Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T08:45:31.084Z Has data issue: false hasContentIssue false

Models of Representations and Langlands Functoriality

Published online by Cambridge University Press:  07 January 2019

Arnab Mitra
Affiliation:
Indian Institute of Science Education and Research, Tirupati, India Email: 00.arnab.mitra@gmail.com
Eitan Sayag
Affiliation:
Department of Mathematics, Ben-Gurion University of the Negev, P.O.B. 653, B’eer Sheva 84105, Israel Email: eitan.sayag@gmail.com

Abstract

In this article we explore the interplay between two generalizations of the Whittaker model, namely the Klyachko models and the degenerate Whittaker models, and two functorial constructions, namely base change and automorphic induction, for the class of unitarizable and ladder representations of the general linear groups.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Author A. M. was partially supported by postdoctoral fellowships funded by the Department of Mathematics, Technion and by the ISF grant 1138/10. Author E. S. was partially supported by ERC grant 291612 during the preparation of this paper.

References

Arthur, J. and Clozel, L., Simple algebras, base change, and the advanced theory of the trace formula. Annals of Mathematics Studies, 120, Princeton University Press, Princeton, 1989.Google Scholar
Bernstein, I. N. and Zelevinsky, A. V., Induced representations of reductive p-adic groups. I. Ann. Sci. École Norm. Sup. (4) 10(1977), no. 4, 441472.Google Scholar
Gourevitch, D., Offen, O., Sahi, S., and Sayag, E., Existence of Klyachko models for GL(n,ℝ) and GL(n,ℂ). J. Funct. Anal. 262(2012), no. 8, 35853601. https://doi.org/10.1016/j.jfa.2012.01.023.Google Scholar
Gurevich, M., Decomposition rules for the ring of representations of non-archimedean GLn. International Mathematics Research Notices, rnz006. https://doi.org/10.1093/imrn/rnz006.Google Scholar
Harris, M. and Taylor, R., The geometry and cohomology of some simple Shimura varieties. Annals of Mathematics Studies, 151, Princeton University Press, Princeton, 2001.Google Scholar
Henniart, G., Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique. Invent. Math. 139(2000), no. 2, 439455. https://doi.org/10.1007/s002220050012.Google Scholar
Henniart, G. and Herb, R., Automorphic induction for GL(n) (over local nonarchimedean fields). Duke Math. J. 78(1995), 131192. https://doi.org/10.1215/S0012-7094-95-07807-7.Google Scholar
Hernandez, D., Simple tensor products. Invent. Math. 181(2010), 649675. https://doi.org/10.1007/s00222-010-0256-9.Google Scholar
Heumos, M. J. and Rallis, S., Symplectic-Whittaker models for GLn. Pacific J. Math. 146(1990), no. 2, 247279.Google Scholar
Kang, S.-J., Kashiwara, M., Kim, M., and Oh, S., Monoidal categorification of cluster algebras. arxiv:1412.8106.Google Scholar
Kang, S.-J., Kashiwara, M., Kim, M., and Oh, S., Simplicity of heads and socles of tensor products. Compos. Math. 151(2015), no. 2, 377396. https://doi.org/10.1112/S0010437X14007799.Google Scholar
Kowalski, E., An introduction to the representation theory of groups. Graduate Studies in Mathematics, 155, American Mathematical Society, Providence, RI, 2014.Google Scholar
Kret, Arno and Lapid, Erez, Jacquet modules of ladder representations. C. R. Math. Acad. Sci. Paris 350(2012), no. 21–22, 937940. https://doi.org/10.1016/j.crma.2012.10.014.Google Scholar
Kudla, Stephen S., The local Langlands correspondence: the non-Archimedean case. Proc. Sympos. Pure Math., 55, Part 2, Amer. Math. Soc., Providence, RI, 1994, pp. 365391.Google Scholar
Lapid, E. and Mínguez, A., On a determinantal formula of Tadić. Amer. J. Math. 136(2014), no. 1, 111142. https://doi.org/10.1353/ajm.2014.0006.Google Scholar
Lapid, E. and Mínguez, A., On parabolic induction on inner forms of the general linear group over a non-archimedean local field. Selecta Math. (N.S.) 22(2016), no. 4, 23472400. https://doi.org/10.1007/s00029-016-0281-7.Google Scholar
Lapid, E. and Mínguez, A., Geometric conditions for $\Box$-irreducibility of certain representations of the general linear group over a non-archimedean local field. Adv. Math. 339(2018), 113–190. https://doi.org/10.1016/j.aim.2018.09.027.Google Scholar
Laumon, G., Rapoport, M., and Stuhler, U., D-elliptic sheaves and the Langlands correspondence. Invent. Math. 113(1993), no. 2, 217338. https://doi.org/10.1007/BF01244308.Google Scholar
Mitra, A., Offen, O., and Sayag, E., Klyachko models for ladder representations. Documenta Math. 22(2017), 611657.Google Scholar
Mitra, A. and Venketasubramanian, C. G., Base change and (GLn(F),GLn-1(F))-distinction. J. Ramanujan Math. Soc. 31(2016), no. 2, 109124.Google Scholar
Mœglin, C. and Waldspurger, J.-L., Sur l’involution de Zelevinski. J. Reine Angew. Math. 372(1986), 136177. https://doi.org/10.1515/crll.1986.372.136.Google Scholar
Offen, O. and Sayag, E., Global mixed periods and local Klyachko models for the general linear group. Int. Math. Res. Not. (2008), Art. ID rnm 136. https://doi.org/10.1093/imrn/rnm136.Google Scholar
Offen, O. and Sayag, E., Uniqueness and disjointness of Klyachko models. J. Funct. Anal. 254(2008), no. 11, 28462865. https://doi.org/10.1016/j.jfa.2008.01.004.Google Scholar
Offen, O. and Sayag, E., The SL(2)-type and base change. Represent. Theory 13(2009), 228235. https://doi.org/10.1090/S1088-4165-09-00353-7.Google Scholar
Offen, O. and Sayag, E., Klyachko periods for Zelevinsky modules. Ramanujan J. (2018). https://doi.org/10.1007/s11139-018-0040-9.Google Scholar
Scholze, P., The local Langlands correspondence for GLn over p-adic fields. Invent. Math. 192(2013), no. 3, 663715. https://doi.org/10.1007/s00222-012-0420-5.Google Scholar
Tadić, M., Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case). Ann. Sci. École Norm. Sup. 19(1986), no. 3, 335382.Google Scholar
Wedhorn, T., The local Langlands correspondence for GL(nover p-adic fields. In: ICTP Lecture Notes Series, 21, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008, pp. 237–320.Google Scholar
Venkatesh, A., The Burger-Sarnak method and operations on the unitary dual of GL(n). Represent. Theory 9(2005), 268286. https://doi.org/10.1090/S1088-4165-05-00226-8.Google Scholar
Zelevinsky, A. V., Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n). Ann. Sci. École Norm. Sup. 13(1980), no. 2, 165210.Google Scholar