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Abstract

We find explicit analytical formulae for the time dependence of the probability of the
number of Okazaki fragments produced during the process of DNA replication. This
extends a result of Cowan on the asymptotic probability distribution of these fragments.
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In a simplified model of DNA replication, Cowan [2] obtained an asymptotic probability
distribution for the number of small fragments of DNA produced when the process attains
equilibrium. Such fragments are called Okazaki fragments. The reader is referred to [2]–[5]
for biological background and details. Let us denote by Nt(ω) the number of Okazaki fragments
at the instant t ≥ 0. This is not a deterministic function, but rather a stochastic process with
nonnegative (integer) values. Let gi(t) = P(Nt = i). Assuming that so-called ‘primers’ appear
according to a Poisson process with intensity λ, it can be proved (see [2], [3], and [6]) that the
functions gi , i = 0, 1, . . . , satisfy the following system of (quasi-renewal) equations:

g0(t) = e−λt +
∫ at

0
g0(t − y)λe−λy dy,

gi(t) = hi(t) +
∫ at

0
gi(t − y)λe−λy dy, i = 1, 2, . . . .

(1)

(Readers unfamiliar with the concept of a primer are referred to [3] or [5] for a brief introduction.)
The value of the constant a, 0 < a < 1, follows from the model and the functions hi ,
i = 0, 1, . . . , are as follows:

hi(t) =

⎧⎪⎨
⎪⎩

e−λt , i = 0,∫ t

at

gi−1(t − y)λe−λy dy, i = 1, 2, 3, . . . .

A natural question arises as to whether such a system has a (unique) solution. If it does we may
try to find formulae for the gi . In his approach in [2], Cowan used the method developed earlier
by Piau [6] in his studies of quasi-renewal equations and presented recurrence relationships for
gi = limt→∞ gi(t), i = 0, 1, . . . . It appears that the gi form a probabilistic distribution on
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Time behaviour of Okazaki fragments 501

the set of nonnegative integers. In proving that the above system has a unique solution, Cowan
considered the functions gi(t) to be integrable on each compact subset of R+. By applying the
Laplace transform to gi(t) and using the Euler identity (see [1, p. 19]), Cowan finally calculated
the generating function, the first moment, and the variance of the limit distribution gi .

In our approach the gi(t) are considered to be bounded, continuous functions on R+. We
directly prove the existence and uniqueness of such solutions and, as a side effect, obtain explicit
formulae for the gi(t). By CB we denote the Banach lattice of all bounded, continuous, real-
valued functions on R+ equipped with the supremum norm ‖f ‖sup = supt∈R+ |f (t)|. We also
introduce the Banach lattices CB,u of all real-valued, continuous functions f on finite intervals
[0, u], u > 0, with the same supremum norm (restricted to t ∈ [0, u]). Given a function
f ∈ CB, we define

R(f )(t) =
∫ at

0
f (t − s)λe−λs ds.

Clearly R is a positive, linear operator on CB. It is not hard to see that

R(1[0,u]f )(t) = 1[0,u](t)R(f )(t).

In other words, R leaves CB,u invariant and its restriction R � CB,u may therefore be simply
denoted R. Note that the operator norm of this restriction is ‖R � CB,u‖ = 1 − e−au.

Given a function h ∈ CB, we define an affine operator

Th : CB → CB by Th(f )(t) = h + R(f )(t).

We note that Th also acts on CB,u and that, for all f1, f2 ∈ CB,u,

‖Th(f1) − Th(f2)‖sup ≤ (1 − e−au)‖f1 − f2‖sup.

By the Banach fixed-point theorem,

T n
h (f ) → f∗,u uniformly on [0, u],

where f∗,u is a unique fixed-point of Th � CB,u. Clearly there exists a unique f∗ ∈ CB (of
course the limit depends on the control function h) such that f∗,u = f∗ � [0, u] and, moreover,
for every f ∈ CB, T n(f ) → f∗ uniformly on every compact subset of R+. We easily find that

T n
h (f )(t) =

n−1∑
k=0

Rk(h)(t) + Rn(f )(t).

Notice that if we let h = e−λt then g0 = f∗.
We have just proved that the solution to the equation

g0(t) = e−λt +
∫ at

0
g0(t − y)λe−λy dy

does exist and is unique. Moreover, it may be obtained as the limit limn→∞ T n
e−λt (f ), where

f ∈ CB is arbitrary. Clearly, for each f ∈ CB, we have ‖Rn(f )‖sup → 0. The following is a
similar result.

Lemma 1. For each i = 0, 1, . . . , the only solution to (1) has the form gi = ∑∞
k=0 Rkhi ,

where the series converges uniformly on every compact subset of R+ and is strictly increasing
if we start with a positive function f ∈ CB.
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The next lemma is a step towards finding explicit solutions to these equations. Its proof is
omitted, as it is a straightforward exercise.

Lemma 2. For any nonnegative integer k and nonnegative real numbers α and λ,

Rk(tαe−λt ) = λk

( k∏
j=1

1 − bα+j

α + j

)
tα+ke−λt .

By substituting α = 0 into this we obtain the following corollary.

Corollary 1. For every k = 0, 1, . . . , we have

Rk(e−λt ) =
k∏

j=1

(1 − bj )
(λt)k

k! e−λt .

We are now in a position to provide an explicit formula for the function g0 and its limit at
infinity. It should be noted that (3) has appeared before, in [2].

Proposition 1. We have

g0(t) =
∞∑

k=0

k∏
j=1

(1 − bj )
(λt)k

k! e−λt (2)

and

g0 = lim
t→∞ g0(t) =

∞∏
j=1

(1 − bj ). (3)

Proof. Equation (2) is a direct application of Corollary 1 and Lemma 1. The second formula
follows from two observations: the product

∏k
j=0(1 − bj ) decreases in k to

∏∞
j=0(1 − bj ),

and as t → ∞ the Poisson measure

pλt = e−λt
∞∑

k=0

(λt)k

k! δk

tends weakly to δ∞, where δk denotes the Dirac delta measure.

The following theorem provides explicit formulae for the functions gi and hi , for i =
0, 1, 2, . . . .

Theorem 1. We have

gi(t) =
∞∑

n0=0,...,ni=0

∏n0+···+ni+i
j=1 (1 − bj )

∏i
k=1 bn1+···+nk+k

∏i
k=1(1 − bn1+···+nk+k)

(λt)n0+···+ni+i

(n0 + · · · + ni + i)!e−λt

and

hi(t) =
∞∑

n1=0,...,ni=0

∏n1+···+ni+i
j=1 (1 − bj )

∏i
k=1 bn1+···+nk+k

∏i
k=1(1 − bn1+···+nk+k)

(λt)n1+···+ni+i

(n1 + · · · + ni + i)!e−λt .
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Proof. We have already discussed the case i = 0 (see Corollary 1). Applying the induction
method, let us assume that the formula holds for i − 1. Elementary calculus yields

∫ t

at

(t − s)n0+···+ni−1+i−1e−λ(t−s)λe−λs ds = λ

∫ t

at

(t − s)n0+···+ni−1+i−1e−λt ds

= λe−λt

(
− (t − s)n0+···+ni−1+i

(n0 + · · · + ni−1 + i)!
)∣∣∣∣

t

at

= λe−λt (t − at)n0+···+ni−1+i

(n0 + · · · + ni−1 + i)!

= λe−λt b
n0+···+ni−1+i tn0+···+ni−1+i

(n0 + · · · + ni−1 + i)! .

In order to keep our proof compact we make the following abbreviations:

Li =
(n0+···+ni+i∏

j=1

(1 − bj )

) i∏
k=1

bn1+···+nk+k

1 − bn1+···+nk+k

1

(n0 + · · · + ni + i)! ,

�i(t) = (λt)n0+···+ni−1+i

(n0 + · · · + ni−1 + i)!e−λt .

Now

hi(t)

=
∫ t

at

gi−1(t − s)λe−λs ds

=
∫ t

at

∞∑
n0=0,...,ni−1=0

Li−1
λn0+···+ni−1+i−1(t − s)n0+···+ni−1+i−1

(n0 + · · · + ni−1 + i − 1)! e−λ(t−s)λe−λs ds

=
∞∑

n0=0,...,ni−1=0

Li−1
λn0+···+ni−1+i−1

(n0 + · · · + ni−1 + i − 1)!
∫ t

at

(t − s)n0+···+ni−1+i−1e−λ(t−s)λe−λs ds

=
∞∑

n0=0,...,ni−1=0

Li−1
λn0+···+ni−1+i−1

(n0 + · · · + ni−1 + i − 1)!λe−λt b
n0+···+ni−1+i tn0+···+ni−1+i

(n0 + · · · + ni−1 + i)!

=
∞∑

n0=0,...,ni−1=0

Li−1b
n0+···+ni−1+i (λt)n0+···+ni−1+i

(n0 + · · · + ni−1 + i)!e−λt

=
∞∑

n0=0,...,ni−1=0

Li−1(1 − bn0+···+ni−1+i )
bn0+···+ni−1+i

1 − bn0+···+ni−1+i

(λt)n0+···+ni−1+i

(n0 + · · · + ni−1 + i)!e−λt

=
∞∑

n0=0,...,ni−1=0

n0+···+ni−1+i∏
j=1

(1 − bj )

∏i−1
k=1 bn1+···+nk+k

∏i−1
k=1(1 − bn1+···+nk+k)

bn1+···+ni−1+n0+i

1 − bn1+···+ni−1+n0+i
�i(t).

https://doi.org/10.1239/jap/1152413737 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413737


504 K. BARTOSZEK AND W. BARTOSZEK

By renaming the index n0 as ni in the above summation, we obtain

hi(t) =
∞∑

n1=0,...,ni=0

n1+···+ni+i∏
j=1

(1 − bj )

∏i
k=1 bn1+···+nk+k

∏i
k=1(1 − bn1+···+nk+k)

(λt)n1+···+ni+i

(n1 + · · · + ni + i)!e−λt .

Applying Lemmas 1 and 2 yields

gi(t) =
∞∑

n0=0

Rn0(hi)(t)

=
∞∑

n0=0

∞∑
n1=0,...,ni=0

∏n1+···+ni+i
j=1 (1 − bj )

∏i
k=1 bn1+···+nk+k

∏i
k=1(1 − bn1+···+nk+k)

× Rn0

(
(λt)n1+···+ni+i

(n1 + · · · + ni + i)!e−λt

)

=
∞∑

n0=0,...,ni=0

∏n1+···+ni+i
j=1 (1 − bj )

∏i
k=1 bn1+···+nk+k

∏i
k=1(1 − bn1+···+nk+k)

λn1+···+ni+i

(n1 + · · · + ni + i)!

× λn0

n0∏
k=1

1 − bn1+···+ni+i+k

n1 + · · · + ni + i + k
tn0+···+ni+ie−λt

=
∞∑

n0=0,...,ni=0

∏n0+···+ni+i
j=1 (1 − bj )

∏i
k=1 bn1+···+nk+k

∏i
k=1(1 − bn1+···+nk+k)

(λt)n0+···+ni+i

(n0 + · · · + ni + i)!e−λt .

The results of the theorem now follow by induction.

The next theorem describes the asymptotics.

Theorem 2. For each i > 0, we have

gi = lim
t→∞ gi(t) =

∞∏
j=1

(1 − bj )

∞∑
n1=0,...,ni=0

i∏
k=1

bn1+···+nk+k

1 − bn1+···+nk+k

=
∞∏

j=1

(1 − bj )

∞∑
n1=1,...,ni=1

i∏
k=1

bn1+···+nk

1 − bn1+···+nk
.

Proof. Note that

gi(t) =
∞∑

n1=0,...,ni=0

i∏
k=1

bn1+···+nk+k

1 − bn1+···+nk

∞∑
n0=0

n0+···+ni+i∏
j=1

(1 − bj )
(λt)n0+···+ni+i

(n0 + · · · + ni + i)!e−λt .
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Using the same argument as in the proof of Proposition 1 for fixed values n1, . . . , ni ≥ 0, we
obtain

lim
t→∞

∞∑
n0=0

n0+···+ni+i∏
j=1

(1 − bj )
(λt)n0+···+ni+i

(n0 + · · · + ni + i)!e−λt

=
∞∏

j=1

(1 − bj ) lim
t→∞

(
1 −

n1+···+ni+i−1∑
k=0

(λt)k

k! e−λt

)

=
∞∏

j=1

(1 − bj ).

The claim (in its first form) now follows from the Lebesgue convergence theorem and the
fact that the series

∞∑
n1=0,...,ni=0

i∏
k=1

bn1+···+nk+k

1 − bn1+···+nk

converges absolutely. Changing each summation to start at 1 instead of 0 yields the claim in
its second form.

An application of the geometric formula yields the following corollary.

Corollary 2. For each i = 1, 2, . . . , we have

gi =
∞∏

j=1

(1 − bj )

∞∑
n1=1,...,ni=1

i∏
k=1

∞∑
l=1

b(n1+···+nk)l .

We will reduce the above multiple series to a simpler recurrence expression. Note that

∞∑
n1=1,...,ni=1

bn1+···+ni

1 − bn1+···+ni

bn2+···+ni

1 − bn2+···+ni
· · · bni

1 − bni

=
∞∑

mi=i

bmi

1 − bmi

mi−1∑
mi−1=i−1

bmi−1

1 − bmi−1

mi−1−1∑
mi−2=i−2

bmi−2

1 − bmi−2
· · ·

m2−1∑
m1=1

bm1

1 − bm1
.

For given natural numbers i and r , r ≥ i, we define

�i,r (b) =
r−1∑

mi−1=i−1

bmi−1

1 − bmi−1

mi−1−1∑
mi−2=i−2

bmi−2

1 − bmi−2
· · ·

m2−1∑
m1=1

bm1

1 − bm1
.

Clearly, for s ≥ i + 1, we have

�i+1,s(b) =
s−1∑
r=i

br

1 − br
�i,r (b),

where we have set �1,r (b) ≡ 1 for all r ≥ 1.
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Figure 1.

We are now in a position to present the promised recursion formula for gi .

Proposition 2. For each natural number i, we have

gi =
∞∏

j=1

(1 − bj )

∞∑
m=i

bm

1 − bm
�i,m(b).

Remark 1. In [2] another representation for gi can be found:

gi =
∞∑

m=i

(−1)m−i

(
m

i

) m∏
k=1

bk

1 − bk
.

The above formulae were used to evaluate the values g0, . . . , g10 for λ = 1 and b = 0.6
(programming in C):

g0 = 0.143 129 331 5359, g1 = 0.385 218 306 6464,

g2 = 0.326 933 548 7938, g3 = 0.120 484 777 3561,

g4 = 0.022 025 159 9091, g5 = 0.002 144 129 3616,

g6 = 0.000 115 947 2975, g7 = 0.000 003 576 6460,

g8 = 0.000 000 064 0275, g9 = 0.000 000 000 6727,

g10 = 0.000 000 000 004.

Furthermore, we include a diagram (see Figure 1), produced using MATHEMATICA®,
which contains sketches of the functions g0(t), g1(t), g2(t), and g3(t). We display them to
give a general idea of what these functions look like: no formal numerical analysis or error
evaluation was performed. As before, λ = 1 and b = 0.6.

To finish the paper we will prove that g = {gi}∞i=0 defines a probability distribution on the
positive integers (i.e. that

∑∞
i=0 gi = 1), and find its moments. For the convenience of the

reader and completeness of the paper, we include all details (some ideas are adopted from [3]
and [5]). Let us write

nk(t) = E(Nk
t ), k = 0, 1, . . . , t ≥ 0.

Since 00 = 1, we have n0(t) ≡ 1. Clearly, for every t and k, the moments nk(t) exist (notice that
for a fixed t ≥ 0 the process Nt is dominated by the classical Poisson process). The existence

https://doi.org/10.1239/jap/1152413737 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413737


Time behaviour of Okazaki fragments 507

of limt→∞ n1(t) < ∞ implies that the distribution g is nondegenerate (i.e. that
∑∞

i=0 gi = 1).
More generally,

lim
t→∞ nk+1(t) < ∞

implies that the kth moment of g is finite. We will find a formula for nk(t). Our approach is
direct and requires solving linear differential equations. Let T denote the time we have to wait
before the first primer appears. We begin (cf. [3]) with

nk(t) =
∫ at

0
E(Nk

t | T = s)λe−λs ds +
∫ t

at

E(Nk
t | T = s)λe−λs ds

=
∫ at

0
E(Nk

t−s)λe−λs ds +
∫ t

at

E(Nt−s + 1)kλe−λs ds

=
∫ at

0
nk(t − s)λe−λs ds +

∫ t

at

k∑
j=0

(
k

j

)
nj (t − s)λe−λs ds

=
∫ at

0
nk(t − s)λe−λs ds +

∫ t

at

nk(t − s)λe−λs ds +
k−1∑
j=0

(
k

j

) ∫ t

at

nj (t − s)λe−λs ds

=
∫ t

0
nk(s)λe−λt+λs ds +

k−1∑
j=0

(
k

j

) ∫ t

at

nj (t − s)λe−λs ds

= e−λt

∫ t

0
nk(s)λeλs ds +

k−1∑
j=0

(
k

j

) ∫ t

at

nj (t − s)λe−λs ds. (4)

It follows from this representation that the functions nk (since they are measurable) belong to
C∞(R+). By differentiating both sides we obtain

n′
k(t) = −λe−λt

∫ t

0
nk(s)λeλs ds + e−λtnk(t)λeλt

+
k−1∑
j=0

(
k

j

)[
nj (0)λe−λt − anj (t − at)λe−λat +

∫ t

at

n′
j (t − s)λe−λs ds

]
.

Note that nj (0) = 1 if j = 0 and nj (0) = 0 for j ≥ 1. It follows that

n′
k(t) = −λe−λt

∫ t

0
nk(s)λeλs ds + λnk(t) + λe−λt

+
k−1∑
j=0

(
k

j

)[∫ t

at

n′
j (t − s)λe−λs ds − anj ((1 − a)t)λe−λat

]
. (5)

Using (4), we obtain

e−λt

∫ t

0
nk(s)λeλs ds = nk(t) −

k−1∑
j=0

(
k

j

) ∫ t

at

nj (t − s)λe−λs ds.
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Substituting this into (5) yields

n′
k(t) = −λ

[
nk(t) −

k−1∑
j=0

(
k

j

) ∫ t

at

nj (t − s)λe−λs ds

]

+ λnk(t) + λe−λt +
k−1∑
j=0

(
k

j

)[∫ t

at

n′
j (t − s)λe−λs ds − anj ((1 − a)t)λe−λat

]

= λ2
k−1∑
j=0

(
k

j

) ∫ t

at

nj (t − s)e−λs ds + λe−λt

+ λ

k−1∑
j=0

(
k

j

)[∫ t

at

n′
j (t − s)e−λs ds − anj (bt)e−λat

]
. (6)

Using the above recursion scheme and the induction principle, we easily obtain the following
result.

Corollary 3. There exist constants βk,j > 0, Ck > 0, and αk,j and a natural number Lk such
that, for each k ≥ 0, we have

nk(t) =
Lk∑

j=1

αk,j e−βk,j t + Ck.

In particular,

lim
t→∞ nk(t) = lim

t→∞

∞∑
i=0

ikgi(t) =
∞∑
i=0

ikgi = Ck < ∞

(all moments of the asymptotic distribution g are finite).

Setting k = 1 in (6) yields

n′
1(t) = λ2

∫ t

at

e−λs ds + λe−λt − aλe−λat = λ(1 − a)e−λat .

It follows that

n1(t) =
∫

λ(1 − a)e−λat dt = −1 − a

a
e−λat + C.

Clearly C = (1 − a)/a, since limt→0+ n1(t) = 0. As a result we obtain the next corollary.

Corollary 4. For all t ≥ 0, we have n1(t) = (1 − a)(1 − e−λat )/a. It follows that

µ =
∞∑
i=0

igi = lim
t→∞ n1(t) = 1 − a

a
.

In order to find the second moment and variance, we set k = 2 in (6). After several elementary
calculations, we obtain

n′
2(t) = λ

(1 − a)(2 − a)

a
e−λat − 2λ

(1 − a)2

a
e−λa(2−a)t .

Integrating the last equation and taking into account the fact that n2(0) = 0 for all t ≥ 0 yields
our final corollary.
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Corollary 5. We have

n2(t) = 2(1 − a)2

a2(2 − a)
e−λa(2−a)t − (1 − a)(2 − a)

a2 e−λat + (1 − a)(a2 − 2a + 2)

a2(2 − a)
.

It follows that

lim
t→∞ n2(t) = (1 − a)(a2 − 2a + 2)

a2(2 − a)
.

In particular,

var(g) = lim
t→∞(n2(t) − n1(t)

2) = 1 − a

1 − (1 − a)2 .

In Figure 2 we display the graphs of the functions n1(t) and n2(t) for λ = 1 and a = 1−b = 0.4.
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