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ON THE DISTRIBUTION OF ZEROS OF THE
DERIVATIVE OF SELBERG’S ZETA FUNCTION

ASSOCIATED TO FINITE VOLUME
RIEMANN SURFACES

JAY JORGENSON and LEJLA SMAJLOVIĆ

Abstract. We study the distribution of zeros of the derivative of the Selberg

zeta function associated to a noncompact, finite volume hyperbolic Riemann

surface M . Actually, we study the zeros of (ZMHM )′, where ZM is the Selberg

zeta function and HM is the Dirichlet series component of the scattering matrix,

both associated to an arbitrary finite volume hyperbolic Riemann surface M .

Our main results address finiteness of number of zeros of (ZMHM )′ in the half-

plane Re(s)< 1/2, an asymptotic count for the vertical distribution of zeros,

and an asymptotic count for the horizontal distance of zeros. One realization

of the spectral analysis of the Laplacian is the location of the zeros of ZM ,

or, equivalently, the zeros of ZMHM . Our analysis yields an invariant AM
which appears in the vertical and weighted vertical distribution of zeros of

(ZMHM )′, and we show that AM has different values for surfaces associated

to two topologically equivalent yet different arithmetically defined Fuchsian

groups. We view this aspect of our main theorem as indicating the existence

of further spectral phenomena which provides an additional refinement within

the set of arithmetically defined Fuchsian groups.

§1. Introduction

1.1 Selberg zeta functions for compact Riemann surfaces

In [22], Luo initiated the study of the nontrivial zeros of the derivative

Z ′M of the Selberg zeta function ZM associated to a compact, hyperbolic

Riemann surface M , proving analogues of results obtained by Spira [27] and

Berndt [4] for the Riemann zeta function. Further refinements of results by

Luo were established in [11] and [12]. As is standard in analytic number

theory, the nontrivial zeros of ZM , or Z ′M , are its zeros which do not arise

from the poles of the multiplicative factor of the functional equation. In

the case of a compact Riemann surface, the nontrivial zeros of ZM and

Z ′M are zeros different from negative integers. Let us summarize the three
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main results stemming from the aforementioned articles, which are location,

vertical distribution, and an asymptotic count for the weighted vertical

distribution of the nontrivial zeros of Z ′M .

In [22] it is shown that Z ′M (s) has at most a finite number of nontrivial

zeros in the half-plane Re(s)< 1/2. This result was strengthened in [24]

and [25] where it is proved that Z ′M (s) has no nontrivial zeros in the half-

plane Re(s)< 1/2.

Let vol(M) denote the hyperbolic volume of M . Let `M,0 be the length

of the shortest closed geodesic on M . Let mM,0 denote the number of

inconjugate geodesics whose length is `M,0. Let Nver(T ; Z ′M ) be the number

of nontrivial zeros of Z ′M (s) where s= σ + it with σ > 1/2 and 0< t < T ,

and let

Nw(T ; Z ′M ) =
∑

Z′
M

(σ+it)=0

0<t<T,σ>1/2

(σ − 1/2)

be the weighted vertical distribution with weights equal to distances of zeros

to the critical line. Then, building on the results form [22], it is proved in

[11] and [12] that

(1) Nver(T ; Z ′M ) =
vol(M)

4π
T 2 −

`M,0

2π
T + o(T ) as T →∞,

and

Nw(T ; Z ′M ) =
T

2π
log T +

T

2π

(
1

2
`M,0 + log

(
vol(M)(1− e−`M,0)

mM,0`M,0

)
− 1

)
+ o(T ) as T →∞.(2)

The study of the zeros of Z ′M is of particular interest because of the

connection with spectral analysis. Recall that if s is a nontrivial zero

of ZM (s), then λ= s(1− s) is an eigenvalue of an L2-eigenfunction of

the hyperbolic Laplacian which acts on the space of smooth functions

on M . Common zeros of ZM and Z ′M are, in fact, zeros of ZM (s) with

multiplicity greater than one. Such zeros of ZM correspond to multi-

dimensional eigenspaces of the Laplacian. As shown in [22, p. 1143], all zeros

of Z ′M (s) on the line Re(s) = 1/2, except possibly at s= 1/2, correspond to

multiple zeros of ZM . The problem of obtaining nontrivial bounds for the

dimension of eigenspaces of the Laplacian is very difficult; see [17, p. 160].

Thus, it is possible that refined information regarding (1) possibly could

shed light on this important, outstanding question.
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1.2 Noncompact Riemann surfaces

Let H denote the hyperbolic upper half-plane. Let Γ⊆ PSL(2, R) be any

Fuchsian group of the first kind acting by fractional linear transformations

on H, and let M be the quotient space Γ\H.

One realization of the spectral analysis of the Laplacian on the surface

M is the location of nontrivial zeros of the associated Selberg zeta function

ZM , defined for s ∈ C with Re(s)> 1 by the Euler product

ZM (s) =

∞∏
n=0

∏
P0∈H(Γ)

(
1− e−(s+n)`P0

)
=

∞∏
n=0

∏
P0∈H(Γ)

(
1−N(P0)−(s+n)

)
.

(3)

Here H(Γ) denotes a complete set of representatives of inconjugate, prim-

itive hyperbolic elements of Γ, P0 is a primitive hyperbolic element, `P0 is

the hyperbolic length of the geodesic path in the homotopy class determined

by P0 and the norm N(P0) is equal to exp(`P0).

The function ZM possesses a meromorphic continuation to the whole

complex plane and satisfies the functional equation ZM (s)φM (s) =

ηM (s)ZM (1− s), where φM (s) denotes the determinant of the scattering

matrix ΦM (s),

η′M
ηM

(s) = vol(M)(s− 1/2) tan(π(s− 1/2))− π

·
∑
{R}

0<θ(R)<π

1

MR sin θ

cos(2θ − π)(s− 1/2)

cos π(s− 1/2)

+ 2n1 log 2 + n1

(
Γ′

Γ
(1/2 + s) +

Γ′

Γ
(3/2− s)

)
=
η′M
ηM

(1− s)(4)

and where {R} denotes a complete, finite set of inconjugate elliptic elements

of Γ so that 0< θ(R)< π is the uniquely determined real number such that

R is conjugate to the matrix(
cos θ(R) − sin θ(R)
sin θ(R) cos θ(R)

)
.

The scattering determinant φM (s) has a decomposition into a product of

a general Dirichlet series and Gamma functions. Specifically, we can write

φM (s) = πn1/2

(
Γ
(
s− 1

2

)
Γ(s)

)n1 ∞∑
n=1

d(n)

g2s
n
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where n1 is the number of cusps of M , and {d(n)} and {gn} are sequences

of real numbers with

0< g1 < · · ·< gn < gn+1 < · · · ;

given in terms of Kloosterman sums (see [17, p. 160]). Let us write φM (s) =

KM (s) ·HM (s) where

KM (s) = πn1/2

(
Γ
(
s− 1

2

)
Γ(s)

)n1

ec1s+c2 , with

c1 =−2 log g1 and c2 = log d(1),(5)

and

HM (s) = 1 +
∞∑
n=2

a(n)

r2s
n

with rn = gn/g1 > 1 and a(n) = d(n)/d(1).

(6)

The Dirichlet series expansion for HM (s) converges for all Re(s)> 1. We call

the function HM the Dirichlet series portion of the scattering determinant

φM . In general, the function HM can be expressed as the determinant of a

matrix whose entries are general Kloosterman sums; see [17, Theorem 3.4].

The constants g1 and g2 are explained in terms of the left lower entries of the

matrices appearing in the double coset decomposition of Γ. Therefore, the

constants g1 and g2 are precisely connected to the Fuchsian group Γ and

HM (s) is a Dirichlet series carrying the information related to parabolic

subgroups of Γ.

By nontrivial zeros of ZM (s) we mean all nonreal zeros and real zeros at

points s ∈ [0, 1] such that s(1− s) is equal to an eigenvalue of the Laplacian

that is less than or equal to 1/4. The nontrivial zeros are related to the

spectrum of the Laplacian in the sense that, according to [14, Theorem 5.3],

the nontrivial zeros of ZM are located at points of the form 1/2± irn where

1/4 + r2
n is a discrete eigenvalue of the Laplacian and at points 1− ρ in

the half-plane Re(s)< 1/2 which are poles of the determinant φM of the

scattering matrix.

We may conclude that the function ZMHM is “spectrally equivalent” to

ZM in the following sense: The function ZMHM can be represented as a

general Dirichlet series converging in the half-plane Re(s)> 1 and carrying

information about the underlying group Γ; it possesses a meromorphic
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continuation to the entire complex plane satisfying the functional equation

(7) (ZMHM )(s) = ηM (s)K−1
M (s)ZM (1− s);

and its nontrivial zeros are at points s= 1/2± irn, where 1/4 + r2
n is a

discrete eigenvalue of the Laplacian and at points s= ρ in the half-plane

Re(s)> 1/2 which are zeros of the determinant φM of the scattering matrix.

Based on this argument, we may, loosely speaking, say that ZMHM carries

the same amount of spectral information as ZM does. Besides that, the

function ZMHM has no nontrivial zeros in the half-plane Re(s)< 1/2.

The question of studying the zeros of Z ′M when M is not compact

by applying methods presented in this paper begins with one possible

technical difficulty stemming from the fact that the function ZM has an

infinite number of zeros in the half-plane Re(s)< 1/2, each one of which

would produce a negative weight in the weighted counting function Nw. On

the other hand, the function ZMHM has no nontrivial zeros in the half-

plane Re(s)< 1/2 and carries the same spectral information as ZM does.

Therefore, as a result we shall study the zeros of (ZMHM )′.

As we shall see below, the choice of ZMHM instead of ZM is further

justified by the fact that, according to the statement (a) of the Main

Theorem, the only zeros of (ZMHM )′ on the critical line (with imaginary

part greater than some constant depending upon the group) are the multiple

zeros of ZM ; therefore, the study of zeros of (ZMHM )′ is related to the

problem of obtaining bounds for the dimension of eigenspaces of discrete

eigenvalues of the Laplacian on M .

In conclusion, we followed the guide provided by the technical issues we

faced and chose to study the zeros of (ZMHM )′. To be specific, we viewed

the positivity issues described above as important, thus we focused our

attention on the zeros of (ZMHM )′. Nonetheless, the problem of studying

the zeros of Z ′M is both well-posed and remains open. It is quite possible

that a successful study of the zeros of Z ′M when combined with the results

of the present paper would yield interesting results. We leave such a study

to a motivated reader.

1.3 The main result

The function H ′M/HM admits the general Dirichlet series expansion

(8)
H ′M
HM

(s) =
∞∑
i=1

b(qi)

qsi
,
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where the series on the right converges absolutely and uniformly for Re(s) >
σ0 + ε > σ0� 0, and where {qi} is a nondecreasing sequence of positive

real numbers consisting of all finite products of numbers r2
n > 1. Obviously,

q2 > q1 = inf qi = (g2/g1)2. Furthermore,

b(q1) =−a(2) log q1 =−2(d(2)/d(1)) log(g2/g1).

Let `M,0 be the length of a shortest closed geodesic, or systole, on M .

With our notation from above, let

(9) AM = min
{
e`M,0 , (g2/g1)2 }.

Here, we have dropped the subscript M on (g2/g1)2 in order to ease the

notation; however, it is clear that (g2/g1)2 depends on M . Let mM,0 denote

the number of inconjugate closed geodesics on M with length `M,0. If e`M,0 6=
(g2/g1)2, let

(10) aM =


mM,0`M,0

1− e−`M,0
; if e`M,0 < (g2/g1)2

b((g2/g1)2); if e`M,0 > (g2/g1)2

 .

If e`M,0 = (g2/g1)2, let

(11) aM =
mM,0`M,0

1− e−`M,0
+ b((g2/g1)2).

Observe that aM is the sum of the two terms which appear in the two cases

in (10), not the arithmetic average as one would expect from elementary

Fourier analysis.

With all this, the main result of this article is the following.

Main Theorem. Let Γ⊆ PSL2(R) be any Fuchsian group of the first

kind acting by fractional linear transformations on H, and let M be the

quotient space Γ\H. Let ZM (s) be the associated Selberg zeta function, and

HM (s) be the Dirichlet series portion of the determinant of the associated

scattering matrix.

(a) There are a finite number of nontrivial zeros of (ZMHM )′(s) in the half-

plane Re(s)< 1/2. In addition, there exist some t0 > 0 such that any

zero of (ZMHM )′(s) on the line Re(s) = 1/2 with property | Im(s)|> t0
arises from a multiple zero of ZM (s).
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(b) Let us define the vertical counting function

Nver(T ; (ZMHM )′) = #{ρ= σ + it
∣∣ (ZMHM )′(ρ) = 0 with 0< t < T}.

Then

Nver(T ; (ZMHM )′) =
vol(M)

4π
T 2 − T

2π
(log AM + 2n1 log 2 + 2 log g1)

+ o(T ), as T →∞.

In particular, if M is co-compact, then (1) holds true.

(c) Let us define the weighted vertical counting function

Nw(T ; (ZMHM )′) =
∑

(ZMHM )′(σ+it)=0

0<t<T and σ>1/2

(σ − 1/2).

Then

Nw(T ; (ZMHM )′) =
(n1

2
+ 1
) T log T

2π
+
T

2π

(
log

vol(M)A
1/2
M

|aM |
− 1

)

+
T

2π

(
log

(
g1

πn1/2| d(1)|

)
− n1

2

)
+ o(T ),

as T →∞.

In particular, if M is co-compact, then (2) holds true.

As stated in the Main Theorem, the above asymptotic formulas specialize

in the case M is compact to give the main results in [11, 12, 22, 24] and [25].

More precisely, in [24] and [25] it is proved that Z ′M in the compact case

possesses no nonreal zeros in the half-plane Re(s)< 1/2, a statement which

we believe to hold true for (ZMHM )′.

Similar results for the zeros of higher derivatives of ZMHM are presented

in a later section. In addition, corollaries of the main theorem, analogous to

results from [21], are derived.

Since the proof of the Main Theorem is rather technical, let us present

here a summary of the ideas involved in its proof.

Part (a) of the Main Theorem is proved in two parts. First, we employ

the functional equation for the Selberg zeta function together with a bound

for the growth of the logarithmic derivative DM (s) = Z ′M (s)/ZM (s) in the

right half of the critical strip in order to deduce that Re(ZMHM )′(s) 6= 0 for
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sufficiently large Im(s) in the half-plane Re(s)< 1/2. However, this method

has a critical line as its boundary. Therefore, in order to show that all

(but eventually finitely many) multiple zeros of ZM on the critical line are

also zeros of (ZMHM )′, we employ the Hadamard product representation of

the completed Selberg zeta function, which was proved in [7], and conduct

careful analysis of the imaginary part of the logarithmic derivative of

(ZMHM )′.

Parts (b) and (c) of the Main Theorem are proved by an application of

Littlewood’s theorem [29, p. 132] to the function

(12) XM (s) :=
AsM
aM

(ZMHM )′(s)

followed by a careful technical analysis of the integrals obtained. There are

two main difficulties appearing in the noncompact case. The first one is to

control the growth of DM (s) inside the critical strip, which is resolved by

an application of Theorem 5 below. What remains is the second technical

point, which is to study the growth of arg XM (σ + iT ), for large T and

σ ∈ (a, σ0), where a ∈ (0, 1/2) is an arbitrary constant. In order to address

this problem, we prove a Phragmen–Lindelöf type bound for (ZMHM )(s)

inside the strip −σ2 6−1 6 Re(s) 6 σ0 and the Lindelöf type bound for

(ZMHM )(s) for Re(s) close to 1/2. These bounds are necessary in order to

apply the generalized Backlund equivalent for the Lindelöf hypothesis (see

§ 2.5) which will yield a sharp bound for (ZMHM )′(s) near the critical line.

The resulting estimate enables one to apply Jensen’s theorem and deduce

that arg XM (σ + iT ) = o(T ), as T →∞.

1.4 Properties of the invariant AM
Aspects of the spectral analysis of the Laplacian acting on smooth

functions on a hyperbolic Riemann surface can be measured by studying

the zeros of the Selberg zeta function. As discussed above, one equivalently

can study the zeros of ZMHM . Therefore, by slight extension, the zeros of

(ZMHM )′ provide another measure of the spectral analysis of the Laplacian.

In this regard, the quantity (g2/g1)2 is a new spectral invariant. In addition,

our Main Theorem asserts that for any given surface, the spectral analysis

depends on the comparison of e`M,0 and (g2/g1)2.

In § 7, we consider various arithmetic groups and compare e`M,0 to

(g2/g1)2. More precisely, we prove the following proposition.
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Proposition 1.

(i) For all surfaces M = Γ \H, where Γ is a congruence subgroup or

principal congruence subgroup of the group PSL(2, Z) we have that

AM = e`M,0.

(ii) For the surface M5 corresponding to the arithmetic group Γ+
0 (5) we

have that AM5 = (g2/g1)2 = ((1 +
√

5)/2)2. For the surface M6 corre-

sponding to the arithmetic group Γ+
0 (6), which has the same signature

as Γ+
0 (5), we have that AM6 = e`M6,0 = 2.

(iii) There exists a surface M where e`M,0 = (g2/g1)2.

With respect to statements (i) and (ii) of the above proposition we find it

very interesting that, in the sense of our Main Theorem, not all arithmetic

surfaces, even those with the same topological signature, have the same

behavior.

Also in § 7, in order to prove statement (iii) of Proposition 1 we argue that

if one considers a degenerating family of hyperbolic Riemann surfaces within

the moduli space of surfaces of fixed topological type, one eventually has

the inequality e`M,0 < (g2/g1)2 near the boundary. As a result, if one begins

with congruence group and degenerates the corresponding surface, one

will ultimately encounter a surface where e`M,0 = (g2/g1)2. More generally,

however, it seems as if moduli space can be separated into sets defined

by the sign of e`M,0 − (g2/g1)2 where most, but not all, arithmetic surfaces

are in the component where e`M,0 − (g2/g1)2 > 0, and the Deligne–Mumford

boundary lies in the component where e`M,0 − (g2/g1)2 < 0.

We could not explicitly construct a surface where e`M,0 − (g2/g1)2 = 0,

even though we prove that such surfaces exist.

1.5 A comparison of counting functions

In [14, Theorem 2.22], D. Hejhal establishes the asymptotic behavior of

the weighted vertical distribution of zeros of φM within the critical strip.

In our notation, the zeros of φM within the critical strip coincide with the

zeros of the Dirichlet series HM , so then [14, Theorem 2.22] establishes the

asymptotic behavior of the weighted vertical counting function Nw(T ;HM ).

Let M be any finite volume hyperbolic Riemann surface. We claim there

exists a co-compact hyperbolic Riemann surface M̃ such that vol(M) =

vol(M̃), `M,0 = `
M̃,0

and mM,0 =m
M̃,0

, which we argue as follows. In the

case when the number n1 of cusps of the surface M is even, we choose the

surface M̃1 to be any co-compact surface with genus g
M̃

= gM + n1/2 and

https://doi.org/10.1017/nmj.2016.52 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.52


30 J. JORGENSON AND L. SMAJLOVIĆ

the same structure of elliptic points as M , hence vol(M) = vol(M̃1). If the

number of cusps of the surface M is odd, we choose the surface M̃1 to be any

co-compact surface with genus g
M̃

= gM + (n1 − 1)/2 such that it has the

same structure of elliptic points as M , plus one additional elliptic point of

order 2. By the Gauss–Bonnet formula, vol(M) = vol(M̃1). We then deform

the surface M̃1 in moduli space so that its shortest geodesic has the length

equal to `M,0 and the number of inconjugate geodesics of length `M,0 is

mM,0.

In § 9.2, we show that one can compare [14, Theorem 2.22] with gen-

eralization of the part (c) of the Main Theorem to higher derivatives in

order to establish a simple asymptotic relation between Nw(T ; (ZMHM )(k)),

Nw(T ; Z
(k)

M̃
) for k > 1 and Nw(T ;HM ). Namely, we prove the following

theorem.

Theorem 2. Let M be a finite volume hyperbolic Riemann surface such

that, in the notation of (9), AM = exp(`M,0). Then, for all integers k > 1

(13)

Nw(T ; (ZMHM )(k)) =Nw(T ; Z
(k)

M̃
) +Nw(T ;HM ) + o(T ) as T →∞.

We find it very interesting that, in the case when M is such that

exp(`M,0)< (g2/g1)2, the coefficients of the first two terms, namely

T log T and T , in the asymptotic development of the counting function

Nw(T ; (ZMHM )(k)) for all k > 1 coincide with known results, namely

Hejhal’s theorem and (2).

1.6 Further comments

Weyl’s law in its classical form evaluates the lead asymptotic behavior

of the vertical counting function Nver(T ; ZM ) for compact M . As far as is

known, the expansion in T involves vol(M) and no other information asso-

ciated to the uniformizing group Γ. If M is noncompact, the generalization

of Weyl’s law addresses the asymptotic behavior of

(14) #{λj,M < 1/4 + T 2} − 1

4π

∫ T

−T
φ′M/φM (1/2 + ir) dr

where λj,M is the eigenvalue of an L2 eigenfunction of the Laplacian on M .

The asymptotic expansion of (14) is recalled below (see (68)) and, as in

the compact case, all terms in the expansion involve elementary quantities

associated to the uniformizing group Γ.
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In § 9.1, we express the function in (14) in terms of Nver(T ; ZMHM ),

obtaining an expression which involves the constant g1. As a result, we

accept the appearance of the term g2/g1 in our Main Theorem as being an

appropriate generalization of a version of Weyl’s law.

In a different direction, if one considers a degenerating family of finite

volume hyperbolic Riemann surfaces, then it was shown in [15] that

the asymptotic behavior of the associated sequence of vertical counting

functions Nver(T ; ZM ) has lead asymptotic behavior, for fixed T , which

involves the lengths of the pinching geodesics; see [15, Theorem 5.5]. As a

result, we do not view the appearance of the invariant `M,0 in (1) and (2)

as a new feature when using Weyl’s laws to understand refined information

associated to the uniformizing group Γ.

However, we find the appearance of the constants AM and aM , as defined

in (9), (10) and (11) to be intriguing, specially since values of AM and

aM are different for certain arithmetic groups of the same signature. In

particular, for any given surface M , we do not know if there are conditions

which determine the value taken by AM . Consequently, we conclude that

the study of the vertical counting function Nver(T ; (ZMHM )′) contains a

term which provides new information associated to Γ which we do not see

as being previously detected. In other words, if we are allowed to view

the vertical counting function Nver(T ; (ZMHM )′) as another measure of the

spectral analysis of the Laplacian on M , then our Main Theorem shows the

existence of refined information, namely AM with its conditional definition

(9), about the uniformizing group Γ.

1.7 Computations for the modular group

After the completion of this article, W. Luo brought to our attention the

unpublished article [23] from 2008 in which the author undertakes a related

study in the case when Γ = PSL(2, Z). There are a number of important

differences between the results in the present paper and those in [23], which

we now discuss.

In [23], as the title of the article states, the author studies the zeros of

the derivative of the zeta function ZM (s)/ζQ(2s) where M = PSL(2, Z)\H.

If we restrict our analysis to the case when Γ = PSL(2, Z), then the function

whose derivative we study is ZM (s)ζQ(2s− 1)/ζQ(2s). Since the article [23]

studies a different function than in the present article, one would expect

that the statements of the main results are different, as, indeed, is the case.

More importantly, however, the asymptotic expansions obtained in [23] has
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an error term of O(T ), whereas our error term is o(T ), which is significant

since the coefficient of the T term contains the quantity AM , which we view

as a new spectral invariant. Finally, we note that the article [23] studies the

single group Γ = PSL(2, Z).

The approach presented in [23] raise the question if a similar modification

of the Selberg zeta function ZM can occur in the general setting of the

present paper. To do so, one can write the function HM (s) as a ratio

PM (s)/QM (s) of two entire functions of order at most two and then consider

ZM (s)/QM (s). It is true that the function ZM (s)/QM (s) has nontrivial

zeros only at zeros of ZM stemming from the discrete eigenvalues of

the Laplacian. However, the Phillips–Sarnak conjecture/philosophy then

asserts that for generic M , the quotient ZM (s)/QM (s) would have a

finite number of nontrivial zeros, hence can be written as a polynomial

times Gamma-type functions. Aside from this assertion, while focusing

solely from the point of view of application of techniques developed in

this paper, the function ZM (s)/QM (s) is suitable in the sense that it

possesses no nonreal zeros in the half-plane Re(s)< 1/2. However, there

are two reasons why the investigation of ZM (s)HM (s) is more natural.

Firstly, the spectral information carried by PM (s), namely, the zeros of

the scattering determinant, is lost when considering ZM (s)/QM (s). More

importantly, unless the explicit expression for the scattering determinant is

known, it is very difficult to determine QM (s) explicitly and hence express

ZM (s)/QM (s) in terms of the information related to the underlying group Γ,

whereas ZM (s)HM (s) has a general Dirichlet series representation in terms

of the group information.

1.8 Outline of the paper

This article is organized as follows. In § 2, we establish notation and recall

necessary results from the literature. The zero-free region for (ZMHM )′, as

stated in part (a) of the Main Theorem, will be proved in § 3. Various lemmas

leading up to the proof of parts (b) and (c) of the main Theorem will be

given in § 4, the proof of parts (b) and (c) will be completed in § 5, and in § 6

we state and prove several corollaries of the Main Theorem. The examples

of congruence groups and “moonshine” groups will be given in § 7. In § 8,

we prove results analogous to our Main Theorem for higher derivatives of

ZMHM . Finally, in § 9, we give various concluding remarks.
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§2. Background material

2.1 Counting functions

Let F denote either a general Dirichlet series with a critical line; F itself

may be the derivative of another general Dirichlet series. We assume that

F is normalized to be convergent in the half-plane Re(s)> 1 with critical

line Re(s) = 1/2. We define the vertical counting function of F as

Nver(T ; F ) =
∑

F (σ+it)=0
0<t<T,0<σ<1

1

and the weighted vertical counting function of F as

Nw(T ; F ) =
∑

F (σ+it)=0
0<t<T,1/2<σ<1

(σ − 1/2).

2.2 Additional identities

The logarithmic derivative DM (s) :=
Z′
M

ZM
(s) of the Selberg zeta function

may be expressed, for Re(s)> 1 as the absolutely convergent series

(15) DM (s) =
∑

P∈H(Γ)

Λ(P )

N(P )s
, where Λ(P ) :=

log N(P0)

1−N(P )−1
.

Dirichlet series representation of the logarithmic derivative of the function

ZMHM is given by the following lemma.

Lemma 3. There exists a constant σ′0 > 1 such that for all s ∈ C with

Re(s) > σ′0 + ε > σ′0, we have that

(16)
(ZMHM )′

(ZMHM )
(s) =

∑
P∈H(Γ)

Λ(P )

N(P )s
+
∞∑
i=1

b (qi)

qsi
.

In addition, the series converge absolutely and uniformly on every compact

subset of the half-plane Re(s)> σ′0.

Proof. Equation (16) follows immediately from (8) and (15). We may

take σ′0 to be equal to σ0, which was defined in § 1.4.

Lemma 4. The derivative of the function ZMHM satisfies the functional

equation

(17) (ZMHM )′(s) = fM (s)ηM (s)K−1
M (s)Z̃M (1− s)ZM (1− s),
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where

(18) fM (s) := vol(M)(1/2− s) (tan π(1/2− s))

and

(19) Z̃M (s) :=
1

fM (s)

(
η′M
ηM

(s)−
K ′M
KM

(1− s)−
Z ′M
ZM

(s)

)
.

Proof. Straightforward computation stemming from (7).

2.3 An integral representation for DM (s)

In this section, we recall results from [3] on the growth of the logarithmic

derivative DM (s) and its derivatives D
(k)
M (s) for s= 1/2 + σ + iT , as T →

±∞, for σ ∈ (0, 1/2).

Theorem 5. [3] For s= 1/2 + σ + iT , 0< σ < 1/2 and every nonnega-

tive integer k, we have the asymptotic bound

D
(k)
M (s) = O

(
min

{
|T |

σk+1 log |T |
, |T |1−2σ logk−2σ |T |

· max
j=0,...,k

{
1

σj+1 logj+1 |T |
, log

∣∣∣∣Tσ
∣∣∣∣}}) ,(20)

as |T | →∞.

2.4 The completed function ΞM
In this section, we recall the notation and results from [7]. The notation

of [7] is adjusted to our setting; we take k = 0, dimension d= 1 and τ∗ = n1.

The completed function ΞM associated to the Selberg zeta function is

defined by

ΞM (s) = ΞI(s)ΞM,hyp(s)ΞM,par(s)ΞM,ell(s)

where ΞM,hyp(s) = ZM (s) is the Selberg zeta function and the remaining

functions are associated to the identity, parabolic, and elliptic elements

in the underlying uniformizing group. The logarithmic derivative of the

identity term ΞI is given by

(21) − 1

2s− 1

Ξ′I(s)

ΞI(s)
=

vol(M)

2π

Γ′

Γ
(s);
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see [7, Remark 3.1.3]. The function ΞM,ell(s) is computed in [7, Corollary

2.3.5]; using Stirling’s formula, one can show that

(22)
1

2s− 1

Ξ′M,ell(s)

ΞM,ell(s)
=O

(
1

|t|
log |t|

)
for any s= σ + it, σ 6 1/2, as |t| →∞.

The function ΞM,par(s) is described in [7, Definition 3.1.4]. For our

purposes, it suffices to relate ΞM,par(s) to the scattering determinant φM (s),

so that we obtain an expression for ZMHM (s). The following computations

derive such an expression for ZMHM (s).

Let {p1, . . . , pN0} denote the set of poles of φM lying in (1/2, 1 ], counted

with multiplicities; let q1, . . . , qN1 denote the set of real zeros of φM larger

than 1/2 and let {qn}n>N1 denote the set of zeros of φM with positive

imaginary parts, counted with multiplicities. In the notation of [7, Definition

3.2.2], we set PM ≡ 1 if n1 = 0, otherwise we define PM (s) := f1(s)f2(s)

where

f1(s) :=

N1∏
n=1

(
1 +

s− 1/2

qn − 1/2

)
exp

[
1

2

(
s− 1/2

qn − 1/2

)2
]

and

f2(s) :=
∏

n>N1+1

(
1 +

s− 1/2

qn − 1/2

) (
1 +

s− 1/2

qn − 1/2

)

× exp

[
1

2

(
s− 1/2

qn − 1/2

)2

+
1

2

(
s− 1/2

qn − 1/2

)2
]
.

The infinite product which defines f2 converges uniformly on compact

subsets of C and defines an entire function of finite order.

Lemma 6. For all s ∈ C, the product (ΞMPM )(1− s) can be expressed

as

(ΞMPM ) (1− s) = (ZMHM )(s) · ΞI(s) · ΞM,ell(s) ·
πn1/2d(1)

φM (1/2)
g−s−1

1

·
(
s− 1

2

)(1/2)Tr(In1−ΦM (1/2))−n1

· Γ(s)−n1

N0∏
m=1

(
s− pm

1/2− pm

)
.(23)
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Proof. From the functional equation [7, (3.2.4), p. 123], we have, for all

s ∈ C
(24)

(ΞMPM ) (1− s) = (ΞMPM ) (s)g2s−1
1

N0∏
m=1

(
s− pm

1− s− pm

)
1

φM (1/2)
φM (s).

On the other hand, by [7, Corollary 2.4.22] it is easy to see that

(ΞM,parPM ) (s) = (s− 1/2)(1/2)TrIn1−ΦM (1/2)g−s1

(
1

Γ(s+ 1/2)

)n1

·
N0∏
m=1

(
1 +

s− 1/2

pm − 1/2

)
.

We now write φM as

φM (s) = πn1/2g−2s
1 d(1)(s− 1/2)−n1

(
Γ(s+ 1/2)

Γ(s)

)n1

HM (s).

The result follows through direct and straightforward computations involv-

ing the definition of ΞM together with (24).

2.5 On generalized Backlund equivalent for the Lindelöf

hypothesis

An important ingredient in the proof of the Main Theorem is a bound

on the growth of the function ZMHM on the critical line Re(s) = 1/2. We

obtain the bound using a slight modification of [10, Proposition 2], which

we now state.

Proposition 7. Let f(s) be a meromorphic function for all s ∈ C which

is holomorphic in the region | Im(s)|> t0 > 0, for some fixed t0. Let P (t) :

R→ R be nondecreasing function such that P (t) > 2. Let N(σ, f, T ) denote

the number of zeros ρ of f in the region Re(ρ)> σ; 0 6 Im(ρ) 6 T .

Assume there exist constants σ0 > 1/2 and ω > 0 such that for σ0 − ω 6
Re(s) 6 σ0 + ω we have

|f(s)|> c > 0 and, (f ′/f)(s) = o(P (t)) as t= Im(s)→∞.

Furthermore, assume that |f(s)|> 0 for Re(s) > σ0 + ω and that for some

fixed number D > 0 we have

f(s) =O((P (t))D) as t= Im(s)→∞, uniformly for Re(s) > 2− 3σ0.

Then if the estimate N(σ, f, T + 1)−N(σ, f, T ) = o(P (T )) holds true for

all σ > 1/2 as T →∞, then f(1/2 + it) =Oε((P (t))ε) as t→∞.
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There are slight differences between our statement above and [10,

Proposition 2]. Firstly, we assume the function f depends on a single

complex variable s, not necessarily a member of a family of meromorphic

functions. Secondly, the author of [10] assumes that f has a finite number

of poles which lie in a compact set. A review of the proof [10, Proposition

2] reveals that the argument is based on Landau’s theorem (see [10,

Lemma 8]) and Hadamard’s three circles theorem (see [10, Lemma 9]).

These classical results are applied to the function f(s) in the neighborhood

|s− s0|6 2(σ0 − 1/2− δ) of the point s0 = σ0 + iT for sufficiently large T .

The proof given in [10] carries through without any changes whatsoever

under the assumptions we state above.

We refer the reader to [10] for the proof and various interesting general-

izations of Proposition 7.

§3. Zeros in a half-plane Re(s)< 1/2

In this section, we prove part (a) of the Main Theorem. In fact, we prove

more than stated, since our analysis will yield regions where each of the

functions Re((ZMHM )′) and Im((ZMHM )′) are nonvanishing.

Proposition 8.

(a) For σ < 1/2, there exists t0 > 0, which may depend on σ, such that

Re((ZMHM )′(σ + it)) 6= 0 for all t such that |t|> t0.

(b) For every constant C > 0 and arbitrary −C < σ′0 < 1/2 there are at

most finitely many zeros of (ZMHM )′(s) inside the strip −C 6 Re(s) 6
σ′0.

Proof. We first present the proof of part (a). By taking the logarithmic

derivative of the functional equation (7) we get for s= σ + it with σ < 1/2,

the equation

(25)
(ZMHM )′

(ZMHM )
(σ + it) =

η′M
ηM

(σ + it)−
K ′M
KM

(σ + it)−
Z ′M
ZM

(1− σ − it).

From the definition (4) of η′M/ηM and KM , one can use Stirling’s formula,

together with the bound 0< θ < π, to show that

Re

(
η′M
ηM

(σ + it)

)
= −vol(M)t+O(log |t|) and

K ′M
KM

(σ + it) = O(log |t|),
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for σ < 1/2 and as |t| →∞. Therefore,

Re

(
−(ZMHM )′

(ZMHM )
(σ + it)

)
= vol(M)t+O(log |t|) + Re

(
Z ′M
ZM

(1− σ − it)
)
.

Replacing σ by 1/2− σ in (20) we get, for σ < 1/2

Re

(
−(ZMHM )′

(ZMHM )
(σ + it)

)
= vol(M)t+O

(
|t|

(1/2− σ) log |t|

)
,

as t→±∞. Therefore, there exists t0 > 0 such that

Re

(
(ZMHM )′

(ZMHM )
(σ + it)

)
6= 0 for all s= σ + it, with |t|> t0.

On the other hand, the nontrivial zeros of the function ZMHM are either

nontrivial zeros ρ= 1
2 ± irn of ZM or zeros ρ of φM . All except finitely many

zeros of φM have real part bigger than 1/2; therefore, ZMHM (σ + it) 6= 0 for

σ < 1/2 and t > t0. Therefore, we conclude that Re((ZMHM )′(σ + it)) 6= 0

for all t > t0. With all this, the proof of part (a) is complete.

To prove part (b), we employ Lemma 4. Recall the function Z̃M (s) which

is defined in (19). Let us write Z̃M (s) = 1 + ZM,1(s). Then

− fM (s)ZM,1(s) = π
∑
{R}

0<θ(R)<π

1

MR sin θ

cos(2θ − π)(s− 1/2)

cos π(s− 1/2)
− 2n1 log 2

− n1

(
Γ′

Γ
(1/2 + s) +

Γ′

Γ
(3/2− s)

− Γ′

Γ
(1/2− s) +

Γ′

Γ
(1− s)

)
+
Z ′M
ZM

(s),(26)

where fM is defined in (18).

As in the proof of part (a), we can use Stirling’s formula and (20) to

arrive at the bound

ZM,1(σ1 + it) =O

(
(|t| log |t|)2−2σ1

(σ1 − 1/2)|t|

)
as |t| →∞

for σ1 > 1/2 and (σ1 + it) ∈ C\∪n∈ZBn where Bn are small circles of fixed

radius centered at integers. In particular, for σ1 > 1/2 and (σ1 + it) ∈
C\∪n∈ZBn, function ZM,1(σ1 + iT ) is uniformly bounded in T . Therefore,
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Z̃M (1− s) = 1 + o(1), as Im(s)→±∞ in the strip −C 6 Re(s) 6 σ′0 < 1/2,

hence Z̃M (1− s) has finitely many zeros in this strip.

Since ZM (s) has only finitely many zeros for Re(s)> 1/2, the function

Z̃M (1− s)ZM (1− s) will have finitely many zeros in the strip −C 6 Re(s) 6
σ′0 < 1/2. Equation (17) then implies that the set of zeros of (ZMHM )′(s)

in the strip −C 6 Re(s) 6 σ′0 < 1/2 is finite since the factor ΦM (s) :=

fM (s)ηM (s)K−1
M (s) of the functional equation (17) also has at most finitely

many zeros in this strip.

We note that the zeros of (ZMHM )′(s) which arise from zeros of ΦM are

viewed as trivial zeros. They are located in the region Re(s)< 1/2 and arise

at all negative integers.

The above method of examining zeros of the function (ZMHM )′ has the

critical line as its limitation, since the bounds for the logarithmic derivative

(20) hold true only in the half-plane Re(s)> 1/2. In order to derive results

valid on the critical line we need a representation on the critical line. Such

a representation exists for the complete zeta function ΞM (s) (see § 2.4).

Proposition 9. There exists a number t0 > 0 such that the following

statements hold:

(a) (ZMHM )′

(ZMHM ) (σ + it) 6= 0 for all σ < 1/2 and all |t|> t0;

(b) (ZMHM )′

(ZMHM ) (1/2± it) 6= 0 for all |t|> t0, t 6= rn for all n> 0.

Proof. Let σ < 0. By Proposition 8, there exists a constant t′0 > 0 such

that for all σ < 0 and all |t|> t′0 we have (ZMHM )′

(ZMHM ) (σ + it) 6= 0. Therefore, it is

enough to prove the statement when 0 6 σ < 1/2. Without loss of generality,

we assume that t > 0.

Taking the logarithmic derivatives of the both sides of the equation (23),

we get
1

2s− 1

(ZMHM )′

(ZMHM )
(s) = − 1

2s− 1

Ξ′I(s)

ΞI(s)
− 1

2s− 1

Ξ′M,ell(s)

ΞM,ell(s)

+
log g1

2s− 1
+

n1

2s− 1

Γ′

Γ
(s)

+
n1 − 1

2Tr
(
In1 − Φ(1

2)
)

2(s− 1/2)2
− 1

2s− 1

N0∑
m=1

1

s− pm

− 1

2s− 1

(ΞMPM )′

(ΞMPM )
(1− s),(27)
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for all s ∈ C different from zeros and poles of ZM and φM . Applying

[7, formula (3.4.1)] yields

(ΞMPM ) (s) = eQ(s)(s− 1/2)2d1/4

·
∏

n>0, rn 6=0

(
1 +

(s− 1/2)2

r2
n

)
exp

(
−(s− 1/2)2

r2
n

)

·
N1∏
n=1

(
1− s− 1/2

ηn

)
exp

(
−s− 1/2

ηn
+

(s− 1/2)2

2η2
n

)

·
∏

n>N1+1

(
1 +

s− 1/2

ηn + iγn

) (
1 +

s− 1/2

ηn − iγn

)

· exp

(
−

2ηn
(
s− 1

2

)
η2
n + γ2

n

+

(
s− 1

2

)2 η2
n − γ2

n

(η2
n + γ2

n)2

)
,

for all s ∈ C and where the notation is as follows: ηn := Re(qn); γn := Im(qn),

d1/4 is the multiplicity of λ= 1/4 as an eigenvalue; and Q(s) = a2(s−
1/2)2 + a1(s− 1/2) + a0 for some constants ai, i= 0, 1, 2 computed in [7].

The constants a1 and a2 are defined by [7, formulas (3.4.8) and (3.4.9)]. For

our purposes it is important to know that a1 and a2 are real.

We now compute the logarithmic derivative of (ΞMPM )(s) and substitute

the expression into (27). After some elementary calculations, employing the

Stirling formula and having in mind (21) and (22) we end up with

1

2s− 1

(ZMHM )′

(ZMHM )
(s) =

vol(M)

2π

Γ′

Γ
(s) +

∑
n>0, rn 6=0

(
1

(s− 1
2)2 + r2

n

− 1

r2
n

)

+ a2 +
∑

n>N1+1

[
η2
n − γ2

n

(η2
n + γ2

n)2

+
γ2
n − η2

n + ηn(s− 1/2)((
ηn − s+ 1/2

)2
+ γ2

n

)
(η2
n + γ2

n)

]

+
1

2

N1∑
n=1

(
1

η2
n

− 1

ηn(ηn − s+ 1/2)

)
+O

(
log t

t

)
,(28)

as t= Im(s)→∞. We now set s= σ + it with t > 0 and 0 6 σ < 1/2. By

computing the imaginary parts of both sides (28) we get
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Im

(
1

2σ − 1 + 2it

(ZMHM )′

(ZMHM )
(σ + it)

)
=

vol(M)

2π
·

[
t

σ2 + t2
+

∞∑
n=1

t

(n+ σ)2 + t2

]

+
∑

n>0, rn 6=0

t(1/2− σ)

((σ − 1/2)2 − t2 + r2
n)2 + 4t2(σ − 1/2)2

+O

(
1

t

)
+O

(
log t

t

)
+

∑
n>N1+1

tηn(3γ2
n − t2)− tη3

n + t(1/2− σ)(2γ2
n − 2η2

n − ηn(1/2− σ))

[((ηn − σ+1/2)2 + γ2
n − t2)2 + 4t2(ηn+1/2− σ)2] (η2

n + γ2
n)
.(29)

Since 0 6 σ < 1/2 we have that (n+ σ)2 < (n+ 1/2)2, for all n> 0. There-

fore

t

σ2 + t2
+

∞∑
n=1

t

(n+ σ)2 + t2
>

t

1/4 + t2
+

∞∑
n=1

t

(n+ 1/2)2 + t2
=
π

2
tanh(πt).

Furthermore, since 0< ηn < c, for some positive constant c and all n> 1

and γn→∞, as n→∞, by the choice of σ we have that

(1/2− σ)(2γ2
n − 2η2

n − ηn(1/2− σ)) > 2γ2
n − 2η2

n − ηn > 0

for all but finitely many n> (N1 + 1). Let n1 > (N1 + 1) be an integer

such that 2γ2
n − 2η2

n − ηn > 0 for all n> n1. For simplicity, we introduce

the notation

D(n, σ, t) =
(
(ηn − σ + 1/2)2 + γ2

n − t2
)2

+ 4t2(ηn + 1/2− σ)2.

From (29), we conclude the existence a constant C1 > 0 and a positive

number t0 > t′0 such that for all t > t0,

Im

(
1

2σ−1+2it

(ZMHM )′

(ZMHM )
(σ+it)

)
>

vol(M)

4
tanh(πt)− C1

log t

t
+

∑
|γn|<t/

√
3

tηn(3γ2
n − t2)

D(n, σ, t)(η2
n + γ2

n)

+
∑

N1+16n6n1

(1/2−σ)t(2γ2
n − 2η2

n − ηn)

D(n, σ, t)(η2
n + γ2

n)
+

∑
n>N1+1

−tη3
n

D(n, σ, t) (η2
n + γ2

n)
.(30)
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Observe that each term in each summand in (30) is negative. We

investigate separately each of the three sums on the right-hand side of (30).

Since (ηn − σ + 1/2)2 is bounded by some constant, by enlarging t0 if

necessary, we get that D(n, σ, t) > t4/4 for all n such that |γn|< t/
√

3 and

all t > t0. Therefore

0 6
∑

|γn|<t/
√

3

tηn(t2 − 3γ2
n)

D(n, σ, t) (η2
n + γ2

n)
6

2

t

∑
|γn|<t/

√
3

2ηn
(η2
n + γ2

n)
=O(1/t),

as t→∞ because the series
∑

n>N1+12ηn(η2
n + γ2

n)−1 converges; see

[7, Corollary 2.4.17].

For the second and the third sum in (30) we use the elementary inequality

D(n, σ, t) > 4t2η2
n to deduce that both sums are O(1/t) as t→∞, hence all

sums on the right-hand side of (30) are O(1/t), as t→∞. Therefore, there

exists a constant C2 > 0, such that for all t > t0, t 6= rn and 0 6 σ 6 1/2 one

has

Im

(
1

2σ − 1 + 2it

(ZMHM )′

(ZMHM )
(σ + it)

)
>

vol(M)

4
· tanh πt− C1 log t+ C2

t
.

(31)

Since tanh πt= 1 +O(e−πt), as t→∞ we conclude that statement (a) holds

true.

We now prove part (b). We put s= 1/2 + it for t > 0 with t 6= rn in (29)

to get

Im

(
1

2it

(ZMHM )′

(ZMHM )

(
1

2
+ it

))
=

vol(M)

4
tanh(πt) +O

(
log t

t

)
+

∑
n>N1+1

tηn(3γ2
n − t2)− tη3

n

D(n, 1/2, t) (η2
n + γ2

n)
.

Analogously as in the proof of part (a) we deduce that there exist a constant

t1 > 0 such that (31) holds true with σ = 1/2 and some constants C1 and

C2, for all t > t1, t 6= rn. The proof of part (b) is complete.

We can now give a proof of part (a) of the Main Theorem.

The function (ZMHM )(s) has finitely many nontrivial zeros in the region

Re(s)< 1/2. Combining this statement with Proposition 9(a) immediately

implies the existence a of constant t0 such that (ZMHM )′(σ + it) 6= 0 for

σ < 1/2 and |t|> t0.
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Proposition 9(b) yields that (ZMHM )′

(ZMHM ) (1/2± it) 6= 0 for |t|> t0, t 6= rn for

all n> 1. Therefore, the only zeros of (ZMHM )′ on the line Re(s) = 1/2,

with at most a finite number of exceptions, are multiple zeros of (ZMHM ),

or, equivalently, multiple zeros of ZM .

§4. Preliminary lemmas

In this section, we prove some preliminary results needed in the proof

of the Main Theorem. Let quantity AM , respectively aM , be defined by

(9) and (10), respectively (11) and let XM (s) be defined by (12). Let

P00 ∈H(Γ) denote the primitive hyperbolic element of Γ with the property

that N(P00) = e`M,0 ; or equivalently, with the property that N(P00) =

min{N(P ) : P ∈H(Γ)}. In the case when AM = e`M,0 we may write aM in

terms of the norm of P00, namely aM =mM,0Λ(P00).

Lemma 10. There exist σ1 > 1 and a constant 0< cΓ < 1 such that for

σ = Re(s) > σ1, we have the asymptotic formula

XM (s) = 1 +O(cσΓ) 6= 0, as σ→+∞.

Proof. From the Euler product definition (3) of ZM and from (6), we

have that

(32) ZM (s) = 1 +O(N(P00)− Re(s)) and HM (s) = 1 +O(r
−2 Re(s)
2 )

as Re(s)→∞. Furthermore, by the definition of AM and aM

∑
{P}∈H(Γ)

Λ(P )

N(P )s
+
∞∑
i=1

b (qi)

qsi
=
aM
AsM

(1 +O(A
− Re(s)
Γ,1 )),

as Re(s)→+∞, for some constant AΓ,1 > 1. Multiplying the formula (16)

by (ZMHM )(s) and employing the equation (32) we complete the proof.

The following lemma provides the bound for the growth of the function

ZM,1(s); recall that ZM,1(s) is defined by (26).

Lemma 11. Let 0< a < 1/2 be an arbitrary real number and let

σ > 1− a. Then

log |1 + ZM,1(σ ± iT )| = O(|ZM,1(σ ± iT )|) =O(T 2a−1 log2a T ),

as T →∞.(33)
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Proof. From the bound (20) with k = 0 and σ > 1− a, we get

Z ′M
ZM

(σ ± iT ) =O((T log T )1−2(σ−1/2)) =O((T log T )2a), as T →∞,

where the implied constant depends only upon M and a. We can then argue

in the same manner as in the proof of Proposition 8(b). Namely, applying

Stirling’s formula and the above estimate, we get, for s= σ ± iT and T > 1,

the estimate∣∣∣∣ 1

fM (s)

(
η′M
ηM

(s)−
K ′M
KM

(1− s)−
Z ′M
ZM

(s)

)
− 1

∣∣∣∣=O

(
log T

T
+

(T log T )2a

T

)
,

as T →∞. This implies the bound (33) as claimed.

The following lemma is a Phragmén–Lindelöf type bound for (ZMHM ).

The bound will be used to derive a similar bound for (ZMHM )′ using the

Cauchy formula.

Lemma 12. Let σ2 > 1 be a fixed real number, such that −σ2 is not a

pole of (ZMHM ). Then, for an arbitrary δ > 0

(a)

(ZMHM )(σ + it) =OΓ (exp (1/2 + σ2 + δ) vol(M)t) ,

(b)

ZM (σ + it) =OΓ (exp(1/2 + σ2)vol(M)t)

for t> 1, uniformly in σ 6−σ2.

Proof. To prove part (a), we apply the Phragmen–Lindelöf theorem to

the function

F (s) = (ZMHM )(s) exp [vol(M)(1/2 + σ2 + δ)is]

which is an entire function of finite order at most two in the sector

D := {π/4 6 arg(s+ σ2) 6 π/2}. Obviously, (ZMHM )(s) =O(1) along the

line arg(s+ σ2) = π/4, since (ZMHM )(σ + it) =O(1), for σ > σ1 and t> 1;

see the proof of Lemma 10. Therefore,

|F (s)|=O (1) along the line arg(s+ σ2) = π/4.

To determine the behavior of the function F (s) along the vertical line

arg(s+ σ2) = π/2, that is, for s=−σ2 + it, t> 0, we use the functional
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equation (7) to get

|F (−σ2 + it)| = exp (− (1/2 + σ2 + δ) vol(M)t) |η(−σ2 + it)|

×
∣∣K−1

M (−σ2 + it)
∣∣ ·O(1),(34)

since 1 + σ2 > 2. It remains to estimate |ηM (−σ2 + it)|. Applying (4),

[13, formula (4.4), p. 76], Stirling’s formula and the bound 0< θ < π,

elementary computations show that

(35) |ηM (−σ2 + it)|=O (exp (vol(M)(1/2 + σ2)t+O(1))) as t→+∞.

Formula (6.1.45) from [1], which itself is an application of Stirling’s formula,

yields

(36)
∣∣K−1

M (−σ2 + it)
∣∣=O

(
exp

(n1

2
log t

))
as t→+∞.

Substituting the bound (36) together with (35) into (34) we get

|F (−σ2 + it)|=O
(

exp
(
−vol(M)δt+

n1

2
log t+O(log(t))

))
= o(1),

as t→+∞. One now can apply the Phragmen–Lindelöf theorem, which

implies that F (s) =O(1) in the sector D := {π/4 6 arg(s+ σ2) 6 π/2} and

the proof of (a) is complete.

To prove (b), we repeat the proof given above for the function G(s) =

ZM (s) exp[(1/2 + σ2)vol(M)is], which is an entire function of finite order

in the sector D := {π/4 6 arg(s+ σ2) 6 π/2}. We omit the details.

The following lemma is a Lindelöf type bound for the function ZMHM

which will be used to deduce a sharper bound for the function arg XM (σ +

iT ), when σ is close to 1/2.

Lemma 13. For ε > 0 and t> 1

(ZMHM )(1/2 + it) =O(exp(εt)) as t→+∞.

Proof. Since

|HM (1/2 + it)|= |φM (1/2 + it)||K−1
M (1/2 + it)|=O(exp(n1 log t/2)),

as t→+∞, it is enough to prove that ZM (1/2 + it) =O(exp(εt)) as t→∞.
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We apply Proposition 7. In the notation of Proposition 7 we take

f(s) = ZM (s) with σ0 = σ1 + ω > σ1 and P (t) = 2 exp(t),

where σ1 is defined in Lemma 10. Let us verify that all assumptions of

Proposition 7 are fulfilled.

The function ZM is meromorphic function of finite order, with poles at

points on the real line; see [14, p. 498]. Hence ZM (s) is holomorphic function

for | Im(s)|> t0 > 0, for any t0 > 0.

From the proof of Lemma 10 it is obvious that |ZM (s)|> c > 0 and

Z ′M/ZM (s) =O(1) as t→∞, for s= σ + it and with σ0 − ω 6 σ 6 σ0 + ω.

Furthermore, |ZM (s)|> 0 for Re(s)> σ0 + ω.

From Lemma 12(b), we have that

ZM (σ + it) =OΓ(exp(1/2 + 3σ0 − 2)vol(M)t) =OΓ(P (t)D),

for a fixed D = (3σ0 − 3/2)vol(M), uniformly in σ > 2− 3σ0.

Since ZM has no zeros in the half-plane Re(s)> 1/2, the Lindelöf

condition on the vertical distribution of zeros of ZM (s) in the half-plane

Re(s)> 1/2, as required in Proposition 7, is trivially fulfilled.

Therefore, all the assumptions of Proposition 7 are satisfied, hence

ZM (1/2 + it) =O(exp(εt)) as t→∞.

Lemma 14. For an arbitrary ε > 0, t> 1 and σ2 defined in Lemma 12

we have

(ZMHM )′(σ + it) =

{
O(exp εt) for 1

2 6 σ 6 σ0

O(exp(1/2− σ + ε)t) for − σ2 6 σ < 1/2,

as t→∞.

Proof. The proof involves an application of the Phragmen–Lindelöf

theorem to the open sector bounded by the lines Re(s) =−σ2, Re(s) = 1
2 and

Im(s) = 1. The bounds to be used come from Lemma 12, with δ = ε, and

from Lemma 13. A direct application of the Phragmen–Lindelöf theorem

yields the bound

(37) (ZMHM )(σ + it) =O(exp(1/2− σ + ε)t),

for t> 1 and −σ2 6 σ 6 1/2. Similarly, for σ0 defined as in Lemma 12, one

can apply the Phragmen–Lindelöf theorem in the open sector bounded by
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the lines Re(s) = σ0, Re(s) = 1
2 and Im(s) = 1, from which one gets

(38) (ZMHM )(σ + it) =O(exp εt),

for 1/2 6 σ 6 σ0. The Cauchy integral formula can be applied, from which

we have the equation

(ZMHM )′(s) =
1

2πi

∫
C

(ZMHM )(z)

(z − s)2
dz

where C is a circle of a small, fixed radius r < ε, centered at s= σ + it.

Applying (38) to (ZMHM )(z), when 1/2 6 Re(z) 6 σ0 and (37) when

Re(z)< 1/2, we deduce that

(ZMHM )′(σ + it) =O (exp((r + ε)t)/r) =O(exp(2εt))

for 1/2 6 σ 6 σ0 and t> 1. This proves the first part of the Lemma when

replacing ε by ε/2.

In the case when σ < 1/2, we can use the functional equation for

(ZMHM )′ to arrive at the expression

|(ZMHM )′(−σ2 + it)| = |ηM (−σ2 + it)||K−1
M (−σ2 + it)||ZM (1 + σ2 − it)|

·
∣∣∣∣η′MηM (−σ2 + it)−

K ′M
KM

(−σ2 + it)

−
Z ′M
ZM

(1 + σ2 − it)
∣∣∣∣ .

Since σ2 > 1, we have (Z ′M/ZM )(1 + σ2 − it) =O(1), as t→+∞. Elemen-

tary computations involving the definition of the function η′M/ηM and the

Stirling formula imply that

η′M
ηM

(−σ2 + it)−
K ′M
KM

(−σ2 + it)− Z ′

Z
(1 + σ2 − it) =O(t) as t→∞;

in brief, one sees the asymptotic bound by observing that the leading term in

the above expression is vol(M)(1/2 + σ2 − it) tan(π(1/2 + σ2 − it)). From

the bounds (35) and (36) obtained in the proof of Lemma 12, we arrive at

the bound∣∣(ZMHM )′(−σ2 + it)
∣∣=O (exp ((1/2 + σ2 + ε) vol(M)t)) as t→∞.

The bound claimed in the statement of the Lemma follows by applying the

Phragmen–Lindelöf theorem to the function (ZMHM )′ in the open sector

bounded by the lines Im(s) = 1, Re(s) =−σ2 and Re(s) = 1/2, keeping in

mind that −σ2 6 σ < 1/2.
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§5. Vertical and weighted vertical distribution of zeros

In this section, we prove parts (b) and (c) of the Main Theorem.

We fix a large positive number T and choose number T ′ such that

|T ′ − T |=O(1) independently of T where no zero of ZMHM has imaginary

part equal to T ′. Let t0 > 0 be a number such that (ZMHM )′/(ZMHM )

(σ + it) 6= 0 for all σ < 1/2 and |t|> t0; the existence of such t0 is established

by Proposition 9. Let σ0 > 1 be a constant chosen so that σ0 > max{σ′0, σ1},
where σ′0 is defined in Lemma 3 and σ1 is defined in Lemma 10. Let

0< a < 1/2 be arbitrary.

The function XM (s), which was defined in (12), is holomorphic in the

rectangle R(a, T ′) with vertices a+ it0, σ0 + it0, σ0 + iT ′ and a+ iT ′. As

in [22], we use Littlewood’s theorem from which we get the formula

2π
∑

ρ′=β′+iγ
t0<γ<T ′,β′>a

(β′ − a) =

∫ T ′

t0

log |XM (a+ it)|dt−
∫ T ′

t0

log |XM (σ0 + it)|dt

−
∫ σ0

a
arg XM (σ + it0) dσ +

∫ σ0

a
arg XM (σ + iT ′) dσ

= I1 − I2 − I3 + I4.(39)

The variable ρ′ denotes a zero of (ZMHM )′, and the integrals I1, I2, I3

and I4 are defined to be the four integrals in (39), in obvious notation.

By Proposition 9, the condition that Im(ρ′)> t0 implies that Re(ρ′) > 1/2,

hence the sum on the left-hand side of (39) is actually taken over all zeros

of (ZMHM )′ with imaginary part in the interval (t0, T
′).

We investigate integrals I1, I2, I3 and I4 separately.

Obviously, I3 =O(1) as T →∞ since, in fact, I3 is independent of T .

As for I2, the function log XM is holomorphic and bounded in the infinite

strip {s ∈ C : t0 6 Im(s) 6 T ′, Re(s) > σ0}, hence following the argument

from [22] we get that I2 =O(1) as T →∞.

The evaluation of I4 closely follows the lines of the proof treating the

analogous integral in the compact case considered by Garunkštis in [11],

the new input being our Lemma 14. In order to show that I4 = o(T ), it is

sufficient to prove that

(40) arg X(σ + iT ′) = o(T ) for a6 σ 6 σ0 and as T →∞.

The proof of (40) is very similar to the proof of [11, formula (3.4)], hence

we omit the details. It remains to evaluate I1.
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5.1 Evaluation of I1

We shall break apart further I1 by using the functional equation (17)

for (ZMHM )′, the definition (12) of XM , and representation of Z̃M (s) =

1 + ZM,1(s) which was used in the proof of Proposition 8(b). By doing so,

we arrive at the expression

I1 = −
∫ T ′

t0

log
∣∣∣aMA−(a+it)

M

∣∣∣ dt
+

∫ T ′

t0

log |fM (a+ it)ηM (a+ it)K−1
M (a+ it)|dt

+

∫ T ′

t0

log |ZM (1− (a+ it))| dt+

∫ T ′

t0

log |1 + ZM,1 (1− (a+ it))| dt

= I11 + I12 + I13 + I14,

with the obvious notation for the integrals I11, I12, I13 and I14. Clearly, we

have that

(41) I11 =−T (log |aM | − a log AM ) +O(1) as T →∞.

From the computations on the bottom of [22, p. 1146], we have that

(42)∫ T ′

t0

log |fM (a+ it)|dt= T log T+T (log vol(M)− 1) +O(log T ) as T →∞,

hence

I12 = T log T + T (log vol(M)− 1) +

∫ T ′

t0

log |ηM (a+ it)| dt

+

∫ T ′

t0

log
∣∣K−1

M (a+ it)
∣∣ dt+O(log T )

= T log T + T (log vol(M)− 1) + I121 + I122 +O(log T ) as T →∞,(43)

with obvious notation for I121 and I122. Stirling’s formula implies that

|K−1
M (a+ it)|= π−n1/2 exp (−c1a− Re(c2))

× exp

[
n1

(
1

2
log |a− 1/2 + it|+O

(
1

t

))] (
1 +O

(
1

t2

))
,
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as t→∞, where c1 and c2 are constants defined in (5). Therefore,

I122 =
(
−c1a− Re(c2)− n1

2
log π

)
T +

n1

2

∫ T ′

t0

log |a− 1/2 + it|+O(log T )

=
n1

2
T log T − T

(
c1a+ Re(c2) +

n1

2
log π +

n1

2

)
+O(log T )

as T →∞.(44)

As in the proof of Lemma 12, one can use (4) and Stirling’s formula to get

(45)

I121 =

(
1

2
− a
)

vol(M)

2
T 2 + 2n1(log 2)(a− 1/2)T +O(log T ) as T →∞.

By substituting (45) and (44) into (43), we arrive at

I12 =

(
1

2
− a
)

vol(M)

2
T 2 +

(n1

2
+ 1
)
T log T +O(log T )

+ T

[
2n1 log 2(a− 1/2)− c1a+ log vol(M)− 1− Re(c2)

− n1

2
log π − n1

2

]
as T →∞.(46)

The integral I13 is estimated by applying the Cauchy’s theorem to the

function log ZM (s) within in the rectangle with vertices 1− a− iT ′, 2− iT ′,
2− it0 and 1− a− it0. As in [22], it is easily shown that

I13 =−
∫ 2

1−a
arg ZM (σ − iT ′) dσ +O(1) =O

(
max

1−a6σ62

∣∣log ZM (σ − iT ′)
∣∣) .

From

log ZM (σ − iT ′) = log ZM (2− iT ′)−
∫ 2−iT ′

σ−iT ′

Z ′M
ZM

(ξ) dξ,

and the bound in (20) we obtain the expression

I13 =

∫ T ′

t0

log |ZM (1− a− it)|dt=O((T log T )2−2(1−a)) =O((T log T )2a)

as T →∞.(47)
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Directly from Lemma 11, we have the estimate

I14 =

∫ T ′

t0

log |1 + ZM,1 (1− (a+ it))| dt=O
(
(T log T )2a

)
as T →∞.

(48)

Combining (41), (46), (47) and (48) yields

I1 =

(
1

2
− a
)

vol(M)

2
T 2 +

(n1

2
+ 1
)
T log T +O((T log T )2a) + TCM,a

as T →∞,(49)

where

CM,a = (a− 1/2) · 2n1 log 2 + a(log AM − c1)− log |aM |

+ log vol(M)− 1− Re(c2)− n1

2
log π − n1

2
.

Finally, we have arrived at our estimate for I1.

5.2 Proof of the Main Theorem

Since 0< a < 1/2, we have that (T log T )2a = o(T ). We have shown that

I2 and I3 are O(1) as T →∞ and that I4 = o(T ) as T →∞. Hence, by

substituting equation (49) into (39) we get

2π
∑

ρ′=β′+iγ
t0<γ<T ′

(β′ − a) =

(
1

2
− a
)

vol(M)

2
T 2

+
(n1

2
+ 1
)
T log T + TCM,a + o(T ) as T →∞,(50)

where CM,a is defined above.

Substituting a/2 instead of a into (50), subtracting the obtained formulas,

and then dividing by a/2 yields the statement (b) of the Main Theorem.

As for part (c) of the Main Theorem, we begin with the formula

(51)
∑

ρ′=β′+iγ
0<γ6T

(β′ − 1/2) =
∑

ρ′=β′+iγ
0<γ<T ′

(β′ − a) + (a− 1/2)
∑

ρ′=β′+iγ
0<γ<T ′

1.

The first sum on the right-hand side of (51) is estimated by (50). The

second sum on the right-hand side of (51) is estimated by part (b) of the
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Main Theorem, keeping in mind that the difference between the second sum

in (51) and the sum in part (b) is the finite number of zeros in the half-plane

Re(s)< 1/2.

With all this, the proof of the Main Theorem is complete.

In the case when the surface is co-compact the statement of the Main

Theorem is easily deduced, since, in that case n1 = c1 = c2 = 0, HM = 1,

AM = exp(`M,0) and

η′M
ηM

(s) = vol(M)(s− 1/2) tan(π(s− 1/2))

− π
∑
{R}

0<θ(R)<π

1

MR sin θ

cos(2θ − π)(s− 1/2)

cos π(s− 1/2)
.

§6. Corollaries of the Main Theorem

In this section, we deduce three corollaries of our Main Theorem. The

results we prove are analogous to [21, Theorem 2 and Theorem 3], with,

in their notation, k = 1. Similar results may be deduced for the weighted

vertical distribution of zeros of the kth derivative, based on the results of

§ 8, with suitably replaced constants.

Corollary 15. For δ > 1/2, let Nver(δ, T ; (ZMHM )′) denote the num-

ber of zeros ρ′ of (ZMHM )′ such that Re(ρ′)> δ and 0< Im(ρ′)< T . Then,

for an arbitrary ε > 0

Nver

(
1

2
+ ε, T ; (ZMHM )′

)
<

1

ε
Nw(T ; (ZMHM )′).

Proof. Trivially, we have the bounds

Nver

(
1

2
+ ε, T ; (ZMHM )′

)
<

1

1/2 + ε

∑
(ZMHM )′(σ+it)=0

σ>1/2+ε, 0<t<T

σ

=
1

1/2 + ε

∑
(ZMHM )′(σ+it)=0

σ>1/2+ε, 0<t<T

(
σ − 1

2

)

+
1/2

1/2 + ε
Nver

(
1

2
+ ε, T ; (ZMHM )′

)
(52)
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Therefore,

2ε

1 + 2ε
Nver

(
1

2
+ ε, T ; (ZMHM )′

)
<

2

1 + 2ε
Nw(T ; (ZMHM )′),

from which the result immediately follows.

Observe that the lead term in the asymptotic expansion in part (b) of the

Main Theorem is O(T 2), whereas the lead term in the asymptotic expansion

in part (c) of the Main Theorem is O(T log(T )). Consequently, Corollary 15

shows that zeros of (ZMHM )′ are concentrated very close the critical line

Re(s) = 1/2. The following corollary further quantifies this observation.

Corollary 16. For any δ > 1/2, let N−ver(δ, T ; (ZMHM )′) denote the

number of nontrivial zeros ρ= σ + it of (ZMHM )′ with σ < δ and 0< t < T .

Then, for any constant ε > 0,

lim
T→∞

N−ver(1/2 + ε, T ; (ZMHM )′)

Nvert(T ; (ZMHM )′)
= 1.

Proof. Corollary 15 implies that

(53) 1 >
N−ver(1/2 + ε, T ; (ZMHM )′)

Nvert(T ; (ZMHM )′)
> 1− 1

ε

Nw(T ; (ZMHM )′)

Nvert(T ; (ZMHM )′)
.

From the Main Theorem (b) and (c) we deduce that

Nw(T ; (ZMHM )′)

Nvert(T ; (ZMHM )′)
→ 0 as T →∞.

Therefore, by passing to the limit as T →∞ in (53), the claimed result

follows.

The following corollary gives estimates of short sums of distances

(σ − 1/2).

Corollary 17. Let 0< U < T . Then,

2π
∑

(ZMHM )′(σ+it)=0

σ>1/2,T<t6T+U

(
σ − 1

2

)
=
(n1

2
+ 1
)
U log(T + U)

+

(
log

g1vol(M)A
1/2
M

πn1/2|d(1)aM |

)
U

+ o(T ) +O(U2/T ) as T →∞.(54)

https://doi.org/10.1017/nmj.2016.52 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.52


54 J. JORGENSON AND L. SMAJLOVIĆ

Proof. The left-hand side of the (54) is equal to 2π (Nw(T +

U ; (ZMHM )′)−Nw(T ; (ZMHM )′), hence part (c) of the Main Theorem

yields

2π
∑

(ZMHM )′(σ+it)=0

σ>1/2,T<t6T+U

(
σ − 1

2

)
=
(n1

2
+ 1
)(
T log

(
1 +

U

T

)
− U + U log(T + U)

)

+

(
log

g1vol(M)A
1/2
M

πn1/2|d(1)aM |

)
U + o(T ) as T →∞.(55)

The elementary observation that T log(1 + U/T )− U =O(U2/T ) completes

the proof.

§7. Examples

The Main Theorem naturally leads to the following question: Are there

examples of groups Γ where e`M,0 < (g2/g1)2 as well as groups where e`M,0 >

(g2/g1)2? The purpose of this section is to prove Proposition 1 and present

examples of groups in each category. In fact, there are examples of both

arithmetic and nonarithmetic groups in each category.

7.1 Congruence subgroups

In this subsection we prove part (i) of Proposition 1.

Let Γ = Γ0(N) be the congruence subgroup defined by the arithmetic

condition

Γ0(N) :=

{(
a b
c d

)
∈ SL(2, Z) : c≡ 0 (modN)

}/
± I,

where I denotes the identity matrix and N is a positive integer. If N =

p1 · · · pr, for distinct primes p1, . . . , pr; then, it is proved in [16], that the

corresponding surface has n1 = 2r cusps and the scattering determinant is

given by the formula

ϕN (s) =

[√
π

Γ(s− 1/2)

Γ(s)

]n1
[
ζQ(2s− 1)

ζQ(2s)

]n1 ∏
p|N

(
1− p2−2s

1− p2s

)n1/2

,

where ζQ is the Riemann zeta function. Now, it is easy to show that

(g2/g1)2 = 4. In the case N is not square-free, an application of [14], formula

(4.2), page 536 yields the same conclusion.
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All elements of Γ0(N) have integer entries, so any hyperbolic element has

trace whose absolute value is at least equal to 3. Therefore, e`M,0 > u where u

is a solution to u1/2 + u−1/2 = 3. Solving, we get that u= ((3 +
√

5)/2)2 > 4.

Therefore, for any such group Γ0(N), one has that e`M,0 > (g2/g1)2.

In the case of the principal congruence subgroups Γ(N) the scattering

determinant can be computed using the analysis presented in [14] and [16].

As above, one shows that (g2/g1)2 = 4 because the Dirichlet series portion

of the scattering determinant is shown to be given by ratios of classical

Dirichlet series. Furthermore, the matrices in Γ(N) also have integral entries,

so e`M,0 > ((3 +
√

(5))/2)2 > 4.

7.2 Moonshine subgroups

We now prove part (ii) of Proposition 1.

Following [8], we use the term “moonshine group” for any subgroup Γ of

PSL(2, R) which satisfies the following two conditions. First, there exists an

integer N > 1 such that Γ contains Γ0(N). Second, Γ contains the element(
1 k
0 1

)
if and only if k ∈ Z.

Following [6, p. 363], let f be a square-free, nonnegative integer, and

consider the group

Γ0(f)+ :=

{
e−1/2

(
a b
c d

)
∈ SL(2, R) : a, b, c, d,

e ∈ Z, e | f, e | a, e | d, f | c, ad− bc= e

}
.

In [6, Lemma 2.20] it is proved that the parabolic elements of Γ0(f)+ have

integral entries. Therefore, Γ0(f)+ is a moonshine group. Let Γ0(f)+ =

Γ0(f)+/± I. In [20] it is proved that the Riemann surface Γ0(f)+\H for

all square-free f has finite volume and one cusp at infinity.

Consider the case when f = 5. The scattering matrix in this case has a

single entry which, as proved in [20] is given by

Φ5(s) =
√
π

Γ(s− 1/2)

Γ(s)

(
5s + 5

5s(5s + 1)

)
· ζQ(2s− 1)

ζQ(2s)
,

hence, one immediately can show that (g2/g1)2 = 4.

It is easy to confirm that γ =
(

0 −1/
√

5
√

5
√

5

)
∈ Γ0(5)+. The trace of γ is

√
5> 2, hence γ is hyperbolic. Therefore, e`M5,0 6 u where u is a positive

solution of u1/2 + u−1/2 =
√

5. Solving, we have that u= ((1 +
√

5)/2)2 < 4.

With all this, we have proved that e`M5,0 < (g2/g1)2.

https://doi.org/10.1017/nmj.2016.52 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.52


56 J. JORGENSON AND L. SMAJLOVIĆ

The surface Γ0(5)+\H has a signature (0;2,2,2;1) meaning that its genus

is zero, it has three inequivalent elliptic points of order two and one cusp.

The surface Γ0(6)+\H has the same signature, as shown in [6, Table C]. The

scattering matrix in this case has a single entry which is given by

Φ6(s) =
√
π

Γ(s− 1/2)

Γ(s)

(
(2s + 2)(3s + 3)

6s(2s + 1)(3s + 1)

)
· ζQ(2s− 1)

ζQ(2s)
.

Obviously, g1 =
√

6, g2 = 2
√

3, hence (g2/g1)2 = 2.

On the other hand, min{|TrA| :A ∈H(Γ0(6)+)}=
√

6, hence e`M6,0 > u

where u > 1 is a solution of the equation u1/2 + u−1/2 =
√

6. Since u=

((
√

6 +
√

2)/2)2 > 2, we see that e`M6,0 > (g2/g1)2. This completes the proof

of Proposition 1(ii).

7.3 On existence of surfaces where e`M,0 = (g2/g1)2

We now argue the existence of an abundance of surfaces for which e`M,0 <

(g2/g1)2 and prove part (iii) of Proposition 1.

Let Mτ denote a degenerating family of Riemann surfaces, parameterized

by the holomorphic parameter τ , which approach the Deligne–Mumford

boundary of moduli space when τ approaches zero. One can select distin-

guished points of Mτ which are either removed or whose local coordinates

z are replaced by fractional powers z1/n. By doing so, one obtains a

degenerating sequence of hyperbolic Riemann surfaces of any signature; we

refer the reader to [15] and references therein for further details regarding the

construction of the sequence of degenerating hyperbolic Riemann surfaces.

By construction, the length of the smallest geodesic on M` approaches

zero, so then exp(`Mτ ,0) approaches one as τ approaches zero. In [9],

the authors prove that through degeneration, parabolic Eisenstein series

on Mτ converge to parabolic Eisenstein series on the limit surface; see

part (ii) of the Main Theorem of [9]. To be precise, one needs that the

holomorphic parameter s of the parabolic Eisenstein series lies in the half-

plane Re(s)> 1 and the spatial parameter z to lie in a bounded region of

Mτ . However, in these ranges, one can compute the scattering matrix by

computing the zeroth Fourier coefficient of the parabolic Eisenstein series,

and, subsequently, compute the ratio g2/g1 on Mτ . Since the parabolic

Eisenstein series converge through degeneration to the parabolic Eisenstein

series on the limit surface, the associated scattering matrix converges to a

submatrix Φ of the full scattering matrix on the limit surface. Clearly, the

determinant of Φ can be decomposed into a product of Gamma functions

and a Dirichlet series, where the Dirichlet series is such that g2/g1 > 1.
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Therefore, we conclude that for all τ sufficiently close to zero, we have that

e`Mτ ,0 < (g2/g1)2. In fact, all surfaces near the Deligne–Mumford boundary

of any given moduli space satisfy the inequality e`Mτ ,0 < (g2/g1)2.

In addition, let us assume that one is considering a moduli space which

contains a congruence subgroup so then there exists a surface where e`Mτ ,0 >

(g2/g1)2. Then by combining the above argument with the computations

from § 7.1, there exists surfaces for which e`Mτ ,0 = (g2/g1)2. However, we

have not been successful in our attempts to explicitly construct such a

surface. In a sense, our Main Theorem shows that surfaces for which

e`Mτ ,0 = (g2/g1)2 have a larger number of zeros of (ZMHM )′ than nearby

surfaces for which the inequality holds.

§8. Higher derivatives

In this section, we outline the proof of the Main Theorem for higher order

derivatives of ZMHM . The results are analogous to theorems proved for the

zeros of the higher order derivatives of the Riemann zeta function; see [4]

and [21].

8.1 Preliminary lemmas on higher derivatives

In order to deduce the vertical and weighted vertical distribution of

zeros of the higher order derivatives of (ZMHM ) we prove some preliminary

lemmas, analogous to lemmas in § 4.

Lemma 18. Let fM (s) be defined by (18) and Z̃M (s) defined by (19).

Let us define, inductively, the functions Z̃M,j(s) as Z̃M,0(s) := ZM (s),

Z̃M,1(s) := Z̃M (s) and, for j > 2,

Z̃M,j(1− s) =
1

fM (s)

(
(j − 1)

f ′M
fM

(s) +
η′M
ηM

(s)−
K ′M
KM

(s)−
j−1∑
i=0

Z̃ ′M,i

Z̃M,i

(1− s)

)
.

(56)

Then for every positive integer k the kth derivative of the function ZMHM

can be represented as

(57) (ZMHM )(k)(s) = (fM (s))k ηM (s)K−1
M (s)ZM (1− s)

k∏
i=1

Z̃M,i(1− s).

Proof. The proof is based on a rather obvious induction argument.

https://doi.org/10.1017/nmj.2016.52 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.52


58 J. JORGENSON AND L. SMAJLOVIĆ

Lemma 19. For j > 1, let ZM,j(s) := Z̃M,j(s)− 1. For small δ > 0 and

δ1 > 0, let σ1 be a real number such that σ1 > 1/2 + δ1 > 1/2 and (σ1 ± iT )

is away from circles of a fixed, small radius δ > 0, centered at integers. Then

for k = 0, 1

(58) Z
(k)
M,j(σ1 ± iT ) =O

(
(T log T )2−2σ1 logk T

(σ1 − 1/2)T

)
as T →∞,

and

(59)
Z̃ ′M,j

Z̃M,j

(σ1 ± iT ) =O

(
(T log T )2−2σ1 log T

(σ1 − 1/2)T

)
as T →∞.

Proof. We prove the statement by induction in j > 1. When j = 1, we

use formula (26), which we differentiate, use the bound on the growth of

the derivative of the digamma function (see [1, formula 6.4.12.]) and the

bound (20) with k = 0 or k = 1. These computations, which are elementary,

allow one to prove (58) for σ1 > 1/2 + δ1 > 1/2 in the case when j = 1. In

addition,

Z̃ ′M,1

Z̃M,1

(σ1 ± iT ) =
Z ′M,1(σ1 ± iT )

1 + ZM,1(σ1 ± iT )

= O

(
(T log T )2−2σ1 log T

(σ1 − 1/2)T

)
as T →∞.

With all this, we have proved (59) for j = 1.

Assume now that (58) and (59) hold true for all 1 6m6 j. Then, by (56)

we get

1 + ZM,j+1(s) = Z̃M,j+1(s) = 1 + ZM,j(s) +
1

fM (s)

(
f ′M
fM

(s)−
Z̃ ′M,k,j

Z̃M,j

(s)

)
.

Therefore, by the inductive assumption on Z̃ ′M,j/Z̃M,j and ZM,j , we have

for k = 0, 1,

Z
(k)
M,j+1(σ1 ± iT ) =O

(
(T log T )2−2σ1 logk T

(σ1 − 1/2)T

)
as T →∞.

In other words, (58) holds true with m= j + 1. In addition,
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Z̃ ′M,j+1

Z̃M,j+1

(σ1 ± iT ) =
Z ′M,j+1(σ1 ± iT )

1 + ZM,j+1(σ1 ± iT )

= O

(
(T log T )2−2σ1 log T

(σ1 − 1/2)T

)
as T →∞.

The proof is complete.

For any integer k > 2, let us define aM,k := (−1)k−1aM logk−1 AM , where

we set aM,1 := aM . The analogue of the function XM (s), defined by (12), is

(60) XM,k(s) :=
AsM
aM,k

(ZMHM )(k)(s),

where, of course, XM,1(s) =XM (s).

Lemma 20. For any integer k > 1, there exists constants σk > 1 and

0< cΓ,k < 1 such that for all σ = Re(s) > σk,

XM,k(s) = 1 +O(cσΓ,k) 6= 0 as σ→+∞.

Proof. For k = 1, the statement is Lemma 10. Furthermore, from the

proof of Lemma 10 and the definition of constants AM and aM,1, we see

that

(61) (ZMHM )′(s) = ZM (s)HM (s)D1(s),

where D1(s) is a Dirichlet series, converging absolutely for Re(s)> σ1, for

sufficiently large σ1, with the leading term equal to aM,1 ·A−sM as Re(s)→
+∞.

Let us define, for k > 1 and Re(s)� 0

(ZMHM )(k)(s) = ZM (s)HM (s)Dk(s).

We claim that Dk(s) is a Dirichlet series with the leading term equal to

aM,k ·A−sM as Re(s)→+∞. The statement is obviously true for k = 1. A

simple inductive argument shows that the statement is true for all k > 1.

Therefore, for Re(s) = σ� 0, we may write

(ZMHM )(k)(s) = ZM (s)HM (s)
aM,k

AsM

(
1 +O(A−σΓ,k)

)
as Re(s)→∞.
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Equation (32) implies that there exists σk > 1 and a constant CΓ,k > 1 such

that for Re s > σk, we have

(ZMHM )(k)(s) =
aM,k

AsM

1 +O

 1

C
Re(s)
Γ,k

 as Re(s)→∞.

Setting cΓ,k = 1/CΓ,k completes the proof.

Lemma 21. For arbitrary ε > 0, t> 1 and σ2 > 1 such that −σ2 is not

a pole of (ZMHM ) we have, for any positive integer k

(ZMHM )(k)(σ + it) =

{
O(exp εt) for 1

2 6 σ 6 σ0,

O (exp(1/2− σ + ε)t) for − σ2 6 σ < 1/2,

as t→∞.

Proof. When k = 1, the statement is proved in Lemma 14. Assume that

the statement of Lemma holds for an integer k > 1. Then for 1/2 6 Re(s) =

σ 6 σ0 the Cauchy integral formula yields

(ZMHM )(k+1)(s) =
1

2πi

∫
C

(ZMHM )(k)(z)

(z − s)2
dz

where C is a circle of a small, fixed radius r < ε, centered at s. Using the

inductive assumption on (ZMHM )(k)(z), we then get the bounds

(ZMHM )(k+1)(σ + it) =O (exp((r + ε)t)/r) =O (exp(2εt)) ,

for 1/2 6 σ 6 σ0 and t> 1. This proves the first part of Lemma for

(ZMHM )(k+1)(z), hence, the first part of the Lemma holds true for all k > 1.

In the case when σ < 1/2, we employ the functional equation (57) for

(ZMHM )(k) to deduce that

|(ZMHM )(k+1)(−σ2 + it)| = |(ZMHM )(k)(−σ2 + it)|

·

∣∣∣∣∣
[
k
f ′

f
(−σ2 + it) +

η′M
ηM

(−σ2 + it)

−
K ′M
KM

(−σ2 + it)−
k∑
i=0

Z̃ ′M,i

Z̃M,i

(1 + σ2 − it)

]∣∣∣∣∣.
Since σ2 > 1, we have Z ′M/ZM (1 + σ2 − it) =O(1) as t→+∞. Furthermore,

formula (59) and the same computations as in the proof of Lemma 14
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imply that

k
f ′

f
(−σ2 + it) +

η′M
ηM

(−σ2 + it)−
K ′M
KM

(−σ2 + it)

−
k∑
i=0

Z̃ ′M,i

Z̃M,i

(1 + σ2 − it) =O(t) as t→∞,

since the leading term in the above expression is vol(M)(1/2 + σ2 − it)
tan(π(1/2 + σ2 − it)). By the inductive assumption on (ZMHM )(k)(−σ2 +

it), we get

|(ZMHM )(k+1)(−σ2 + it)| = O

(
exp

((
1

2
+ σ2 + ε

)
vol(M)t

))
,

as t→∞.

As in the proof of Lemma 14, one applies the Phragmen–Lindelöf theorem to

the function (ZMHM )(k+1) in the open sector bounded by the lines Im(s) =

1, Re(s) =−σ2 and Re(s) = 1/2. As a result, the proof of the second part

of the Lemma is complete for (ZMHM )(k+1).

8.2 Distribution of zeros of (ZMHM )(k)

The following theorem is the analogue of the Main Theorem for zeros of

higher derivatives of (ZMHM ).

Theorem 22. With the notation as above, the following statements are

true for any integer k > 2.

(a) For σ < 1/2, there exist t0 > 0 such that (ZMHM )(k)(σ + it) 6= 0 for all

|t|> t0.

(b)

(62) Nver(T ; (ZMHM )(k)) =Nver(T ; (ZMHM )′) + o(T ) as T →∞.

(c)

Nw(T ; (ZMHM )(k)) = Nw(T ; (ZMHM )′) +
(k − 1)T

2π
[log(T · vol(M))−1]

− T

2π
log((k − 1) log AM ) + o(T ) as T →∞.(63)
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Proof. We first outline the proof of part (a). For k > 2, σ < 1/2 and

s= σ ± iT equation (57) yields

(ZMHM )(k)

(ZMHM )(k−1)
(s) = log

(
(ZMHM )(k−1)(s)

)′
= (k − 1)

f ′

f
(s) +

η′M
ηM

(s)−
K ′M
KM

(s)−
Z ′M
ZM

(1− s)

−
k−1∑
i=1

Z̃ ′M,i

Z̃M,i

(1− s).(64)

We now apply (59) with σ1 = 1− σ > 1/2 and (20) to deduce that

Z ′M
ZM

(1− s) +
k−1∑
i=1

Z̃ ′M,i

Z̃M,i

(1− s) =O

(
(T log T )2σ log T

(1/2− σ)

)
as T →∞.

Since Re(η′M/ηM (σ ± iT )) =−vol(M)t+O(log t) and K ′M/KM (σ ± it) =

O(log t) as t→+∞, we immediately deduce from (64) that

Re

(
− (ZMHM )(k)

(ZMHM )(k−1)
(σ ± it)

)
= vol(M)t

+O

(
max

{
log t,

(t log t)2σ log t

(1/2− σ)

})
as t→+∞,

for any σ < 1/2. This proves part (a).

The proof of parts (b) and (c) closely follows lines of the proof of parts (b)

and (c) of the Main Theorem. We fix a large positive number T and choose

number T ′ to be a bounded distance from T such that T ′ is distinct from

the imaginary part of any zero of ZMHM . We fix a number a ∈ (0, 1/2) and

use part (a) of the Theorem to choose t0 > 0 to be the number such that

(ZMHM )(k)(σ + it) 6= 0 for all σ 6 a and |t|> t0. Let σ0 be a constant such

that σ0 > max{σ′0, σk}, where σ′0 is defined in Lemma 3 and σk is defined

in Lemma 20.

We apply Littlewood’s theorem to the function XM,k(s), defined

by (60) which is holomorphic in the rectangle R(a, T ′) with vertices
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a+ it0, σ0 + it0, σ0 + iT ′, a+ iT ′. The resulting formula is

2π
∑

ρ(k)=β(k)+iγ(k)

t0<γ(k)<T ′,β(k)>a

(
β(k) − a

)
=

∫ T ′

t0

log |XM,k(a+ it)| dt

−
∫ T ′

t0

log |XM,k(σ0 + it)| dt

−
∫ σ0

a
arg XM,k(σ + it0) dσ

+

∫ σ0

a
arg XM,k(σ + iT ′) dσ

= I1,k + I2,k + I3,k + I4,k,(65)

where ρ(k) denotes the zero of (ZMHM )(k). By the choice of t0, the sum on

the left-hand side of (65) is actually taken over all zeros ρ(k) of (ZMHM )(k)

with imaginary part in the interval (t0, T
′).

Trivially, I3,k =O(1) as T →+∞. The application of Lemma 20 immedi-

ately yields that I2,k =O(1) as T →+∞, once we apply the same method

as in evaluation of I2.

One can follow the steps of the proof that |arg XM (σ + iT ′)|= o(T )

as T →+∞ in the present setting. One uses function XM,k instead of

XM and Lemma 21 instead of Lemma 14. From this, we deduce that

|arg XM,k(σ + iT ′)|= o(T ) as T →+∞. Therefore, it is left to evaluate I1,k.

From definition of XM,k, using the functional equation (57) for

(ZMHM )(k), we get for k > 2, the expression

I1,k =

∫ T ′

t0

log
∣∣∣A(a+it)

M a−1
M,k

∣∣∣ dt+ k

∫ T ′

t0

log |fM (a+ it)|dt

+

∫ T ′

t0

log |ηM (a+ it)|dt

+

∫ T ′

t0

log |K−1
M (a+ it)|dt+

∫ T ′

t0

log |ZM (1− a− it)|dt

+

k−1∑
i=1

∫ T ′

t0

log |1 + ZM,i(1− a− it)|dt.(66)
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By employing equation (58) with k = 0, we get∫ T ′

t0

log |1 + ZM,i(1− a− it)|dt=O((T log T )2a) as T →∞

for all i= 1, . . . , k − 1. Substituting this equation, together with (42), (44),

(45) and (47) into (66), we immediately deduce that

I1,k =

(
1

2
− a
)

vol(M)

2
T 2 +

(n1

2
+ k
)
T log T

+ CM,a,kT +O((T log T )2a) as T →∞,

where

CM,a,k = 2

(
a− 1

2

)
n1 log 2 + a log AM − log |aM,k|

+ k(log(vol(M))− 1) + 2a log g1 − log |d(1)| − n1

2
(log π + 1).

Combining this equation with the bounds on I2,k, I3,k and I4,k and (65), we

get

2π
∑

ρ(k)=β(k)+iγ(k)

t0<γ(k)<T ′

(
β(k) − a

)
=

(
1

2
− a
)

vol(M)

2
T 2 +

(n1

2
+ k
)
T log T

+ CM,a,kT + o(T ) as T →∞.(67)

Replacing a by a/2 in (67) and subtracting proves part (b). Part (c) is

proved by employing an analogue of equation (51), with β′ and ρ′ replaced

by β(k) and ρ(k).

Remark 23. The statement of Theorem 22 is true in the case of co-

compact Riemann surfaces Γ \H when taking HM = 1 and AM = exp(`M,0)

in (62) and (63).

In the case when Γ \H is compact the statement (b) of Theorem 22 was

announced by Luo in [22], with the weaker error term O(T ). As one can see,

we put considerable effort into the analysis yielding the error term o(T ),

and the structure of the constant CM,a,k is, in our opinion, fascinating.

Remark 24. From the formula (63) for the weighted vertical distribu-

tion of zeros of (ZMHM )(k), we see that the differentiation of (ZMHM )(k)
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increases the sum Nw(T ; (ZMHM )(k)) by the quantity [(1/(2π)) · T log T +

O(T )] as T →∞. Hence, after each differentiation, zeros of (ZMHM )′ move

further to the right of 1/2. Since every zero of (ZMHM )′ on the line

Re(s) = 1/2 (up to finitely many of them) is a multiple zero of ZM , this

result fully supports the “bounded multiplicities conjecture”. To recall, the

“bounded multiplicities conjecture” asserts that the order of every multiple

zero of ZM is uniformly bounded, or, equivalently, that the dimension of

every eigenspace associated to the discrete eigenvalue of the Laplacian on

M is uniformly bounded, with a bound depending solely upon M .

§9. Concluding remarks

9.1 Revisiting Weyl’s law

Weyl’s law for an arbitrary finite volume hyperbolic Riemann surface M

is the following asymptotic formula, which we quote from [14, p. 466]:

NM,dis(T ) +NM,con(T ) =
vol(M)

4π
T 2 − n1

π
T log T +

n1T

π
(1− log 2)

+O (T/ log T ) as T →∞,(68)

where

NM,dis(T ) = #{s= 1/2 + it|ZM (s) = 0 and 0 6 t6 T}

and

NM,con(T ) =
1

4π

∫ T

−T

−φ′M
φM

(1/2 + it) dt.

The term NM,dis(T ) counts the number of zeros of the Selberg zeta function

ZM (s) on the critical line Re(s) = 1/2, whereas the term NM,con(T ) is

related to the number of zeros of ZM (s) off the critical line but within the

critical strip. In the following proposition, we relate the counting function

Nver(T ; φM ) with the function NM,con(T ), showing that the constant g1

appears in the resulting asymptotic formula.

Proposition 25. There exists a sequence {Tn} of positive numbers

tending toward infinity such that, with the notation as above, we have the

asymptotic formula

Nver(Tn; φM ) =NM,con(Tn)− log g1

π
Tn +O (log Tn) as n→∞.

Proof. Let R(T ) denote the rectangle with vertexes 1/2− iT , σ′0 − iT ,

σ′0 + iT , 1/2 + iT , where σ′0 > σ0, where σ0 is defined in § 1.3. Therefore, the
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series (8) converges uniformly and absolutely for Re s> σ′0, and all zeros of

φM with real part greater than 1/2 lie inside R(T ). Recall that the zeros of

φM appear in pairs of the form ρ and ρ. As a result, the proposition follow

by studying the expression

2Nver(T ; φM ) =
1

2πi

∫
R(T )

φ′M
φM

(s) ds=
−1

2π

∫ T

−T

φ′M
φM

(
1

2
+ it

)
dt

+
1

2π

∫ T

−T

φ′M
φM

(σ′0 + it) dt+ I1(T ) + I2(T )

where I1 and I2 denote the integrals along the horizontal lines which bound

R(T ). In [18, Theorem 7.1] it is proved that φM is of regularized product

type with order M = 0. As a result, from [19, Chapter 1], we have the

existence of a sequence of real numbers {Tn} tending to infinity such that

I1(Tn) =O(log Tn) and I2(Tn) =O(log Tn) when n→∞, so then

2Nver(Tn; φM ) = − 1

2π

∫ Tn

−Tn

φ′M
φM

(
1

2
+ it

)
dt

+
1

2π

∫ Tn

−Tn

φ′M
φM

(σ′0 + it) dt+O(log Tn) when n→∞.

Using the notation as above, we now write∫ Tn

−Tn

φ′M
φM

(σ′0 + it) dt =

∞∑
i=1

b (qi)

q
σ′

0
i

∫ Tn

−Tn

dt

qiti
− 4T log g1

+ n1

∫ Tn

−Tn

(
Γ′

Γ

(
σ′0 + it− 1

2

)
− Γ′

Γ
(σ′0 + it)

)
dt.

Interchanging the sum and the integral above is justified by the fact

that the series defining H ′M/HM (s) converges absolutely and uniformly for

Re(s)> σ0. Furthermore, we also have that

∞∑
i=1

b (qi)

q
σ′

0
i

∫ Tn

−Tn

dt

qiti
=O (1) as n→∞,

Using the series representation of the digamma function we get that∫ Tn

−Tn

(
Γ′

Γ

(
σ′0 + it− 1

2

)
− Γ′

Γ

(
σ′0 + it

))
dt=O(1) as n→∞.

With all this, the proof of the Proposition is complete.
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Remark 26. The above proposition shows that the term −(log g1/π)T

measures the discrepancy between the number of zeros of φM with real

part greater that 1/2, meaning Nver(T ; φM ), and the quantity NM,con(T ),

appearing in the classical version of the Weyl’s law.

Furthermore, one can restate Proposition 25 as the relation representing

Weyl’s law

Nver(Tn; ZMHM ) =
vol(M)

4π
T 2
n −

n1

π
Tn log Tn +

Tn
π

(n1(1− log 2)− log g1)

+O (Tn/ log Tn) ,(69)

as n→∞.

A direct consequence of the relation (69), Main Theorem and Theorem 22

is the following reformulation of the Weyl’s law:

Corollary 27. There exist a sequence {Tn} of positive real numbers

tending to infinity such that, for every positive integer k

Nver(Tn; ZMHM ) = Nver(Tn; (ZMHM )(k))− n1

π
Tn log Tn

+
Tn
2π

(2n1 + log AM ) + o(Tn) as n→∞.

Remark 28. An interpretation of the constant log g1, similar to the

one derived in Proposition 25 is obtained in [7, formula (3.4.15)], where it

is shown, in our notation, that

log g1 = lim
x→∞

lim
y→∞

[
2x

∫ ∞
0

NM,con(t)−Nver(t; φM )

t

(
1

t2 + x2
− 1

t2 + y2

)
dt

]
.

A geometric interpretation of the constant g1, in the case when the surface

has one cusp a is derived in [17]. In that case, g−1
1 is the radius of the largest

isometric circle arising in the construction of the standard polygon for the

group σ−1
a Γσa, where σa denotes the scaling matrix of the cusp a.

As stated in the introduction, we do not know of a spectral or geometric

interpretation of the constant g2, besides the trivial one which realizes g2

as the second largest denominator of the Dirichlet series portion of the

scattering determinant. Therefore, we view Corollary 27 as giving rise to a

new spectral invariant.
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9.2 A comparison of counting functions

In this section, we will prove Theorem 2. In effect, it is necessary to recall

results from [14], translate the notation in [14] to the notation in the present

paper, then combine the result with (2) and parts (c) of the Main Theorem

and Theorem 22.

From [14, Theorem 2.22] we have the asymptotic relation

Nw(T ;HM ) =
n1

2
· T log T

2π
+
T

2

(
−n1

2π
− 1

π
log |b2|

)
+O(log T )

as T →∞.(70)

Note that in [14], the author counts the zeros of HM in both the upper and

lower half-planes, whereas the counting function Nw(T ;HM ) only considers

those zeros in the upper half-plane. Recall that the zeros and poles of H

appear symmetrically about the real axis. As a result, the relation (70)

differs from [14, Theorem 2.22] by a factor of two. Comparing [14, eq. (2.15)

on p. 445] with our notation we deduce that b2 = πn1/2g−1
1 d(1), hence, we

are able to rewrite [14, Theorem 2.22] as

Nw(T ;HM ) =
n1

2
· T log T

2π
− T

2π

(n1

2
+
n1

2
log π + log |d(1)| − log g1

)
+O(log T ) as T →∞.(71)

Comparing (71) with part (c) of Main Theorem we deduce that

Nw(T ; (ZMHM )′)−Nw(T ;HM ) =
T log T

2π
+
T

2π
C + o(T ) as T →∞

with C = 1
2 log AM − log |aM |+ log vol(M)− 1.

Assume that e`M,0 < (g2/g1)2, so then

C = log

(
2vol(M) sinh(`M,0/2)

e ·mM,0`M,0

)
.

Let M̃ be any co-compact hyperbolic Riemann surface such that vol(M̃) =

vol(M). Assume that M and M̃ have systoles of equal length, and the same

number of inconjugate classes of systoles. Then, using (2), we arrive at the

conclusion that

(72) Nw(T ; (ZMHM )′)−Nw(T ;HM ) =Nw(T ; Z ′
M̃

) + o(T ) as T →∞.

Furthermore, when e`M,0 < (g2/g1)2, comparing (72) with part (c) of

Theorem 22, for k > 2 we arrive at
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Nw(T ; (ZMHM )(k))−Nw(T ;HM ) = Nw(T ; Z ′
M̃

)

+
(k − 1)T

2π
[log(Tvol(M))− 1]

− T

2π
log((k − 1)`M,0) + o(T )

as T →∞.

Then, from part (c) of Theorem 22 applied to the zeta function Z
M̃

we

deduce

Nw(T ; (ZMHM )(k))−Nw(T ;HM ) =Nw(T ; (Z
M̃

)(k)) + o(T ) as T →∞.

This proves Theorem 2.

We find the comparison of counting functions, as summarized in (13) very

interesting, especially since the coefficients in the asymptotic expansions in

(70) and part (c) of the Main Theorem are somewhat involved and dissimilar

from other known asymptotic expansions.

9.3 Concluding remarks

In [5] the authors defined 213 genus zero subgroups of which 171 are

associated to “Moonshine”. It would be interesting to compute the invariant

AM for each of these groups to see if further information regarding the

groups, possibly related to “moonshine”, is uncovered.

Is it possible to explicitly determine an example of a surface where

e`M,0 = (g2/g1)2? More generally, one could study the set of such surfaces,

as a subset of moduli space. Is the set of surfaces where e`M,0 > (g2/g1)2

a connected subset of moduli space, or are there several components? Is

there another characterization of surfaces where e`M,0 = (g2/g1)2? Many

other basic questions can be easily posed, and we find these problems very

interesting.

In [2], the authors determined the asymptotic behavior of Selberg’s zeta

function through degeneration up to the critical line. It would be interesting

to study the asymptotic behavior of the zeros of the derivative of Selberg’s

zeta function through degeneration, either in moduli space or through

elliptic degeneration.

To come full circle, we return to the setting of the Riemann zeta function

and speculate if one can attempt to mimic results which follow from the

Levinson–Montgomery article [21]. Specifically, we recall, that Levinson

used results from the distribution of zeros of ζ ′Q to prove that more than
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1/3 of the zeros of the Riemann zeta function lie on the critical line. Can

one follow a similar investigation in the setting of the Selberg zeta function

associated to a noncompact, finite volume surface? To do so, we note that

a starting point would be to establish an analogue of the approximate

functional equation for the Selberg zeta function. Results in this direction

would be very significant, and we plan to undertake the project in the near

future.
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[20] J Jorgenson, L. Smajlović and H. Then, On the distribution of eigenvalues of Maass
forms on certain moonshine groups, Math. Comp. 83 (2014), 3039–3070.

[21] N. Levinson and H. L. Montgomery, Zeros of the derivatives of the Riemann zeta
function, Acta Math. 133 (1974), 49–65.

[22] W. Luo, On zeros of the derivative of the Selberg zeta function, Amer. J. Math. 127
(2005), 1141–1151.

[23] M. Minamide, On zeros of the derivative of the modified Selberg zeta function for the
modular group, Manuscript (2008).

[24] M. Minamide, “A note on zero-free regions for the derivative of Selberg zeta
functions”, in Spectral Analysis in Geometry and Number Theory, Contemp. Math.
484, Amer. Math. Soc., Providence, RI, 2009, 117–125.

[25] M. Minamide, The zero-free region for the derivative of Selberg zeta functions,
Montash. Math. 160 (2010), 187–193.

[26] R. Phillips and P. Sarnak, On cusp forms for cofinite subgroups of PSL(2,R), Invent.
Math. 80 (1985), 339–364.

[27] A. Speiser, Geometrisches zur Riemannschen Zetafunktion, Math. Ann. 110 (1934),
514–521.

[28] R. Spira, Zeros of ζ′(s) and the Riemann hypothesis, Illinois J. Math. 17 (1973),
147–152.

[29] E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford University Press, 1939.
[30] A. B. Venkov, Spectral Theory of Automorphic Functions and its Applications,

Mathematics and its applications 51, Kluwer Academic Publishers, Dodrecht,
Boston, London, 1990.

Jay Jorgenson

Department of Mathematics

The City College of New York

Convent Avenue at 138th Street

New York, NY 10031

USA

jjorgenson@mindspring.com

Lejla Smajlović
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