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ON t-SPREADS OF PG((s + l)(t + 1) - l,g)

CHRISTINE M. O'KEEFE

In this thesis the theory of 1-spreads of PG{3,q) is generalised to a theory of t-
spreads of PG({s + l)(t + 1) — l,q). There is a well developed theory for ^-spreads of
PG(2t + l,q), but so far there are limited results' in other cases. This thesis extends
much of the existing theory to the general case of f-spreads of -PG((s + l)(t + 1) — 1, q).

After a short Introduction containing a literature review, Chapter One of the thesis
gives a brief account of the concepts involved.

In Chapter Two the theory of <-spreads of PG(2t + l,q) is revised, setting the
scene for the generalisation to come in Chapter Three. Most of the work in this Chapter
is well known, but in order to facilitate the later generalisation, some of the presentation
is different from the original. For example the concept of regularity is presented in the
light of the connection between a regulus of PG(2t + 1,5) and the classical Segre Variety
which is the product of a line and a t-dimensional space of PG(2t + 1, q). In addition,
a new and straightforward construction is given for a spread set (originally defined in
[3]) corresponding to a t-spread of PG(2t -f l,q) • This new construction uses the space
Sm{Mn(GF(q))) introduced in [6].

Chapter Three gives results for f-spreads of PG((s + 1)(< + 1) — l,q) suggested
by the theory studied in Chapter Two. A generalised i-spread set of matrices for
certain of these ^-spreads is found and, in addition, the new construction of a spread
set discussed in Chapter Two generalises naturally to give a new but related entity,
to be called a projective t-spread set. This new entity is more general because any
^-spread of PG((s + l)(t + 1) — l,q) admits a projective t-spread set, but not every
^-spread admits a t-spread set. Regularity of a i-spread of PG((s + 1)(< + 1) — 1,5)
is explored using the properties of the classical Segre Variety. Different subvarieties
produce different reguli of a <-spread, and therefore corresponding different types of
regularity. It is shown, however, that all these types are equivalent and coincide with
the usual notion of regularity in the few cases where a definition has previously been
given. The approach developed in this Chapter leads to the construction of an indicator
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set for a ^-spread of PG((s + l)(t + 1) — 1, q), extending the work of [4]. It also yields a
representation for regular i-spreads of PG((s + l)(t + 1) — l,q), generalising that due
to [2] for 1-spreads of PG(3, q). Examples are given to illustrate the ideas presented.

The next Chapter considers certain partial ^-spreads, and in particular those called
k-sets of ^-dimensional subspaces. Some new concepts and results are given. The
definition of fc-sets is then extended to (fc,n)-sets of PG(3t + 2,q), and connections
with work already done by [1] and [5] (in the case of 3 — 2) are explored. A maximal
(fc,n)-set is defined, and its size is determined. A condition guaranteeing that such a
set arises from the construction of [6] is found, and applied to maximal (k, 3)-sets of
PG(b, 3h) and maximal (k, n)-sets of PG(3t + 2,2) when t > 1. An example of a 4-set
((4,2)-set) of lines of PG(5,2) is given, which does not arise from the construction due
to [6]. This set is contained in a spread which contains no regulus.

A short conclusion and suggestions for further research appear in Chapter Five.
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