(
1 +

m

2|y − y0|

)4

δ, (11.45)

with |y − y0|2 ≡ (y1 − y10)
2 + (y2 − y20)

2 + (y3 − y30)
2 where (yα) = (y1, y2, y3)

are standard Cartesian coordinates and (yα0 ) ∈ R3 arbitrary. Observe that the

metric h̃S is, in fact, conformally flat and that h̃S → −δ as r̄ → ∞. Moreover,

one has that (
1 +

m

2r̄

)4
= 1 +

2m

r̄
+O

(
1

r̄2

)
. (11.46)

To understand the behaviour as r̄ → 0, it is observed that under the coordinate

inversion r̆ ≡ m2/4r̄ one has that

h̃S = −
(
1 +

m

2r̆

)4
(dr̆ ⊗ dr̆ + r̆2σ).

https://doi.org/10.1017/9781009291347.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.015


11.6 Asymptotically Euclidean manifolds 271

Figure 11.1 Embedding diagram of the Einstein-Rosen bridge in the standard
time-symmetric Schwarzschild hypersurface. The diagram is obtained as the
surface of revolution of the curve z = ±ln(1+

√
r2 − 1); see Morris and Thorne

(1988) for more details.

Thus, the behaviour of the metric h̃ is identical for both r̄, r̆ → ∞. There

is a discrete reflexion symmetry with respect to the two-dimensional surface

{r = m/2}. Thus, the topology of the hypersurface is S ≈ R×S2. One says that

S has a non-trivial topology with two asymptotically flat regions (see next

section) joined by a so-called Einstein-Rosen bridge. A representation of this

is given in Figure 11.1.

An example of an initial data set with non-vanishing extrinsic curvature is

given by the family of conformally flat initial data sets for the Schwarzschild

spacetime with extrinsic curvature given by

K̃αβ =
A

|y|3 (3y
αyβ + |y|2δαβ),

where |y|2 = δαβy
αyβ and (yα) are, again, standard Cartesian coordinates; see

Beig and O’Murchadha (1998), Estabrook et al. (1973) and Reinhart (1973). It

can be verified that K̃ = h̃αβK̃αβ = 0 as hαβy
αyβ = −|y|2. This hypersurface

has the nontrivial topology of R×S2. However, in contrast to the time-symmetric

case, the conformal factor ϑ cannot be written in a closed form. Nevertheless, the

leading terms of its asymptotic expansion are the same as in Equation (11.46)

with |y| playing the role of the radial coordinate r̄.

11.6.1 Definition in terms of physical fields

The hypersurfaces discussed in the previous paragraphs are examples of asymp-

totically Euclidean manifolds . Given a three-dimensional manifold S̃, an

asymptotic end is a subset Ẽ ⊂ S̃ which is diffeomorphic to the complement

of a closed ball on R3; that is,

Ẽ ≈
{
(yα) ∈ R3 | |y| > r0

}
,

where r0 is some positive real number and |y|2 ≡ δαβy
αyβ . By identifying Ẽ with

the complement of a ball, the triple y = (yα) can be used as coordinates on

the asymptotic end – so-called asymptotically Cartesian coordinates. The

https://doi.org/10.1017/9781009291347.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.015


272 The conformal constraint equations

hypersurfaces of the Minkowski and Schwarzschild spacetimes have, respectively,

one and two asymptotic ends. More generally, a three-dimensional manifold S̃ is

said to have N asymptotically flat ends if there exists a compact subset of

S̃ such that its complement is the union of disjoint subsets Ẽk, k = 1, 2, . . . , N ,

each of which is an asymptotic end. In terms of the above concepts one can now

introduce the key definition of this section:

Definition 11.1 (asymptotically Euclidean manifolds) An initial data set

for the vacuum Einstein field equations (S̃, h̃, K̃) is said to be asymptotically

Euclidean if S̃ is a three-dimensional manifold with N asymptotically flat

ends Ẽk, k = 1, . . . , N such that on each Ẽk the 3-metric and the extrinsic

curvature satisfy, in terms of asymptotically Cartesian coordinates on the end,

the asymptotic behaviour

h̃αβ = −
(
1 +

2mk

|y|

)
δαβ +O2

(
1

|y|2
)
, (11.47a)

K̃αβ = O1

(
1

|y|2
)
, (11.47b)

where mk, k = 1, . . . , N are constants.

The notation O1 and O2 in Equations (11.47a) and (11.47b) is explained in the

Appendix to this chapter. More general notions of asymptotic flatness for three-

dimensional manifolds have been considered in the literature; see, for example,

Chaljub-Simon (1982), Chaljub-Simon and Choquet-Bruhat (1980), Choquet-

Bruhat and York (1980) and Christodoulou and O’Murchadha (1981). Their

precise formulation require the use of the notion of weighted Sobolev spaces; see,

for example, appendix I of Choquet-Bruhat (2008) and Bartnik (1986). These

definitions are tailored for the analysis of the elliptic equations arising from the

constraint equations.

The asymptotic conditions in Definition 11.1 ensure the finiteness of the

ADM-linear momentum and ADM-angular momentum1 of each asymp-

totic end. These asymptotic quantities are given, respectively, by the surface

integrals

Pα ≡ 1

8π
lim
r→∞

∫
Sr

(K̃αβ − K̃h̃αβ)n
βdSh̃,

Jα ≡ 1

8π
lim
r→∞

∫
Sr

ε̃αβγy
β(K̃γδ − K̃h̃γδ)nδdSh̃

with

Sr ≡
{
(yα) ∈ S̃ | |y| = r

}
,

1 ADM stands for Arnowitt-Deser-Miser, pioneers of the Hamiltonian formulation of general
relativity; see Arnowitt et al. (1962) and Arnowitt et al. (2008) for a republication of this
classical review.
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nα its outward pointing normal and dSh̃ the surface element induced by h̃ on Sr.

The constants mk in Definition 11.1 correspond to the ADM mass of each of

the asymptotic ends. They are also computable as surface integrals of the sphere

at infinity via the expression

m = − 1

16π
lim
r→∞

∫
Sr

h̃αβ(∂αh̃βγ − ∂γ h̃αβ)n
γdSh̃.

Strictly speaking, m is the time component of a 4-vector, the ADM

4-momentum, whose spatial components are given by Pα; thus, it is more

accurately described as an energy.

Definition 11.1 can be extended to initial data sets with matter. In these

situations, decay conditions for the matter sources which are compatible with

the decay for h̃ and K̃ are given by (11.47a) and (11.47b). Direct inspection of

the constraint Equation (11.14) suggests that

�̃ = O

(
1

|y|3
)
, j̃α = O

(
1

|y|3
)
.

These conditions can be refined via a more careful analysis of the constraint

equations.

It is possible to have an initial data set with several asymptotic ends, some

of which are not asymptotically Euclidean. The simplest example is given by

the extremal Reissner-Nordström spacetime; see Equation (6.43). The intrinsic

metric of the hypersurface t = 0 is given, in terms of the extremal Reissner-

Nordström isotropic radial coordinate r̄ = r −m, by

h̃ = −
(
1 +

m

r̄

)2
δ. (11.48)

Clearly

(
1 +

m

r̄

)2
= 1 +

2m

r̄
+O

(
1

r̄2

)
as r̄ → ∞.

Thus, for large r̄, the extremal Reissner-Nordström 3-metric (11.48) has an

asymptotically Euclidean end. To discuss the behaviour as r̄ → 0, consider the

new radial coordinate ř = − ln r̄, so that ř → ∞ as r̄ → 0. It follows that in

terms of this coordinate the metric (11.48) can be rewritten as

h̃ = −
(
m+ e−ř

)
(dř ⊗ dř + σ).

This metric approaches a constant multiple of the standard metric of the cylinder

R+×S2 as ř → ∞. Accordingly, one speaks of a cylindrical asymptotic end . A

similar type of asymptotic behaviour can be found, for example, in hypersurfaces

of the extremal Kerr spacetime; see, for example, Dain and Gabach-Clement

(2011).
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11.6.2 Definition using conformal rescalings

The notion of asymptotically Euclidean manifolds can be strengthened by

requiring the physical hypersurface S̃ to have a conformal extension which is

a point compactification . This approach provides a more geometrical setting

for the discussion of the asymptotic behaviour of the various fields, that is,

independent of the use of particular asymptotically Cartesian coordinates. This

point of view was first introduced by Geroch (1972b).

Definition 11.2 (asymptotically Euclidean and regular manifolds) A

three-dimensional Riemannian manifold (S̃, h̃) will be said to be asymptotically

Euclidean and regular if there exists a three-dimensional, orientable, compact

manifold (S,h) with points ik ∈ S, k = 1, . . . , N with N some integer, a

diffeomorphism ϕ : S \ {i1, . . . , iN} → S̃ and a function Ω ∈ C2 such that:

(i) Ω(ik) = 0, dΩ(ik) = 0, HessΩ(ik) = −2h(ik).

(ii) Ω > 0 on S \ {i1, . . . , iN}.
(iii) h = Ω2ϕ∗h̃ on S \ {i1, . . . , iN} with h ∈ C2(S) ∩ C∞(S \ {i1, . . . , iN}).

More generally, a function Λ1/2 such that Λ satisfies conditions (i) in the above

definition is called an asymptotic distance function . The function Λ does not

need to be defined globally on S.
When no confusion arises, condition (iii) in Definition 11.2 will simply be

written as h = Ω2h̃ so that S \ {i1, . . . , iN} and S̃ are identified. As will

be seen in the following, for asymptotically Euclidean and regular manifolds,

suitable neighbourhoods of the points ik – the points at infinity – are mapped

to the asymptotic ends of S̃. Thus, one can use local differential geometry to

discuss the asymptotic properties of the initial data set (S̃, h̃). The question

of the differentiability of Ω and h at i1, . . . , iN will be addressed later in this

subsection. Definition 11.2 is purely Riemannian; that is, it makes no reference

to the extrinsic curvature. The behaviour of the extrinsic curvature at the points

at infinity will be discussed in the subsequent paragraphs.

There is some conformal gauge freedom in Definition 11.2. A replacement

of the form

h �→ φ4h, Ω �→ φ2Ω, (11.49)

with φ(ik) = 1 gives rise to the same physical metric h̃ = Ω−4h and preserves

the boundary conditions in point (i) of the definition. This gauge freedom can

be used to select conformal metrics with special properties. For example, given

a particular point at infinity i, and choosing φ such that

Δhφ− 1

8
r[h]φ = 0 on Bε(i), (11.50)

with Bε(i) the ball of radius ε centred at i for some ε > 0, it follows from

Equation (11.23) that
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r[h′] = 0 on Bε(i).

A general property of elliptic equations with smooth coefficients is that they

can always be solved locally; see, for example, Besse (2008) and Garabedian

(1986). Thus, the requirement (11.50) can always be satisfied. In other words, the

conformal metric h can always be chosen so that it vanishes in a neighbourhood

of one of the points at infinity. In general, this statement is not true globally.

Normal coordinates around i

The consequences of Definition 11.2 are better analysed by means of normal

coordinates. Consider the set of h-geodesics γv ⊂ S starting at a particular

point at infinity i (i.e. γv(0) = i) with initial velocity v ∈ T |i(S). Moreover, let

T denote the subset of T |i(S) defined by

T ≡
{
v ∈ T |i(S)

∣∣ γv is defined on an interval containing [0, 1]
}
.

On the set T one can define the exponential map at i, expi : T → S, through
the condition expi(v) = γv(1); that is, the exponential map sends the vector v to

the point at a unit parameter distance along the unique geodesic through i with

initial velocity v. It can be shown that there exists a neighbourhood Q ⊂ T |i(S)
of the vector 0 such that the exponential map at i gives a diffeomorphism onto a

neighbourhood U ⊂ S of i; see, for example, O’Neill (1983) for a proof. If v ∈ Q
implies that λv ∈ Q for all λ ∈ [0, 1], then one says that Q is star shaped

and U = expi(Q) is called a normal neighbourhood of i. In particular, if

U = Bε(i), the open ball of radius ε > 0 with respect to h, one has a geodesic

ball .

In what follows, assume one has a normal neighbourhood U around i and that

one is given an orthonormal basis {ei} for T |i(S). Given p ∈ U and v such that

p = exp(v), then writing v = xiei one can use the components x = (xi) ∈ R3

as coordinates for the point p – these are the normal coordinates determined

by the basis {ei}. For consistency, the normal coordinates will be written as

(xα) rather than (xi). In terms of normal coordinates a geodesic through the

origin has the form x(s) = (sxα) where s is an affine parameter. As ẋ = (xα)

and ẍ = 0, it follows from the geodesic equation that γβ
α
γ(i)x

βxγ = 0 with

γβ
α
γ being the Christoffel symbols of the metric h. As this has to hold for any

geodesic on U , one concludes that γβ
α
γ(i) = 0. It also follows that ∂αhβγ = 0,

so that one can write

hαβ = −δαβ +O(|x|2) close to i, (11.51)

where |x|2 ≡ δαβx
αxβ . Moreover, from the above construction it follows that

xαhαβ = −δαβx
α. (11.52)
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For future use it is observed that, in terms of normal coordinates and sufficiently

close to i, one has

dμh = |x|2dσ +O(|x|3), (11.53)

where dμh is the volume element of the metric h and dσ denotes the area element

of the unit 2-sphere S2.

For later use, it is convenient to define the (square of the) geodesic

distance Γ2 ≡ |x|2. One has that Γ2 is a smooth function of the normal

coordinates. It can be verified that

hαβDαΓDβΓ = −4Γ (11.54)

and that

Γ(i) = 0, DαΓ(i) = 0, DαDβΓ(i) = −2hαβ , DαDβDγΓ(i) = 0.

Hence, Γ satisfies the boundary conditions (i) in Definition 11.2 so it is an

asymptotic distance function. Observe that, in general, Γ is not defined globally

on S.

Remark. The results obtained using normal coordinates can be strengthened

by exploiting the conformal freedom in (11.49). In particular, a conformal factor

can always be found such that the Riemann curvature tensor of the resulting

rescaled metric vanishes at i. In order to see this, given the metric h, let Ω′ ≡ ef

with f ∈ X(S) such that

f =
1

2
xαxβlαβ(i) on Bε(i),

where lαβ(i) denotes the components with respect to the normal coordinates of

the three-dimensional Schouten tensor at i. A calculation shows that

Ω′(i) = 1, DαΩ
′(i) = 0, DαDβΩ

′(i) = lαβ(i).

Hence, using the conformal transformation formula for the Schouten tensor

(5.16b) one finds that the metric h′ ≡ Ω′2h satisfies l′αβ(i) = 0. As in dimension

3 the Riemann tensor is completely determined by the Schouten tensor one

concludes that r′αβγδ(i) = 0 as claimed. The metric h′ satisfies the improved

expansion

h′
αβ = −δαβ +O(|x|3) close to i;

compare with (11.51).

The construction described in the previous paragraph is not the only possible

way of exploiting the conformal gauge freedom. Depending on the particular

analysis, other choices may be more convenient – for example, the conformal

normal gauge introduced in Friedrich and Schmidt (1987) and Friedrich (1998c)

or the central harmonic gauge used in Friedrich (2013).
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Asymptotically Euclidean data versus asymptotically Euclidean

and regular data

It is useful to compare the two definitions of asymptotic flatness presented in

this Section: Definitions 11.1 and 11.2. Condition (i) in Definition 11.2 restricts

the form of the conformal factor Ω in a neighbourhood Ba(ik) of a given point

at infinity ik. More precisely, one has that

Ω = |x|2f(x) near ik, (11.55)

where f is continuous with f(0) = 1. Given the normal coordinates (xα) on

Ba(ik), one can introduce inversion coordinates yα ≡ xα/|x|2 so that

h̃αβ = Ω−2hαβ = −δαβ +O(|y|−1) as |y| → ∞.

Thus, to recover the mass term in the expansion (11.47a) one requires further

information about the fields Ω and h.

With regards to the second fundamental form, it follows from the transforma-

tion rules discussed in Section 11.1.1 that

K̃αβ = Ω−1Kαβ = Ωψαβ .

Hence, if the physical field K̃αβ satisfies the decay given by condition (11.47b),

then

K̃αβ = O(|x|0), ψαβ = O(|x|−4), as |x| → 0.

Consequently, the decay conditions of Definition 11.1 imply a tensor ψαβ which

is singular at the points at infinity. To have a regular ψαβ one needs the stronger

decay condition K̃αβ = O(1/|y|6). This decay excludes the possibility of a non-

vanishing ADM linear momentum and ADM angular momentum.

The regularity at the points at infinity

The regularity requirements on Ω and h of Definition 11.2 are given with respect

to some suitable coordinate system. A natural choice is the normal coordinates

x = (xα) centred at the point at infinity – intuitively, one expects the regularity

with respect to normal coordinates to be optimal. In these coordinates the

function |x| is not smooth at i as its second derivative is not well defined there.

More generally, even powers of |x| will be smooth, while odd ones will be only

Ck, for some k.

Initial data sets for static vacuum spacetimes admit a conformal metric which

is, in fact, analytic at the point at infinity; see Beig and Simon (1980b) and Beig

and Schmidt (2000). Remarkably, this is not the case for stationary solutions

which can be seen to be only C2 at the point at infinity; see Dain (2001b).

More precisely, any asymptotically Euclidean data set for a stationary spacetime
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(and in particular for the Kerr solution!) has a conformal metric of the form h

which, in a suitable neighbourhood Ba(ik) of infinity, takes the form

h = h′ + |x|3h′′,

with h′ and h′′ analytic tensors with respect to normal coordinates.

11.6.3 Fundamental solutions and punctures

Consider now, for simplicity, an asymptotically Euclidean and regular manifold

(S,h) with a single point at infinity i. Suppose, for ease of the presentation, that

the conformal factor Ω = ϑ−2 satisfies the Yamabe equation

Δhϑ− 1

8
r[h]ϑ = 0 on S \ {i}. (11.56)

Condition (i) of Definition 11.2 implies a singular behaviour for the conformal

factor ϑ. Indeed, from Equation (11.55) it follows that

ϑ|x| → 1 as |x| → 0. (11.57)

In order to develop a better understanding of the singular behaviour at i consider

the integral

Iε ≡
∫
Bε(i)

(
Δhϑ− 1

8
r[h]ϑ

)
dμh

over an open ball Bε(i) of a suitably small radius ε > 0 centred at i. To simplify

the evaluation of the integral it is assumed that the metric h has been chosen

such that r[h] = 0 on Bε(i); as seen in Section 11.6.2 this is is always possible

locally. Using the divergence theorem (see the Appendix to this chapter), one has

that

Iε =

∫
Bε(i)

Δhϑdμh = −
∫
∂Bε(i)

〈dϑ,n〉dSh,

where n is the outward-pointing unit normal to ∂Bε(i) and dσh is the surface

element of ∂Bε(i) implied by h. From the expansion (11.53) it follows for

sufficiently small ε that dSh = ε2dσ + o(ε2) with dσ the surface element of

S2. Moreover, as a consequence of (11.57) one has

〈dϑ,n〉 = − 1

ε2
+ o(ε−2).

Putting everything together one concludes that

Iε = −
∫
∂Bε(i)

dσ + o(ε) −→ 4π as ε → 0,

so that ∫
S
Δhϑdμh = 4π.
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The latter implies that one can write

Δhϑ = 4πδ(i),

where δ(i) denotes the Dirac’s delta distribution with support at the

point i; see the Appendix to this chapter for more details and references. To

obtain the expression for a generic metric with a non-vanishing Ricci scalar in

a neighbourhood of i one makes use of the transformation law for the Yamabe

equation, Equation (11.23), to obtain(
Δh′ − 1

8
r[h′]

)
(φ−1ϑ) = 4πφ−5δ(i) with h′ = φ4h.

As δ(i) has support only on i and φ(i) = 1 one finally concludes that(
Δh′ − 1

8
r[h′]

)
ϑ′ = 4πδ(i) with ϑ′ = φ−1ϑ.

This expression provides an alternative description of the singular behaviour of

solutions to the Yamabe equation which satisfy the boundary condition (i) of

Definition 11.2. The previous discussion can be generalised to manifolds (S,h)
with several points at infinity. For example, if S = S3 and h = −h̄ the standard

metric of S3, then the Yamabe equation(
Δ−h̄ − 1

8
r[−h̄]

)
ϑ = 4π

(
δ(iN ) + δ(iS)

)
,

where δ(iN ) and δ(iS) are supported, respectively, at the north and south

poles of S3, describes the conformal factor ϑ for time-symmetric data for the

Schwarzschild spacetime. Letting φ ≡ 1 + m/2r, it follows from combining the

first equation in (11.44) with the conformal factor ω compactifying R3 into S3

given in (6.5) that

h̃ = −Ω2h̄, Ω = ωφ−2.

Setting α = 1 in Equation (6.5), one has that

Ω =
2 sin2

ψ

2(
1 +

m

2
tan

ψ

2

)2 .

One can verify that Ω and dΩ vanish at ψ = 0, π (the north and south poles of

S3). Moreover, one has

Ω = ψ2 +O(ψ3), Ω = (ψ − π)2 +O((ψ − π)3),

so that the fundamental solution ϑ = Ω−1/2 has the expected singular behaviour.
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Conformal decompactification of initial data sets on compact manifolds

From a geometric point of view, the purpose of introducing a conformal

factor ϑ which is singular at the point at infinity is to produce a conformal

decompactification of the manifold S. As an example, consider a vacuum

maximal initial data set (S̃, h̃, K̃) with S̃ compact. Under these assumptions

one has that the Einstein constraints (11.14) reduce to

r[h̃] = −K̃ijK̃
ij , D̃iK̃ij = 0, K̃ = h̃ijK̃ij = 0.

If given a point i ∈ S̃ one can find a solution ϑ̄ to the equation

Δh̃ϑ̄− 1

8
r[h̃]ϑ̄− 1

8
r[h̃]ϑ̄−7 = 4πδ(i),

it follows from a calculation involving the conformal transformation properties

of the various fields that

h̄ ≡ ϑ̄h̃, K̄ ≡ ϑ−2K̃,

gives rise to an asymptotically Euclidean and regular solution to the Einstein

constraints

r[h̄] = −K̄ijK̄
ij , D̄iK̄ij = 0, K̄ ≡ h̄ijK̄ij = 0.

As pointed out in O’Murchadha (1988), this construction can be used to argue

that, in a certain sense, there are more asymptotically flat initial data sets than

initial data sets on compact surfaces.

The Yamabe invariant

The possibility of conformally decompactifying a compact Riemannian manifold

(S,h) to obtain a physical manifold (S̃, h̃) which is asymptotically Euclidean

and regular depends on being able to solve the equation(
Δh − 1

8
r[h]

)
ϑ = 4πδ(i). (11.58)

The discussion in Section 11.5 suggests that this may not be possible for all

cases. To explore this further, consider a test function φ ∈ X(S). A calculation

shows that∫
S
|D(ϑφ)|2dμh =

∫
S

(
ϑ2|Dφ|2 + φ2|Dϑ|2

)
dμh +

∫
S
ϑDiϑD

iφ2dμh

=

∫
S

(
ϑ2|Dφ|2 + φ2|Dϑ|2

)
dμh −

∫
S
Di(ϑDiϑ)φ

2dμh

=

∫
S
ϑ2|Dφ|2dμh −

∫
S
ϑφ2Δhϑdμh,
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where the second equality follows by integration by parts on a compact manifold

of the last integral in the first line. As |Dφ|2 = DiφD
iφ < 0 and ϑ > 0 it follows

that

−
∫
S
|D(ϑφ)|2dμh >

∫
S
ϑφ2Δhϑdμh

> 4π

∫
S
ϑφ2δ(i)dμh +

1

8

∫
S
ϑ2φ2r[h]dμh

> 4πϑ(i)φ2(i) +
1

8

∫
S
r[h]ϑ2φ2dμh,

>
1

8

∫
S
r[h]ϑ2φ2dμh,

where the last inequality follows from the fact that φ is an arbitrary test function.

Thus setting ζ ≡ ϑφ one concludes that

− inf
ζ∈X(S)

∫
S

(
8|Dζ|2 + r[h]ζ2

)
dμh > 0,

where inf denotes the infimum, that is, the biggest lower bound. The latter is a

necessary condition for the existence of a solution to Equation (11.58). Under

some further technical assumptions, it can be shown to be a sufficient condition;

see, for example, Friedrich (2011). The above expression can be reformulated

in a conformal way by adding a suitable normalisation factor. Accordingly, one

defines the Yamabe invariant (number) of h as

Y [h] ≡ − inf
ζ∈X(S)

∫
S

(
8hijDiζDjζ + r[h]ζ2

)
dμh(∫

S
ζ6dμh

)1/3
.

The conformal invariance of the above expression follows from the transformation

properties of the three-dimensional Ricci scalar and of the volume element.

Accordingly, the Yamabe number is, in fact, a property of the conformal class

[h]. In particular, if (S,h) is such that Y [h] > 0, then there exists h̄ ∈ [h] such

that r[h̄] < 0 on S; see Lee and Parker (1987).

11.6.4 Constructing solutions to the constraint equations using

fundamental solutions

As already mentioned, fundamental functions of the Yamabe equation on

compact manifolds allows one to obtain solutions to the Hamiltonian and

momentum constraints by means of a procedure of conformal decompactification.

In this section an overview of some of the technical details of this construction

is provided.

In the first instance, attention is restricted to the time-symmetric case.

Furthermore, it is assumed that there is only one point at infinity. Given a
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compact Riemannian manifold (S,h) and a point at infinity i, the construction

of a time-symmetric initial data set (S̃, h̃) requires a global solution to

Equation (11.58). As already observed, the function Γ = |x|, defined only in

a neighbourhood Ba(i) with a > 0, satisfies the required boundary conditions

for a solution to Equation (11.58). Indeed, it can be shown that the solution ϑ

satisfies

ϑ = Γ−1 +
m

2
+O(Γ), near i,

where m is a constant; see Lee and Parker (1987). The above expansion is also

valid for any other choice of asymptotic distance function – the constant m is

independent of the particular choice. As Γ2 is a smooth function on its domain

of definition, it can be extended to a smooth function (to be denoted again by

Γ2) on the whole of the compact manifold S; see the Appendix to this chapter

for further discussion. To obtain the global solution to Equation (11.58), one

considers the ansatz

ϑ = Γ−1 +
m

2
+W, (11.59)

with W some smooth function on S. To make effective use of this ansatz it

is assumed, without loss of generality, that the conformal metric h satisfies

rαβγδ(i) = 0 so that one can write

hαβ = −δαβ + h̄αβ , h̄αβ = O(|x|3).

Hence, using the identity

Δhϑ =
1√

− deth
∂α

(√
− dethhαβ∂βϑ

)
,

it follows that

Lh = Δh − 1

8
r[h]

= Δ−δ + L̄+ r[h],

with

L̄ ≡ h̄αβ∂α∂β + bα∂α, h̄αβ = O(|x|3), bα = O(|x|2)

and r[h] = O(|x|). Using the above expressions one can compute that

Lh

(
1

Γ

)
= Δ−δ

(
1

Γ

)
+ f̄ with f̄ = O(|x|0).

Now, a calculation similar to the one discussed in Section 11.6.3 shows that

Δ−δ

(
1

Γ

)
= 4πδ(i),

https://doi.org/10.1017/9781009291347.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.015


11.6 Asymptotically Euclidean manifolds 283

so that substitution of ansatz (11.59) into Lhϑ = 4πδ(i) leads to the regular

equation

ΔhW − 1

8
r[h]W = f with f = O(|x|0), (11.60)

for which a suitable existence theory is readily available. A unique smooth

solution to Equation (11.60) exists if the Yamabe number of the metric h

satisfies Y [h] > 0; see Beig and O’Murchadha (1991) and Friedrich (1998c).

A further argument using the maximum principle shows that ϑ – as given by

Equation (11.59) – with W solving Equation (11.60) is positive on S \ {i} and

gives the unique global solution to Equation (11.58). It follows that (S̃, ϑ4h) is

an asymptotically Euclidean and regular time-symmetric initial data set.

Data with a non-vanishing extrinsic curvature

The procedure to solve the Yamabe equation described in the previous section

can be extended to the case of an initial data set with a trace-free extrinsic

curvature. One first needs a solution to the momentum constraint. Several

procedures to construct solutions to the maximal momentum constraint (and in

particular of the elliptic Equation (11.21)) have been considered in the literature;

see, for example, Beig and O’Murchadha (1996), Chaljub-Simon (1982) and Dain

and Friedrich (2001). In particular, it is well understood how to specify the

free datum ψ′
ij in Equation (11.21) so as to ensure non-vanishing ADM linear

momentum and ADM angular momentum.

In what follows, assume that Equation (11.21) has been solved for a particular

choice of the free datum ψ′
ij . Substituting the transverse and trace-free tensor ψij

obtained from the York splitting (11.20) into the Licnerowicz Equation (11.17)

yields the equation

Δhϑ− 1

8
r[h]ϑ =

1

8
ψijψ

ijϑ−7.

As in the case of the Yamabe equation, one can incorporate the singular

behaviour of the conformal factor required to decompactify the compact manifold

S via a Dirac’s delta. This leads to the equation

Δhϑ− 1

8
r[h]ϑ = 4πδ(i) +

1

8
ψijψ

ijϑ−7. (11.61)

To construct a solution to this equation one first considers a solution ϑ• to

Equation (11.58) – such solution exists if Y [h] > 0. One uses ϑ• to write the

ansatz

ϑ = ϑ• + V

with V a smooth function to be determined. Equation (11.61) yields

ΔhV − 1

8
r[h]V =

1

8
ψijψ

ijϑ−7
• (1 + ϑ−1

• V )−7. (11.62)
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Observe that if ψij = O(|x|−4), then, in principle, 1
8ψijψ

ijϑ−7
• = O(|x|−1) so

that the right-hand side of Equation (11.62) is still singular. This singularity is,

nevertheless, mild, and suitable existence results are available; see theorem 12

in Dain and Friedrich (2001) and also the appendix in Beig and O’Murchadha

(1994). The solution ϑ is smooth, and, again, it can be verified that it satisfies

ϑ > 0 on S \ {i}.

11.7 Hyperboloidal manifolds

In certain applications of the conformal field equations it is convenient to consider

initial data sets prescribed on hypersurfaces similar to the hyperboloids of

the Minkowski spacetime discussed in Section 6.2.4. Hyperboloidal 3-manifolds

arise in the construction of asymptotically simple spacetimes with vanishing

cosmological constant and in the construction of anti-de Sitter like spacetimes.

11.7.1 Hyperboloidal initial data sets

For the sake of the presentation, the discussion in this section is restricted to

the vacuum case with vanishing cosmological constant. Based on the intuition

gained through the analysis of hyperboloids in the Minkowski spacetime one has

the following definition (see Friedrich (1983) and Kánnár (1996a)):

Definition 11.3 (hyperboloidal initial data sets) A triple (S̃, h̃, K̃) satisfy-

ing the vacuum Einstein constraint equations is called a hyperboloidal initial

data set if:

(i) There exists a conformal compactification whereby S̃ is diffeomorphically

identified with the interior of a manifold S with boundary ∂S such that S
is diffeomorphic to the closed unit ball in R3 (whence ∂S is diffeomorphic

to S2).

(ii) There exist functions Ω and Σ on S such that Ω > 0 on S̃ and Ω = 0 and

Σ > 0 on ∂S.
(iii) The conformal fields

h = Ω2h̃, K = Ω(K̃ +Σh̃),

extend smoothly to S. Moreover, one has that h�(dΩ,dΩ) = Σ2 on ∂S.

The simplest type of hyperboloidal initial data sets consists of the case where

the physical extrinsic curvature is pure trace; that is, one has

K̃ =
1

3
K̃h̃. (11.63)

As a consequence of the momentum constraint and assuming (11.63) it follows

that K̃ must be a constant. From the conformal Hamiltonian constraint (11.15a)
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one concludes that

4ΩDiD
iΩ− 6DiΩD

iΩ+ 2Ω2r = K̃2. (11.64)

In order to encode the right behaviour of the conformal factor Ω at ∂S one

introduces a so-called boundary defining function ρ, that is, a real function

over S satisfying

ρ|∂S = 0, dρ|∂S �= 0.

Given a Riemannian manifold (S,h), such a function can always be constructed.

Making use of the ansatz Ω = ρϑ−2 with ϑ > 0 on S, it follows from (11.64) that

ρ2Δhϑ− ρDiρD
iϑ+

(
3

2
DiρD

iρ− 1

8
r[h]ϑρ2θ − 1

2
ρϑ2Δhρ

)
ϑ = −1

8
K̃2ϑ−5.

(11.65)

The latter is an elliptic equation for ϑ which becomes singular at ∂S as its

principal part vanishes at this set.

The properties of solutions to Equation (11.65) have been analysed in

Andersson et al. (1992). One has the following:

Theorem 11.2 (existence of hyperboloidal initial data sets) Let (S,h) be
a smooth Riemannian manifold with boundary ∂S. Then, there exists a unique

positive solution ϑ to Equation (11.65). Moreover, the following are equivalent:

(i) The function ϑ and the tensors

Lij ≡ − 1

Ω
D{iDj}Ω+

1

12

(
r +

2

3
K2

)
hij , (11.66a)

dij ≡
1

Ω2
D{iDj}Ω+

1

Ω
r{ij}, (11.66b)

determined on S̃ by h and Ω = ρϑ−2 extend smoothly to all of S.
(ii) The Weyl tensor Ca

bcd computed from the data on S vanishes on ∂S.
(iii) The conformal class [h] is such that the extrinsic curvature of ∂S with

respect to its embedding in (S,h) is pure trace.

The expressions for the fields Lij and dij correspond to the spatial part

of the Schouten tensor and the electric part of the rescaled Weyl tensor as

determined by the conformal constraint equations of Section 11.4.3. Observe

that the expressions for the fields are formally singular at Ω = 0, so that the

conclusion of the theorem is non-trivial and ensures the existence of regular

hyperboloidal data for the conformal field equations. Extensions of Theorem

11.2 to more general forms of the extrinsic curvature have been analysed in

Andersson and Chruściel (1993, 1994).
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Initial data for anti-de Sitter-like spacetimes

By making the identification K̃2 �→λ with λ> 0 in Equation (11.64), hyper-

boloidal initial data sets can be interpreted as initial data sets for anti-de

Sitter-like spacetimes. Thus, all available knowledge about the existence of

hyperboloidal initial data sets can be transferred to this setting. This idea has

been investigated for a larger class of data than the one considered in this section

in Kánnár (1996a).

11.8 Other methods for solving the constraint equations

The analysis of the Einstein constraint equations carried out in the previous

sections relies on a systematic use of the conformal method of Licnerowicz,

Choquet-Bruhat and York. There are, however, other alternative procedures,

each providing a different insight into the properties of the solutions to the

constraint equations; see, for example, Bartnik and Isenberg (2004). In this

section, methods of particular relevance for the analysis of the conformal field

equations are briefly discussed: the first one based on the so-called extended

constraint equations, and the second one being the so-called exterior gluing

procedure.

11.8.1 The extended constraint equations

Given a solution to the conformal constraint equations, Lemma 11.1 shows

how to construct initial data for the conformal Einstein field equations. It

is, nevertheless, of interest to directly obtain a solution to the conformal

constraint equations without having to solve the Einstein constraint equations. A

construction of this type is of importance as the expressions for the rescaled Weyl

tensor and the Schouten tensor in terms of the conformal factor and the intrinsic

3-geometry of the hypersurface are formally singular at the points where Ω = 0;

see, for example, Equations (11.66a) and (11.66b) in Theorem 11.2. Currently

available results in this direction are restricted to the case where the Ω = 1;

see Butscher (2002, 2007). Despite this limitation, they provide insight into the

properties and structure of the conformal constraint equations and lead to a

procedure for the construction of initial data sets by perturbative methods.

Assuming that the matter fields vanish, and setting Ω = 1, Σ = 0 in the

conformal constraint equations (11.35a)–(11.35j) one finds that the essential

equations of the system can be rewritten in tensorial form as

DjKki −DkKji = εljkd
∗
il, (11.67a)

Dkdki = Kjkεlkid
∗
jl, (11.67b)

Dkd∗ki = −εi
jlKj

krkl, (11.67c)

rij = dij +KKij −Ki
kKkj . (11.67d)
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These equations are known as the extended Einstein constraints since a

solution thereof implies a solution to the Einstein vacuum constraints; see

Lemma 11.1 in this chapter and lemma 1 in Butscher (2007) for a more detailed

discussion. The first three equations constitute an underdetermined elliptic

system for the fields Kij , dij and d∗ij .

A direct computation shows that the formal adjoint of the operator in the

principal part of Equation (11.67a) is the divergence with respect to the index

j . Applying this divergence to the equation and writing

Kij = ψij −
1

3
Khij with ψijh

ij = 0

one obtains the equation

DjDjψki −DjDkψji = εljkD
jd∗il +

1

3

(
hkiD

jDjK −DiDkK
)
.

If the fields d∗ij and K are known, this equation can be verified to be an elliptic

equation for the trace-free part ψij .

Equations (11.67b) and (11.67c) can be transformed into fully elliptic equa-

tions by means of a York splitting of the fields dij and d∗ij ; see Section 11.3.3.

Hence, writing

dij = Diυj +Djυi −
2

3
Dkυ

khij + d′ij ,

d∗ij = Diuj +Djui −
2

3
Dku

khij + d∗′ij ,

where d′ij and d∗′ij are freely specifiable symmetric trace-free tensors, one obtains

elliptic equations for the fields υi and ui whose principal part is identical

to that of Equation (11.21). Finally, Equation (11.67d) can be transformed

into an elliptic equation for the components of the 3-metric h by introducing

harmonic coordinates x = (xα), Δhx
α = 0; compare the analogous use

of wave coordinates in the case of a Lorentzian metric to obtain the reduced

Einstein field equation discussed in the Appendix to Chapter 13.

The system of elliptic equations for the fields Kij , υi, ui, hij discussed in the

previous paragraphs is called the auxiliary system. Solutions to the auxiliary

system could be obtained, in principle, by means of perturbative methods relying

on the use of the implicit function theorem – see, for example, Ambrosetti and

Prodi (1995) – if some background solution is known. The solutions thus obtained

are not a priori solutions to the original Equations (11.67a)–(11.67d). Hence, in

a second step, one needs to investigate the conditions under which a solution to

the auxiliary system implies a solution to the extended Einstein constraints and,

consequently, a solution to the vacuum Einstein constraints. This strategy has

been investigated in Butscher (2002, 2007) to obtain asymptotically Euclidean

solutions to the extended constraints which are close to data for the Minkowski

spacetime. The particular details require the use of weighted Sobolev spaces
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to control the decay of the various fields. These methods can be adapted, in

principle, to obtain data on S3 corresponding to perturbations of de Sitter initial

data.

11.8.2 Exterior asymptotic gluing

The exterior asymptotic gluing is a method to construct solutions to the

Einstein constraint equations by gluing the interior region of an asymptotically

Euclidean solution to the Einstein vacuum constraints to an asymptotic end of

initial data for the Kerr spacetime or, in fact, of any stationary solution; see

Corvino (2000), Chruściel and Delay (2003), Corvino and Schoen (2006) and

Corvino (2007). More precisely, given a smooth asymptotically Euclidean initial

data set for the vacuum Einstein field equations (S̃, h̃, K̃) and a given compact

subset U ⊂ S̃ such that S̃ \ U is an asymptotic end, it is possible to show that

there exists another smooth asymptotically Euclidean solution to the vacuum

Einstein constraints (S̃, h̄, K̄) which is identical to the original solution on U
and coincides with initial data for the Kerr spacetime on S̃ \ Ū for some Ū ⊂ S̃.
In addition, the initial data set (S̃, h̄, K̄) contains an annular transition region

in which the initial data can be controlled. In the case of time-symmetric initial

data sets this method glues any interior region to an exterior region of a slice of

the Schwarzschild spacetime.

The underlying idea in the asymptotic exterior gluing method is to exploit the

underdetermined character of the Einstein constraints as a system of partial

differential equations for the fields (h̃, K̃). Prior to the development of the

asymptotic exterior gluing methods Cutler and Wald (1989) have shown that it is

possible to make use of the standard conformal method to construct solutions to

the time symmetric constraints containing a Minkowskian interior region and a

Schwarzschildean exterior region joined together by an annular region containing

a purely magnetic solution to the Einstein-Maxwell constraints.

As will be discussed in Chapter 20, initial data sets obtained by means of

asymptotic exterior gluing play a key role in the construction of Minkowski-like

asymptotically simple spacetimes. For simplicity, in the remainder of this section

attention is restricted to the time-symmetric case for which the Einstein vacuum

constraints reduce to r[h̃] = 0. In the present context, one regards the Ricci

scalar as a map between the space of Riemannian metrics over S̃ and X(S̃). Under

certain circumstances this mapping is an isomorphism; that is, given a metric h

and f ∈ X(S̃) such that r[h] = f and given a further g ∈ X(S̃) close enough to f ,

then there exists another metric h̄ close to h such that r[h̄] = g. This property

of the Ricci scalar operator is the essential ingredient in the gluing procedure.

As part of the gluing construction, one connects the inner region (U , h̃) and an

asymptotic region (E , h̃S ) with h̃S as given in Equation (11.45) for some choice

(so far undetermined) of the constants m and (xα
0 ) through an annular region.

A positive definite symmetric tensor h̆ is defined on S̃ by requiring it to be

identical to h̃ on U and to h̃S on E , while on the asymptotic region it is chosen
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so that it interpolates smoothly between h̃ and h̃S . By construction r[h̆] = 0 in

both U and E , while r[h̆] �= 0 in the transitional annular region. Nevertheless, by

moving U suitably into the asymptotic region, one can make r[h̆] small enough

so that the isomorphism properties of the Ricci scalar operator can be used to

ensure the existence of a tensor k with support on an annular region such that

h̄ ≡ h̆+ k is a Riemannian metric with r[h̄] = 0 on S̃.
The asymptotic exterior gluing construction requires a careful analysis of the

properties of the linearised Ricci operator

Rh[h̄] ≡ −Δh(trh(h̄)) + divh(divh(h̄))− h(h̄,Ric[h̄]).

For a fixed metric h, the latter is an underdetermined elliptic operator. It can

be transformed into an elliptic system by composition with its formal adjoint

R∗
h(f) ≡ −(Δhf)h+Hess(f)− fRic[h].

The composite elliptic operator R∗
h ◦ Rh is a fourth-order partial differential

operator. Once the linearised problem is controlled, the non-linear problem is

then solved by means of an iteration. To conclude, one needs to show that the

metric h̄ is indeed a solution to r[h̄] = 0. It is in this part of the construction

that the value of the constants m and (xα
0 ) are fixed. A refined version of the

original construction in Corvino (2000) has been given in Corvino (2007), from

which the following result has been adapted:

Theorem 11.3 (exterior asymptotic gluing construction) Let (S̃, h̃)
denote an asymptotically Euclidean initial data set for the Einstein vacuum

equations. Let E ⊂ S̃ be any asymptotically flat end of S̃. Given r0 > 0 let Er0 ⊂ E
be an exterior region in E expressed in asymptotically Cartesian coordinates by

Er0 = {(xα) ∈ R3 | |x| > r > r0}. Suppose, furthermore, that in these coordinates

the metric h̃ has the form

h̃αβ = −
(
1 +

2m

|x|

)
δαβ +O3(|x|−2).

Let k be a non-negative integer. Then for any ε > 0 there exists r∗ > 0 and a

smooth metric h̄ satisfying r[h̄] = 0 and ||hαβ − h̄αβ ||Ck(E) < ε so that h̄ is equal

to h̃ on U = S̃ \ Er∗ and identical to an asymptotically flat end of a standard

Schwarzschild slice on E2r∗ .

The precise definition of the supremum norm || ||Ck(E) is discussed in the

Appendix to this chapter. A schematic depiction of the construction of Theorem

11.3 is given in Figure 11.2. In the applications of this result to the existence of

asymptotically simple spacetimes, it is important to control the location of the

exterior region Er∗ and to ensure that r∗ �→ ∞ as one moves along a family of

initial data sets tending, say, to data for the Minkowski spacetime. This possible

degeneracy has been dealt with by imposing some reflexion symmetry properties
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Ũ

E

Figure 11.2 Schematic depiction of the exterior gluing construction given by
Theorem 11.3. It contains an inner region Ũ where the 3-metric has a fixed
arbitrary value h̃, an annular transition region between Er∗ and E2r∗ and an
exterior region E where it is equal to data for a member of the Schwarzschild
family of solutions.

on the metric h̃; see Chruściel and Delay (2003). An alternative solution has

been provided in Corvino (2007). This result makes use of symmetric (0, 2)-

tensors k satisfying the condition R−δ(k) = 0. Making use of a York splitting

the tensor k can be decomposed in a unique way into a traceless term with

vanishing divergence, a trace part and a part which is the conformal Killing

operator of a covector; see Chaljub-Simon (1982). The tensor k is said to be non-

degenerate if its transverse-traceless part is non-zero. Using this terminology

one has the following stability result (see Corvino (2007) for further details and its

proof):

Theorem 11.4 (stability of the exterior gluing construction) Let k be any

smooth, compactly supported symmetric (0, 2)-tensor on R3 with R−δ(k) = 0.

Moreover, for sufficiently small ε > 0 let

h̃ = −ϑ4(δ + εk)

be asymptotically flat and satisfy r[h̃] = 0. If k is non-degenerate, there exists

r∗ > 0 so that for all ε small enough there is a metric h̄ with r[h̄] = 0 which

agrees with h̃ in the closed ball Br∗(0) and is exactly Schwarzschild on E2r∗ .
Consequently, the Riemannian manifold (R3, h̄) admits a smooth conformal point

compactification in the sense of Definition 11.2.

This theorem guarantees the existence of time-symmetric solutions to the

vacuum Einstein constraint equations which are both close to data for the

Minkowski spacetime and exactly Schwarzschildean in a non-trivial exterior

region; see Section 20.5.

Versions of the asymptotic exterior gluing construction for initial data sets

with non-vanishing extrinsic curvature can be found in Chruściel and Delay

(2003) and Corvino and Schoen (2006). There are adaptations of the exterior

gluing method to the case of hyperboloidal initial data sets with constant scalar

curvature; see Chruściel and Delay (2009).
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11.9 Further reading

The best point of entry to the extensive literature on the Einstein constraint

equations is through reviews such as those of Bartnik and Isenberg (2004) or

Isenberg (2013). An older, classical review on the topic is given in Choquet-

Bruhat and York (1980). An alternative review aimed at applications in

numerical relativity is Cook (2000). A detailed account of the conformal method

to solve the constraint equations, as seen by one of the main contributors of

the topic, can be found in Choquet-Bruhat (2008) – this reference contains, in

addition, a discussion of the basic aspects of weighted Sobolev spaces. Closely

related to the latter is the reference Choquet-Bruhat et al. (2000). A discussion

of basic aspects of the theory of elliptic differential equations and its application

to the analysis of the Einstein constraints can be found in Rendall (2008). An

alternative account of the basic aspects of the analysis of elliptic equations with

a number of worked-out examples is Dain (2006). Finally, a detailed account of

the conformal equations under the assumption of spherical symmetry is given in

Guven and O’Murchadha (1995).

By contrast, the accounts on the conformal Einstein constraints are much more

restricted in number. The original references are Friedrich (1983, 1984, 1986a,

1995, 2004); see also the discussion in Frauendiener (2004). A systematic analysis

of hyperboloidal initial data sets can be found in Andersson et al. (1992) and

Andersson and Chruściel (1993, 1994).

The notion of asymptotically Euclidean and regular manifolds can be traced

back to the discussion in Geroch (1972b). These ideas have been further

elaborated in Friedrich (1988, 1998c). Accounts of the use of Dirac’s deltas to

represent the points at infinity can be found in Beig and O’Murchadha (1991,

1994). A neat application of this approach to the construction of initial data

sets with a conformal toroidal symmetry is given in Beig and Husa (1994).

Applications of the method to the construction of initial data for the collision

of Kerr-like black holes can be found in Dain (2001a,c). Finally, a detailed

construction of initial data sets admitting expansions in powers of the geodesic

distance is given in Dain and Friedrich (2001).

Appendix: some results of analysis

As in the main text of this chapter, let (S,h) denote a Riemannian manifold.

Moreover, let p ∈ S denote a point and consider normal coordinates x = (xα)

centred at p; that is, xα(0) = 0.

Order symbols. The behaviour of functions f :S →R near p can be conve-

niently described by means of the big O and small o notations. More precisely,

given f , g : S → R, if for some x = (xα) sufficiently close to 0 there exists a

positive constant M such that

|f(x)| ≤ M |g(x)|,
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one writes f(x) = O(g(x)), and one says that f is at most of the order of g. If,

in addition, one has that

∂αf(x) = O(∂αg(x)), · · · ∂α1
. . . ∂αk

f(x) = O(∂α1
· · · ∂αk

g(x)),

for some integer k one writes f(x) = Ok(g(x)).

If given f, g one has f(x)/g(x) → 0 as xα → 0, then one writes

f(x) = o(g(x)),

and one says that the order of f is bigger than that of g. Again, if

∂αf(x) = o(∂αg(x)), . . . ∂α1
· · · ∂αk

f(x) = o(∂α1
· · · ∂αk

g(x)),

one writes f(x) = ok(g(x)). For further discussion, see, for example, Courant

and John (1989).

Taylor expansions. If a function f : Rn → R is of class Ck on the open ball

Ba(0) ⊂ Rn one has that

f(x) = f(0) + ∂αf(0)x
α +

1

2!
∂α1

∂α2
f(0)xα1xα2

+ · · ·+ 1

(k − 1)!
∂α1

· · · ∂αk−1
f(0)xα1 · · ·xαk−1 +O(|x|k).

For further discussion, see, for example, Courant and John (1989).

Supremum norm. Given U ⊂ Rn and f ∈ Ck(U), one defines the supremum

norm as

||f ||Ck(U) =
∑

0≤l≤k

sup{|∂α1
· · · ∂αl

f(x)| , x ∈ U}

where U denotes the closure of U . For further discussion on this and other related

norms, see, for example, Ambrosetti and Prodi (1995).

Extension of smooth functions. Let U ⊂ S denote a closed subset and f :

U → Rk a smooth function. There exists a smooth function f̃ : S → Rk such

that f̃ |U = f and whose support is contained in S \ U ; in other words, f̃ is

non-vanishing in S \U . In a slight abuse of notation f̃ will be denoted, again, by

f . For more details on this result, see Lee (2002).

Dirac’s delta. Let now S denote a compact manifold and p ∈ S a fixed point

within. The Dirac’s delta δ(p) with support on p is the distribution (i.e. a linear

functional C0(S) → R) satisfying∫
S
f(x)δ(p)dμh = f(p), for all f ∈ C0(S).

In particular, one has that ∫
S
δ(p) dμh = 1.
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If f(p) = 0, one has the distributional equality

f(x)δ(p) = 0.

For further details, the reader is referred to Appel (2007).

Divergence theorem. Given (M, g) a manifold with metric (Riemannian or

Lorentzian) and, within, U ⊂ M a compact subset and a smooth covector ω,

one has ∫
U
divω dμh =

∫
∂U

〈ω,ν〉 dSh,

with ν the outward pointing unit normal to ∂U ; see, for example, Frankel (2003)

for further details.
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