ON THE TIME BEHAVIOUR OF OKAZAKI FRAGMENTS

KRZYSZTOF BARTOSZEK * AND
WOJCIECH BARTOSZEK,*** Gdańsk University of Technology

Abstract

We find explicit analytical formulae for the time dependence of the probability of the number of Okazaki fragments produced during the process of DNA replication. This extends a result of Cowan on the asymptotic probability distribution of these fragments.

Keywords: DNA replication; quasi-renewal equation; Okazaki fragment
2000 Mathematics Subject Classification: Primary 60K05
Secondary 92B05; 92C45

In a simplified model of DNA replication, Cowan [2] obtained an asymptotic probability distribution for the number of small fragments of DNA produced when the process attains equilibrium. Such fragments are called Okazaki fragments. The reader is referred to [2]-[5] for biological background and details. Let us denote by $N_{t}(\omega)$ the number of Okazaki fragments at the instant $t \geq 0$. This is not a deterministic function, but rather a stochastic process with nonnegative (integer) values. Let $g_{i}(t)=\mathrm{P}\left(N_{t}=i\right)$. Assuming that so-called 'primers' appear according to a Poisson process with intensity λ, it can be proved (see [2], [3], and [6]) that the functions $g_{i}, i=0,1, \ldots$, satisfy the following system of (quasi-renewal) equations:

$$
\begin{align*}
& g_{0}(t)=\mathrm{e}^{-\lambda t}+\int_{0}^{a t} g_{0}(t-y) \lambda \mathrm{e}^{-\lambda y} \mathrm{~d} y, \\
& g_{i}(t)=h_{i}(t)+\int_{0}^{a t} g_{i}(t-y) \lambda \mathrm{e}^{-\lambda y} \mathrm{~d} y, \quad i=1,2, \ldots \tag{1}
\end{align*}
$$

(Readers unfamiliar with the concept of a primer are referred to [3] or [5] for a brief introduction.) The value of the constant $a, 0<a<1$, follows from the model and the functions h_{i}, $i=0,1, \ldots$, are as follows:

$$
h_{i}(t)= \begin{cases}\mathrm{e}^{-\lambda t}, & i=0, \\ \int_{a t}^{t} g_{i-1}(t-y) \lambda \mathrm{e}^{-\lambda y} \mathrm{~d} y, & i=1,2,3, \ldots\end{cases}
$$

A natural question arises as to whether such a system has a (unique) solution. If it does we may try to find formulae for the g_{i}. In his approach in [2], Cowan used the method developed earlier by Piau [6] in his studies of quasi-renewal equations and presented recurrence relationships for $g_{i}=\lim _{t \rightarrow \infty} g_{i}(t), i=0,1, \ldots$ It appears that the g_{i} form a probabilistic distribution on

[^0]the set of nonnegative integers. In proving that the above system has a unique solution, Cowan considered the functions $g_{i}(t)$ to be integrable on each compact subset of \mathbb{R}_{+}. By applying the Laplace transform to $g_{i}(t)$ and using the Euler identity (see [1, p. 19]), Cowan finally calculated the generating function, the first moment, and the variance of the limit distribution g_{i}.

In our approach the $g_{i}(t)$ are considered to be bounded, continuous functions on \mathbb{R}_{+}. We directly prove the existence and uniqueness of such solutions and, as a side effect, obtain explicit formulae for the $g_{i}(t)$. By C_{B} we denote the Banach lattice of all bounded, continuous, realvalued functions on \mathbb{R}_{+}equipped with the supremum norm $\|f\|_{\text {sup }}=\sup _{t \in \mathbb{R}_{+}}|f(t)|$. We also introduce the Banach lattices $C_{\mathrm{B}, u}$ of all real-valued, continuous functions f on finite intervals $[0, u], u>0$, with the same supremum norm (restricted to $t \in[0, u]$). Given a function $f \in C_{\mathrm{B}}$, we define

$$
R(f)(t)=\int_{0}^{a t} f(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s
$$

Clearly R is a positive, linear operator on C_{B}. It is not hard to see that

$$
R\left(\mathbf{1}_{[0, u]} f\right)(t)=\mathbf{1}_{[0, u]}(t) R(f)(t) .
$$

In other words, R leaves $C_{\mathrm{B}, u}$ invariant and its restriction $R \upharpoonright C_{\mathrm{B}, u}$ may therefore be simply denoted R. Note that the operator norm of this restriction is $\left\|R \upharpoonright C_{\mathrm{B}, u}\right\|=1-\mathrm{e}^{-a u}$.

Given a function $h \in C_{\mathrm{B}}$, we define an affine operator

$$
T_{h}: C_{\mathrm{B}} \rightarrow C_{\mathrm{B}} \quad \text { by } \quad T_{h}(f)(t)=h+R(f)(t)
$$

We note that T_{h} also acts on $C_{\mathrm{B}, u}$ and that, for all $f_{1}, f_{2} \in C_{\mathrm{B}, u}$,

$$
\left\|T_{h}\left(f_{1}\right)-T_{h}\left(f_{2}\right)\right\|_{\text {sup }} \leq\left(1-\mathrm{e}^{-a u}\right)\left\|f_{1}-f_{2}\right\|_{\text {sup }}
$$

By the Banach fixed-point theorem,

$$
T_{h}^{n}(f) \rightarrow f_{*, u} \quad \text { uniformly on }[0, u],
$$

where $f_{*, u}$ is a unique fixed-point of $T_{h} \upharpoonright C_{\mathrm{B}, u}$. Clearly there exists a unique $f_{*} \in C_{\mathrm{B}}$ (of course the limit depends on the control function h) such that $f_{*, u}=f_{*} \upharpoonright[0, u]$ and, moreover, for every $f \in C_{\mathrm{B}}, T^{n}(f) \rightarrow f_{*}$ uniformly on every compact subset of R_{+}. We easily find that

$$
T_{h}^{n}(f)(t)=\sum_{k=0}^{n-1} R^{k}(h)(t)+R^{n}(f)(t)
$$

Notice that if we let $h=\mathrm{e}^{-\lambda t}$ then $g_{0}=f_{*}$.
We have just proved that the solution to the equation

$$
g_{0}(t)=\mathrm{e}^{-\lambda t}+\int_{0}^{a t} g_{0}(t-y) \lambda \mathrm{e}^{-\lambda y} \mathrm{~d} y
$$

does exist and is unique. Moreover, it may be obtained as the $\operatorname{limit}_{\lim _{n \rightarrow \infty}} T_{\mathrm{e}^{-\lambda t}}^{n}(f)$, where $f \in C_{\mathrm{B}}$ is arbitrary. Clearly, for each $f \in C_{\mathrm{B}}$, we have $\left\|R^{n}(f)\right\|_{\text {sup }} \rightarrow 0$. The following is a similar result.

Lemma 1. For each $i=0,1, \ldots$, the only solution to (1) has the form $g_{i}=\sum_{k=0}^{\infty} R^{k} h_{i}$, where the series converges uniformly on every compact subset of \mathbb{R}_{+}and is strictly increasing if we start with a positive function $f \in C_{\mathrm{B}}$.

The next lemma is a step towards finding explicit solutions to these equations. Its proof is omitted, as it is a straightforward exercise.

Lemma 2. For any nonnegative integer k and nonnegative real numbers α and λ,

$$
R^{k}\left(t^{\alpha} \mathrm{e}^{-\lambda t}\right)=\lambda^{k}\left(\prod_{j=1}^{k} \frac{1-b^{\alpha+j}}{\alpha+j}\right) t^{\alpha+k} \mathrm{e}^{-\lambda t}
$$

By substituting $\alpha=0$ into this we obtain the following corollary.
Corollary 1. For every $k=0,1, \ldots$, we have

$$
R^{k}\left(\mathrm{e}^{-\lambda t}\right)=\prod_{j=1}^{k}\left(1-b^{j}\right) \frac{(\lambda t)^{k}}{k!} \mathrm{e}^{-\lambda t}
$$

We are now in a position to provide an explicit formula for the function g_{0} and its limit at infinity. It should be noted that (3) has appeared before, in [2].

Proposition 1. We have

$$
\begin{equation*}
g_{0}(t)=\sum_{k=0}^{\infty} \prod_{j=1}^{k}\left(1-b^{j}\right) \frac{(\lambda t)^{k}}{k!} \mathrm{e}^{-\lambda t} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{0}=\lim _{t \rightarrow \infty} g_{0}(t)=\prod_{j=1}^{\infty}\left(1-b^{j}\right) \tag{3}
\end{equation*}
$$

Proof. Equation (2) is a direct application of Corollary 1 and Lemma 1. The second formula follows from two observations: the product $\prod_{j=0}^{k}\left(1-b^{j}\right)$ decreases in k to $\prod_{j=0}^{\infty}\left(1-b^{j}\right)$, and as $t \rightarrow \infty$ the Poisson measure

$$
p_{\lambda t}=\mathrm{e}^{-\lambda t} \sum_{k=0}^{\infty} \frac{(\lambda t)^{k}}{k!} \delta_{k}
$$

tends weakly to δ_{∞}, where δ_{k} denotes the Dirac delta measure.
The following theorem provides explicit formulae for the functions g_{i} and h_{i}, for $i=$ $0,1,2, \ldots$.

Theorem 1. We have

$$
g_{i}(t)=\sum_{n_{0}=0, \ldots, n_{i}=0}^{\infty} \frac{\prod_{j=1}^{n_{0}+\cdots+n_{i}+i}\left(1-b^{j}\right) \prod_{k=1}^{i} b^{n_{1}+\cdots+n_{k}+k}}{\prod_{k=1}^{i}\left(1-b^{n_{1}+\cdots+n_{k}+k}\right)} \frac{(\lambda t)^{n_{0}+\cdots+n_{i}+i}}{\left(n_{0}+\cdots+n_{i}+i\right)!} \mathrm{e}^{-\lambda t}
$$

and

$$
h_{i}(t)=\sum_{n_{1}=0, \ldots, n_{i}=0}^{\infty} \frac{\prod_{j=1}^{n_{1}+\cdots+n_{i}+i}\left(1-b^{j}\right) \prod_{k=1}^{i} b^{n_{1}+\cdots+n_{k}+k}}{\prod_{k=1}^{i}\left(1-b^{n_{1}+\cdots+n_{k}+k}\right)} \frac{(\lambda t)^{n_{1}+\cdots+n_{i}+i}}{\left(n_{1}+\cdots+n_{i}+i\right)!} \mathrm{e}^{-\lambda t}
$$

Proof. We have already discussed the case $i=0$ (see Corollary 1). Applying the induction method, let us assume that the formula holds for $i-1$. Elementary calculus yields

$$
\begin{aligned}
\int_{a t}^{t}(t-s)^{n_{0}+\cdots+n_{i-1}+i-1} \mathrm{e}^{-\lambda(t-s)} \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s & =\lambda \int_{a t}^{t}(t-s)^{n_{0}+\cdots+n_{i-1}+i-1} \mathrm{e}^{-\lambda t} \mathrm{~d} s \\
& =\left.\lambda \mathrm{e}^{-\lambda t}\left(-\frac{(t-s)^{n_{0}+\cdots+n_{i-1}+i}}{\left(n_{0}+\cdots+n_{i-1}+i\right)!}\right)\right|_{a t} ^{t} \\
& =\lambda \mathrm{e}^{-\lambda t} \frac{(t-a t)^{n_{0}+\cdots+n_{i-1}+i}}{\left(n_{0}+\cdots+n_{i-1}+i\right)!} \\
& =\lambda \mathrm{e}^{-\lambda t} \frac{b^{n_{0}+\cdots+n_{i-1}+i} t^{n_{0}+\cdots+n_{i-1}+i}}{\left(n_{0}+\cdots+n_{i-1}+i\right)!}
\end{aligned}
$$

In order to keep our proof compact we make the following abbreviations:

$$
\begin{gathered}
L_{i}=\left(\prod_{j=1}^{n_{0}+\cdots+n_{i}+i}\left(1-b^{j}\right)\right) \prod_{k=1}^{i} \frac{b^{n_{1}+\cdots+n_{k}+k}}{1-b^{n_{1}+\cdots+n_{k}+k}} \frac{1}{\left(n_{0}+\cdots+n_{i}+i\right)!} \\
\Lambda_{i}(t)=\frac{(\lambda t)^{n_{0}+\cdots+n_{i-1}+i}}{\left(n_{0}+\cdots+n_{i-1}+i\right)!} \mathrm{e}^{-\lambda t}
\end{gathered}
$$

Now

$$
\begin{aligned}
& h_{i}(t) \\
&=\int_{a t}^{t} g_{i-1}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s \\
&=\int_{a t}^{t} \sum_{n_{0}=0, \ldots, n_{i-1}=0}^{\infty} L_{i-1} \frac{\lambda^{n_{0}+\cdots+n_{i-1}+i-1}(t-s)^{n_{0}+\cdots+n_{i-1}+i-1}}{\left(n_{0}+\cdots+n_{i-1}+i-1\right)!} \mathrm{e}^{-\lambda(t-s)} \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s \\
&=\sum_{n_{0}=0, \ldots, n_{i-1}=0}^{\infty} L_{i-1} \frac{\lambda^{n_{0}+\cdots+n_{i-1}+i-1}}{\left(n_{0}+\cdots+n_{i-1}+i-1\right)!} \int_{a t}^{t}(t-s)^{n_{0}+\cdots+n_{i-1}+i-1} \mathrm{e}^{-\lambda(t-s)} \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s \\
&=\sum_{n_{0}=0, \ldots, n_{i-1}=0}^{\infty} L_{i-1} \frac{\lambda^{n_{0}+\cdots+n_{i-1}+i-1}}{\left(n_{0}+\cdots+n_{i-1}+i-1\right)!} \lambda \mathrm{e}^{-\lambda t} \frac{b^{n_{0}+\cdots+n_{i-1}+i} t^{n_{0}+\cdots+n_{i-1}+i}}{\left(n_{0}+\cdots+n_{i-1}+i\right)!} \\
&=\sum_{n_{0}=0, \ldots, n_{i-1}=0}^{\infty} L_{i-1} b^{n_{0}+\cdots+n_{i-1}+i} \frac{(\lambda t)^{n_{0}+\cdots+n_{i-1}+i}}{\left(n_{0}+\cdots+n_{i-1}+i\right)!} \mathrm{e}^{-\lambda t} \\
&=\sum_{n_{0}=0, \ldots, n_{i-1}=0}^{\infty} L_{i-1}\left(1-b^{n_{0}+\cdots+n_{i-1}+i}\right) \frac{b^{n_{0}+\cdots+n_{i-1}+i}}{1-b^{n_{0}+\cdots+n_{i-1}+i}} \frac{(\lambda t)^{n_{0}+\cdots+n_{i-1}+i}}{\left(n_{0}+\cdots+n_{i-1}+i\right)!} \mathrm{e}^{-\lambda t} \\
&=\sum_{n_{0}=0, \ldots, n_{i-1}=0}^{\infty} \prod_{j=1}^{\infty} \prod_{n_{0}+\cdots+n_{i-1}+i}^{\left(1-b^{j}\right)} \frac{\prod_{k=1}^{i-1} b^{n_{1}+\cdots+n_{k}+k}}{\prod_{k=1}^{i-1}\left(1-b^{n_{1}+\cdots+n_{k}+k}\right.} \frac{b^{n_{1}+\cdots+n_{i-1}+n_{0}+i}}{1-b^{n_{1}+\cdots+n_{i-1}+n_{0}+i}} \Lambda_{i}(t) .
\end{aligned}
$$

By renaming the index n_{0} as n_{i} in the above summation, we obtain

$$
h_{i}(t)=\sum_{n_{1}=0, \ldots, n_{i}=0}^{\infty} \prod_{j=1}^{n_{1}+\cdots+n_{i}+i}\left(1-b^{j}\right) \frac{\prod_{k=1}^{i} b^{n_{1}+\cdots+n_{k}+k}}{\prod_{k=1}^{i}\left(1-b^{n_{1}+\cdots+n_{k}+k}\right)} \frac{(\lambda t)^{n_{1}+\cdots+n_{i}+i}}{\left(n_{1}+\cdots+n_{i}+i\right)!} \mathrm{e}^{-\lambda t} .
$$

Applying Lemmas 1 and 2 yields

$$
\begin{aligned}
& g_{i}(t)= \sum_{n_{0}=0}^{\infty} R^{n_{0}}\left(h_{i}\right)(t) \\
&= \sum_{n_{0}=0}^{\infty} \sum_{n_{1}=0, \ldots, n_{i}=0}^{\infty} \frac{\prod_{j=1}^{n_{1}+\cdots+n_{i}+i}\left(1-b^{j}\right) \prod_{k=1}^{i} b^{n_{1}+\cdots+n_{k}+k}}{\prod_{k=1}^{i}\left(1-b^{n_{1}+\cdots+n_{k}+k}\right)} \\
& \times R^{n_{0}\left(\frac{(\lambda t)^{n_{1}+\cdots+n_{i}+i}}{\left(n_{1}+\cdots+n_{i}+i\right)!} \mathrm{e}^{-\lambda t}\right)} \\
&=\sum_{n_{0}=0, \ldots, n_{i}=0}^{\infty} \frac{\prod_{j=1}^{n_{1}+\cdots+n_{i}+i}\left(1-b^{j}\right) \prod_{k=1}^{i} b^{n_{1}+\cdots+n_{k}+k}}{\prod_{k=1}^{i}\left(1-b^{n_{1}+\cdots+n_{k}+k}\right)} \frac{\lambda^{n_{1}+\cdots+n_{i}+i}}{\left(n_{1}+\cdots+n_{i}+i\right)!} \\
& \times \lambda^{n_{0}} \prod_{k=1}^{n_{0}} \frac{1-b^{n_{1}+\cdots+n_{i}+i+k}}{n_{1}+\cdots+n_{i}+i+k} t^{n_{0}+\cdots+n_{i}+i} \mathrm{e}^{-\lambda t} \\
&= \sum_{n_{0}=0, \ldots, n_{i}=0}^{\infty} \frac{\prod_{j=1}^{n_{0}+\cdots+n_{i}+i}\left(1-b^{j}\right) \prod_{k=1}^{i} b^{n_{1}+\cdots+n_{k}+k}}{\prod_{k=1}^{i}\left(1-b^{n_{1}+\cdots+n_{k}+k}\right)} \frac{(\lambda t)^{n_{0}+\cdots+n_{i}+i}}{\left(n_{0}+\cdots+n_{i}+i\right)!} \mathrm{e}^{-\lambda t} .
\end{aligned}
$$

The results of the theorem now follow by induction.
The next theorem describes the asymptotics.
Theorem 2. For each $i>0$, we have

$$
\begin{aligned}
g_{i}=\lim _{t \rightarrow \infty} g_{i}(t) & =\prod_{j=1}^{\infty}\left(1-b^{j}\right) \sum_{n_{1}=0, \ldots, n_{i}=0}^{\infty} \prod_{k=1}^{i} \frac{b^{n_{1}+\cdots+n_{k}+k}}{1-b^{n_{1}+\cdots+n_{k}+k}} \\
& =\prod_{j=1}^{\infty}\left(1-b^{j}\right) \sum_{n_{1}=1, \ldots, n_{i}=1}^{\infty} \prod_{k=1}^{i} \frac{b^{n_{1}+\cdots+n_{k}}}{1-b^{n_{1}+\cdots+n_{k}}} .
\end{aligned}
$$

Proof. Note that

$$
g_{i}(t)=\sum_{n_{1}=0, \ldots, n_{i}=0}^{\infty} \prod_{k=1}^{i} \frac{b^{n_{1}+\cdots+n_{k}+k}}{1-b^{n_{1}+\cdots+n_{k}}} \sum_{n_{0}=0}^{\infty} \prod_{j=1}^{n_{0}+\cdots+n_{i}+i}\left(1-b^{j}\right) \frac{(\lambda t)^{n_{0}+\cdots+n_{i}+i}}{\left(n_{0}+\cdots+n_{i}+i\right)!} \mathrm{e}^{-\lambda t} .
$$

Using the same argument as in the proof of Proposition 1 for fixed values $n_{1}, \ldots, n_{i} \geq 0$, we obtain

$$
\begin{aligned}
\lim _{t \rightarrow \infty} & \sum_{n_{0}=0}^{\infty} \prod_{j=1}^{n_{0}+\cdots+n_{i}+i}\left(1-b^{j}\right) \frac{(\lambda t)^{n_{0}+\cdots+n_{i}+i}}{\left(n_{0}+\cdots+n_{i}+i\right)!} \mathrm{e}^{-\lambda t} \\
& =\prod_{j=1}^{\infty}\left(1-b^{j}\right) \lim _{t \rightarrow \infty}\left(1-\sum_{k=0}^{n_{1}+\cdots+n_{i}+i-1} \frac{(\lambda t)^{k}}{k!} \mathrm{e}^{-\lambda t}\right) \\
& =\prod_{j=1}^{\infty}\left(1-b^{j}\right) .
\end{aligned}
$$

The claim (in its first form) now follows from the Lebesgue convergence theorem and the fact that the series

$$
\sum_{n_{1}=0, \ldots, n_{i}=0}^{\infty} \prod_{k=1}^{i} \frac{b^{n_{1}+\cdots+n_{k}+k}}{1-b^{n_{1}+\cdots+n_{k}}}
$$

converges absolutely. Changing each summation to start at 1 instead of 0 yields the claim in its second form.

An application of the geometric formula yields the following corollary.
Corollary 2. For each $i=1,2, \ldots$, we have

$$
g_{i}=\prod_{j=1}^{\infty}\left(1-b^{j}\right) \sum_{n_{1}=1, \ldots, n_{i}=1}^{\infty} \prod_{k=1}^{i} \sum_{l=1}^{\infty} b^{\left(n_{1}+\cdots+n_{k}\right) l}
$$

We will reduce the above multiple series to a simpler recurrence expression. Note that

$$
\begin{aligned}
& \sum_{n_{1}=1, \ldots, n_{i}=1}^{\infty} \frac{b^{n_{1}+\cdots+n_{i}}}{1-b^{n_{1}+\cdots+n_{i}}} \frac{b^{n_{2}+\cdots+n_{i}}}{1-b^{n_{2}+\cdots+n_{i}}} \cdots \frac{b^{n_{i}}}{1-b^{n_{i}}} \\
& \quad=\sum_{m_{i}=i}^{\infty} \frac{b^{m_{i}}}{1-b^{m_{i}}} \sum_{m_{i-1}=i-1}^{m_{i}-1} \frac{b^{m_{i-1}}}{1-b^{m_{i-1}}} \sum_{m_{i-2}=i-2}^{m_{i-1}-1} \frac{b^{m_{i-2}}}{1-b^{m_{i-2}}} \cdots \sum_{m_{1}=1}^{m_{2}-1} \frac{b^{m_{1}}}{1-b^{m_{1}}} .
\end{aligned}
$$

For given natural numbers i and $r, r \geq i$, we define

$$
\Psi_{i, r}(b)=\sum_{m_{i-1}=i-1}^{r-1} \frac{b^{m_{i-1}}}{1-b^{m_{i-1}}} \sum_{m_{i-2}=i-2}^{m_{i-1}-1} \frac{b^{m_{i-2}}}{1-b^{m_{i-2}}} \cdots \sum_{m_{1}=1}^{m_{2}-1} \frac{b^{m_{1}}}{1-b^{m_{1}}} .
$$

Clearly, for $s \geq i+1$, we have

$$
\Psi_{i+1, s}(b)=\sum_{r=i}^{s-1} \frac{b^{r}}{1-b^{r}} \Psi_{i, r}(b),
$$

where we have set $\Psi_{1, r}(b) \equiv 1$ for all $r \geq 1$.

Figure 1.
We are now in a position to present the promised recursion formula for g_{i}.
Proposition 2. For each natural number i, we have

$$
g_{i}=\prod_{j=1}^{\infty}\left(1-b^{j}\right) \sum_{m=i}^{\infty} \frac{b^{m}}{1-b^{m}} \Psi_{i, m}(b)
$$

Remark 1. In [2] another representation for g_{i} can be found:

$$
g_{i}=\sum_{m=i}^{\infty}(-1)^{m-i}\binom{m}{i} \prod_{k=1}^{m} \frac{b^{k}}{1-b^{k}}
$$

The above formulae were used to evaluate the values g_{0}, \ldots, g_{10} for $\lambda=1$ and $b=0.6$ (programming in C):

$$
\begin{array}{ll}
g_{0}=0.1431293315359, & g_{1}=0.3852183066464, \\
g_{2}=0.3269335487938, & g_{3}=0.1204847773561, \\
g_{4}=0.0220251599091, & g_{5}=0.0021441293616, \\
g_{6}=0.0001159472975, & g_{7}=0.0000035766460, \\
g_{8}=0.0000000640275, & g_{9}=0.0000000006727, \\
& g_{10}=0.000000000004
\end{array}
$$

Furthermore, we include a diagram (see Figure 1), produced using MATHEMATICA ${ }^{\circledR}$, which contains sketches of the functions $g_{0}(t), g_{1}(t), g_{2}(t)$, and $g_{3}(t)$. We display them to give a general idea of what these functions look like: no formal numerical analysis or error evaluation was performed. As before, $\lambda=1$ and $b=0.6$.

To finish the paper we will prove that $\mathfrak{g}=\left\{g_{i}\right\}_{i=0}^{\infty}$ defines a probability distribution on the positive integers (i.e. that $\sum_{i=0}^{\infty} g_{i}=1$), and find its moments. For the convenience of the reader and completeness of the paper, we include all details (some ideas are adopted from [3] and [5]). Let us write

$$
n_{k}(t)=\mathrm{E}\left(N_{t}^{k}\right), \quad k=0,1, \ldots, t \geq 0
$$

Since $0^{0}=1$, we have $n_{0}(t) \equiv 1$. Clearly, for every t and k, the moments $n_{k}(t)$ exist (notice that for a fixed $t \geq 0$ the process N_{t} is dominated by the classical Poisson process). The existence
of $\lim _{t \rightarrow \infty} n_{1}(t)<\infty$ implies that the distribution \mathfrak{g} is nondegenerate (i.e. that $\sum_{i=0}^{\infty} g_{i}=1$). More generally,

$$
\lim _{t \rightarrow \infty} n_{k+1}(t)<\infty
$$

implies that the k th moment of \mathfrak{g} is finite. We will find a formula for $n_{k}(t)$. Our approach is direct and requires solving linear differential equations. Let T denote the time we have to wait before the first primer appears. We begin (cf. [3]) with

$$
\begin{align*}
n_{k}(t) & =\int_{0}^{a t} \mathrm{E}\left(N_{t}^{k} \mid T=s\right) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s+\int_{a t}^{t} \mathrm{E}\left(N_{t}^{k} \mid T=s\right) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s \\
& =\int_{0}^{a t} \mathrm{E}\left(N_{t-s}^{k}\right) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s+\int_{a t}^{t} \mathrm{E}\left(N_{t-s}+1\right)^{k} \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s \\
& =\int_{0}^{a t} n_{k}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s+\int_{a t}^{t} \sum_{j=0}^{k}\binom{k}{j} n_{j}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s \\
& =\int_{0}^{a t} n_{k}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s+\int_{a t}^{t} n_{k}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s+\sum_{j=0}^{k-1}\binom{k}{j} \int_{a t}^{t} n_{j}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s \\
& =\int_{0}^{t} n_{k}(s) \lambda \mathrm{e}^{-\lambda t+\lambda s} \mathrm{~d} s+\sum_{j=0}^{k-1}\binom{k}{j} \int_{a t}^{t} n_{j}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s \\
& =\mathrm{e}^{-\lambda t} \int_{0}^{t} n_{k}(s) \lambda \mathrm{e}^{\lambda s} \mathrm{~d} s+\sum_{j=0}^{k-1}\binom{k}{j} \int_{a t}^{t} n_{j}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s \tag{4}
\end{align*}
$$

It follows from this representation that the functions n_{k} (since they are measurable) belong to $C^{\infty}\left(\mathbb{R}_{+}\right)$. By differentiating both sides we obtain

$$
\begin{aligned}
n_{k}^{\prime}(t)= & -\lambda \mathrm{e}^{-\lambda t} \int_{0}^{t} n_{k}(s) \lambda \mathrm{e}^{\lambda s} \mathrm{~d} s+\mathrm{e}^{-\lambda t} n_{k}(t) \lambda \mathrm{e}^{\lambda t} \\
& +\sum_{j=0}^{k-1}\binom{k}{j}\left[n_{j}(0) \lambda \mathrm{e}^{-\lambda t}-a n_{j}(t-a t) \lambda \mathrm{e}^{-\lambda a t}+\int_{a t}^{t} n_{j}^{\prime}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s\right]
\end{aligned}
$$

Note that $n_{j}(0)=1$ if $j=0$ and $n_{j}(0)=0$ for $j \geq 1$. It follows that

$$
\begin{align*}
n_{k}^{\prime}(t)= & -\lambda \mathrm{e}^{-\lambda t} \int_{0}^{t} n_{k}(s) \lambda \mathrm{e}^{\lambda s} \mathrm{~d} s+\lambda n_{k}(t)+\lambda \mathrm{e}^{-\lambda t} \\
& +\sum_{j=0}^{k-1}\binom{k}{j}\left[\int_{a t}^{t} n_{j}^{\prime}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s-a n_{j}((1-a) t) \lambda \mathrm{e}^{-\lambda a t}\right] . \tag{5}
\end{align*}
$$

Using (4), we obtain

$$
\mathrm{e}^{-\lambda t} \int_{0}^{t} n_{k}(s) \lambda \mathrm{e}^{\lambda s} \mathrm{~d} s=n_{k}(t)-\sum_{j=0}^{k-1}\binom{k}{j} \int_{a t}^{t} n_{j}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s
$$

Substituting this into (5) yields

$$
\begin{align*}
n_{k}^{\prime}(t)= & -\lambda\left[n_{k}(t)-\sum_{j=0}^{k-1}\binom{k}{j} \int_{a t}^{t} n_{j}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s\right] \\
& +\lambda n_{k}(t)+\lambda \mathrm{e}^{-\lambda t}+\sum_{j=0}^{k-1}\binom{k}{j}\left[\int_{a t}^{t} n_{j}^{\prime}(t-s) \lambda \mathrm{e}^{-\lambda s} \mathrm{~d} s-a n_{j}((1-a) t) \lambda \mathrm{e}^{-\lambda a t}\right] \\
= & \lambda^{2} \sum_{j=0}^{k-1}\binom{k}{j} \int_{a t}^{t} n_{j}(t-s) \mathrm{e}^{-\lambda s} \mathrm{~d} s+\lambda \mathrm{e}^{-\lambda t} \\
& +\lambda \sum_{j=0}^{k-1}\binom{k}{j}\left[\int_{a t}^{t} n_{j}^{\prime}(t-s) \mathrm{e}^{-\lambda s} \mathrm{~d} s-a n_{j}(b t) \mathrm{e}^{-\lambda a t}\right] \tag{6}
\end{align*}
$$

Using the above recursion scheme and the induction principle, we easily obtain the following result.
Corollary 3. There exist constants $\beta_{k, j}>0, C_{k}>0$, and $\alpha_{k, j}$ and a natural number L_{k} such that, for each $k \geq 0$, we have

$$
n_{k}(t)=\sum_{j=1}^{L_{k}} \alpha_{k, j} \mathrm{e}^{-\beta_{k, j} t}+C_{k}
$$

In particular,

$$
\lim _{t \rightarrow \infty} n_{k}(t)=\lim _{t \rightarrow \infty} \sum_{i=0}^{\infty} i^{k} g_{i}(t)=\sum_{i=0}^{\infty} i^{k} g_{i}=C_{k}<\infty
$$

(all moments of the asymptotic distribution \mathfrak{g} are finite).
Setting $k=1$ in (6) yields

$$
n_{1}^{\prime}(t)=\lambda^{2} \int_{a t}^{t} \mathrm{e}^{-\lambda s} \mathrm{~d} s+\lambda \mathrm{e}^{-\lambda t}-a \lambda \mathrm{e}^{-\lambda a t}=\lambda(1-a) \mathrm{e}^{-\lambda a t} .
$$

It follows that

$$
n_{1}(t)=\int \lambda(1-a) \mathrm{e}^{-\lambda a t} \mathrm{~d} t=-\frac{1-a}{a} \mathrm{e}^{-\lambda a t}+C .
$$

Clearly $C=(1-a) / a$, since $\lim _{t \rightarrow 0^{+}} n_{1}(t)=0$. As a result we obtain the next corollary.
Corollary 4. For all $t \geq 0$, we have $n_{1}(t)=(1-a)\left(1-\mathrm{e}^{-\lambda a t}\right) / a$. It follows that

$$
\mu=\sum_{i=0}^{\infty} i g_{i}=\lim _{t \rightarrow \infty} n_{1}(t)=\frac{1-a}{a}
$$

In order to find the second moment and variance, we set $k=2$ in (6). After several elementary calculations, we obtain

$$
n_{2}^{\prime}(t)=\lambda \frac{(1-a)(2-a)}{a} \mathrm{e}^{-\lambda a t}-2 \lambda \frac{(1-a)^{2}}{a} \mathrm{e}^{-\lambda a(2-a) t}
$$

Integrating the last equation and taking into account the fact that $n_{2}(0)=0$ for all $t \geq 0$ yields our final corollary.

Figure 2.

Corollary 5. We have

$$
n_{2}(t)=\frac{2(1-a)^{2}}{a^{2}(2-a)} \mathrm{e}^{-\lambda a(2-a) t}-\frac{(1-a)(2-a)}{a^{2}} \mathrm{e}^{-\lambda a t}+\frac{(1-a)\left(a^{2}-2 a+2\right)}{a^{2}(2-a)} .
$$

It follows that

$$
\lim _{t \rightarrow \infty} n_{2}(t)=\frac{(1-a)\left(a^{2}-2 a+2\right)}{a^{2}(2-a)}
$$

In particular,

$$
\operatorname{var}(\mathfrak{g})=\lim _{t \rightarrow \infty}\left(n_{2}(t)-n_{1}(t)^{2}\right)=\frac{1-a}{1-(1-a)^{2}} .
$$

In Figure 2 we display the graphs of the functions $n_{1}(t)$ and $n_{2}(t)$ for $\lambda=1$ and $a=1-b=0.4$.

References

[1] Andrews, G. (1976). The Theory of Partitions (Encyclopaedia Math. Appl. 2). Addison-Wesley, Reading, MA.
[2] Cowan, R. (2001). A new discrete distribution arising in a model of DNA replication. J. Appl. Prob. 38, 754-760.
[3] Cowan, R. (2003). Stochastic models for DNA replication. In Handbook of Statistics, Vol. 21, eds D. N. Shanbhag et al., North-Holland, Amsterdam, pp. 137-166.
[4] Cowan, R. and Chiu, S. N. (1994). A stochastic model of fragment formation when DNA replicates. J. Appl. Prob. 31, 301-308.
[5] Lachal, A. (2003). Some probability distributions in modeling DNA replication. Ann. Appl. Prob. 13, 12071230.
[6] PiaU, D. (2000). Quasi-renewal estimates. J. Appl. Prob. 37, 269-275, 1171-1172.

[^0]: Received 11 November 2005; revision received 6 January 2006.

 * Postal address: Department of Mathematics, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-952 Gdańsk Wrzeszcz, Poland.
 ** Email address: bartowk@mifgate.mif.pg.gda.pl

