
8

Particle production in high energy QCD

We now turn to the question of particle production in the saturation framework. We will
work out explicitly the case of inclusive gluon production in high energy collisions. Again
the calculation follows the two-step formalism we have seen before: we first find the
gluon production in the quasi-classical approximation and then include quantum small-x
evolution effects in the result. The methods that we present can be applied to the calculation
of other particle production observables as well.

8.1 Gluon production at the lowest order

Consider gluon production in onium–onium collisions, studied in Chapter 3. The lowest-
order gluon production takes place at order α3

s in the amplitude squared (order g3 in the
amplitude). The corresponding Feynman diagrams for high energy gluon production in
quark–quark scattering are shown on the right-hand side of the equation in Fig. 3.6: in the
case of onium–onium scattering one should also include a contribution where the antiquark
line replaces either one or both quark lines. For quark–quark scattering the gluon production
cross section can be obtained from Eq. (3.39): noticing that dy = dk+/k+ we write for the
differential cross section

dσ

d2kT dy
= 2α3

s CF

π2

1

k2
T

∫
d2q⊥

1

q2
⊥(�k⊥ − �q⊥)2

. (8.1)

Using the lowest-order unintegrated gluon distribution of a quark (cf. Eqs. (4.26) and
(5.55)),

φLO(k2
T ) = αsCF

π

1

k2
T

, (8.2)

one can rewrite Eq. (8.1) in the following form:

dσ

d2kT dy
= 2αs

CF

1

k2
T

∫
d2q⊥φLO(q2

T ) φLO

(
(�k⊥ − �q⊥)2

)
. (8.3)

We see that the gluon production cross section consists of factorized contributions of the
unintegrated gluon distributions φLO for each quark, convoluted with a qT -integral (Gribov,
Levin, and Ryskin 1983, Catani, Ciafaloni, and Hautmann 1991, Collins and Ellis 1991).
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φ(q2
T )

φ((k⊥ − ⊥)2)

q⊥

k⊥ − ⊥

Fig. 8.1. Diagrammatic representation of kT -factorization in Eq. (8.3). The vertical solid
straight line denotes the final-state cut.

Such a factorization containing an integral over transverse momenta is known as a
kT -factorization as opposed to the more standard collinear factorization in perturbative
QCD, in which there is no transverse momentum integral (Collins, Soper, and Sterman
1985a, b, 1988a, b).1

To obtain the gluon production cross section at order α3
s in the case of onium–onium

scattering one has to sum over all possible diagrams of the type shown in Fig. 3.6, including
the antiquark contributions both in the amplitude and in the complex conjugate amplitude
(cf. Fig. 3.7). Eventually we see that Eq. (8.3) remains the answer for gluon production in
the case of onium–onium scattering also, but with the unintegrated gluon distribution of
an onium given by Eq. (3.92) instead of Eq. (8.2) and with the Green function G given by
Eq. (3.59), so that

φonium
LO (k2

T ) = αsCF

π

1

k2
T

∫
d2x⊥

1∫
0

dz |�(�x⊥, z)|2
(

2 − e−i�k⊥·�x⊥ − ei�k⊥·�x⊥
)

, (8.4)

where �(�x⊥, z) is the bare onium wave function.
Equation (8.3) is illustrated in Fig. 8.1, where the shaded ovals denote the unintegrated

distributions of the two onia and the solid circles denote Lipatov vertices. We see that, at
this lowest order, the gluon production is given by factorized diagrams like that shown in
Fig. 8.1, leading to the kT -factorization expression (8.3).

Equation (8.1) can be integrated over �q⊥ explicitly, with the help of the integral performed
in appendix section A.3. This yields (cf. Gunion and Bertsch 1982)2

dσ

d2kT dy
= 8α3

s CF

π

1

k4
T

ln
kT

�
, (8.5)

with � an IR cutoff as usual. There is a problem with Eq. (8.5): if we integrate both sides
over �k⊥ to obtain the integrated cross section dσ/dy we would get dσ/dy ∼ (1/�2) ln �.

1 A proper discussion of particle production in the collinear factorization framework is beyond the scope of this book.
Instead we refer the reader to the textbook by Sterman (1993) and the monograph by Collins (2011) and the references
therein.

2 In the framework of the MV model, Eq. (8.5) was derived by Kovner, McLerran, and Weigert (1995a, b) and by
Kovchegov and Rischke (1997).
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274 Particle production in high energy QCD

Thus the integrated cross section depends on the nonperturbative IR cutoff in a power-
law way, indicating that one probably should not calculate dσ/dy using a perturbative
approach.

A similar problem remains for the net gluon multiplicity, which is defined by

dN

d2kT dy
= 1

σinel

dσ

d2kT dy
(8.6)

with σinel the total inelastic scattering cross section. At the lowest-order, two-gluon-
exchange, level, we have σinel ∼ 1/�2. Combining this with dσ/dy ∼ (1/�2) ln � we
see that the gluon–gluon multiplicity scales as dN/dy ∼ ln �, i.e., it is also IR-cutoff-
dependent, though the dependence is logarithmic and so is much softer than that for
dσ/dy.

These IR problems in dσ/dy and dN/dy are remedied by saturation physics, which again
enables the use of the perturbative approximation. Above we have seen several examples
of how saturation effects screen the IR region, making observables much less dependent
on nonperturbative physics; we will now see how this happens for the inclusive gluon
production.

8.2 Gluon production in DIS and pA collisions

8.2.1 Quasi-classical gluon production

Let us now try to generalize the leading-order gluon production cross section we have just
obtained to the case of gluon production in DIS on a nucleus. Our observable is the single-
particle inclusive gluon production: we want to measure a gluon in the final state without any
constraints on what else can be present in the final state. (Because of the lack of final-state
constraints this observable is referred to as “inclusive”, as opposed to exclusive processes
such as diffraction.) We will be working in the quasi-classical MV/GGM approximation.
Just as for the total DIS cross section we can factor out the light cone wave function for
a virtual photon splitting into a qq̄ pair and consider only the dipole–nucleus scattering.
According to the MV model, the gluon production in DIS should be obtained by finding
the classical gluon field solution of the Yang–Mills equations (5.4) with the source current
now given by the nucleus and the qq̄ dipole. One may also consider gluon production
in proton–nucleus (pA) collisions: in this case the source current is given by the nucleus
and the proton. The difference between a nucleus and a proton in the saturation picture
is that the proton’s saturation scale Qs1 is much smaller than the nuclear saturation scale
Qs2, i.e., Qs1 � Qs2. Therefore, when one is considering gluon production with transverse
momentum kT � Qs1 and making no assumption about the relation between kT and Qs2,
one can neglect multiple interactions with the proton and other saturation effects in the
proton wave function while keeping multiple rescatterings to all orders in the nucleus. As
we saw in Chapter 5 the classical MV treatment resums the parameter α2

s A
1/3 resulting

from two-gluon exchanges with each nucleon and in this way is equivalent to the GGM
approach. We conclude that, working either in the light cone gauge of the dipole (proton),
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8.2 Gluon production in DIS and pA collisions 275

Fig. 8.2. Diagrams contributing to the gluon production amplitude in quark–nucleus
collisions. The cross denotes the measured gluon.

or in the covariant gauge, when resumming the diagrams for gluon production we have to
include all the multiple two-gluon rescatterings on the nucleons in the nucleus.

For simplicity we begin by calculating gluon production in quark–nucleus scattering.
We work in a frame in which the nucleus is moving along the x+-direction while the
quark is moving along the x−-direction. The calculation is simpler in the A− = 0 gauge,
which we will be using. This gauge is equivalent to the ∂μAμ = 0 covariant gauge for the
nucleus. The LCPT diagrams contributing to gluon production in quark–nucleus collisions
in the A− = 0 gauge are shown in Fig. 8.2. Analogously to the case of small-x evolution
considered above, the gluon’s minus component of momentum is much smaller than that
of the incoming quark. Gluon emission may take place either before or after the interaction
with the target (cf. Fig. 4.24 and the accompanying explanation of why emissions during
the interaction are suppressed by a power of s). Interactions with the nucleons in the target
may be both elastic and inelastic.

Just as before, calculation of the diagrams is easier to carry out in transverse coordinate
space. However, in the end we need to find the differential production cross section in
momentum space. To connect the momentum-space cross section to transverse coordinate
space let us go back to the lowest-order gluon production from the previous section. The
lowest-order term in Eq. (8.1) is given by (see Sec. 3.3.1)

dσ

d2kT dy
= 1

2(2π )3

∫
d2q

(2π )2

1

4s2
〈|Mqq→qqG(�k⊥, �q⊥)|2〉 (8.7)

where the scattering amplitude Mqq→qqG is given in Eq. (3.35) and s is the center-of-mass
energy squared of the collision. Defining a rescaled amplitude by (cf. Eq. (B.22))

A(�k⊥, �q⊥) = Mqq→qqG(�k⊥, �q⊥)

2s
, (8.8)

we can rewrite Eq. (8.7) as

dσ

d2kT dy
= 1

2(2π )3

∫
d2q

(2π )2
〈|A(�k⊥, �q⊥)|2〉. (8.9)
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k − q
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Fig. 8.3. Gluon production at the lowest order with the transverse coordinates shown
explicitly.

To Fourier-transform the amplitude A(�k⊥, �q⊥) into transverse coordinate space we use

A(�x23, �x13) =
∫

d2k⊥
(2π )2

d2q⊥
(2π )2

ei�k⊥·�x21+i �q⊥·�x13A(�k⊥, �q⊥), (8.10)

where as usual �xij = �xi⊥ − �xj⊥. Equation (8.10) is illustrated in Fig. 8.3 for one of
the lowest-order diagrams from Fig. 3.6. Remember that in eikonal interactions the trans-
verse coordinates of the particles remain unchanged: hence the colliding quarks have
transverse coordinates �x1⊥ and �x3⊥ both before and after the interaction. Also note that the
amplitude Mqq→qqG and with it A(�k⊥, �q⊥) already have momentum conservation imposed
on them: this leads to translational invariance in coordinate space, making the coordinate-
space amplitude A(�x23, �x13) in Eq. (8.10) a function of the differences between the transverse
vectors only.

Inverting Eq. (8.10) we get

A(�k⊥, �q⊥) =
∫

d2x2d
2x0e

−i �x2⊥·�k⊥−i �x1⊥·(�q⊥−�k⊥)A(�x23, �x13). (8.11)

Using this in Eq. (8.9) and integrating over �q⊥ we obtain

dσ

d2kT dy
= 1

2(2π )3

∫
d2x2d

2x2′d2x1e
−i�k⊥·�x22′ 〈A(�x23, �x13)A∗(�x2′3, �x13)〉, (8.12)

where �x2⊥ and �x2′⊥ are the transverse coordinates of the gluon in the amplitude and in the
complex conjugate amplitude respectively. We see that the reason that the two coordinates
are different is that we are keeping the transverse momentum of the gluon �k⊥ fixed: if
we integrated Eq. (8.12) over �k⊥ this would make �x2⊥ and �x2′⊥ equal. One can think of
the difference between �x2⊥ and �x2′⊥ as due to the uncertainty principle: if we know the
momentum �k⊥ exactly, we cannot have precise knowledge of the transverse position of the
gluon. Note that since we do not keep the transverse momenta of the two quarks in the final
state fixed and, rather, allow them to be arbitrary (that is, we integrate over all their values),
the transverse coordinates of the quarks are the same in the amplitude and in the complex
conjugate amplitude.
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x− = 0

x−

Σ
n = 0

∞

1 2 n

Fig. 8.4. An extension of the notation of Fig. 5.8 to include inelastic interactions between
the projectile and the nucleons in the target nucleus.

Note that for a nuclear target with the quark at �x3⊥ part of a nucleon in the nucleus, the
angle brackets in Eq. (8.12) would imply an average over all positions of the nucleon,∫

d2x3T (�x3⊥), (8.13)

where T (�x3⊥) is the nuclear profile function defined in Eq. (4.31).
Equation (8.12), while derived for the lowest-order gluon production, is applicable

for gluon production in any process involving the eikonal scattering of a quark (or any
other projectile, such as an onium or a proton) on a target nucleus, including multiple
rescatterings and small-x evolution. In deriving Eq. (8.12) we had to rescale the scattering
amplitude in Eq. (8.8): however, it is possible to see that in the GGM multiple rescattering
case each additional nucleon enters with the same normalization factor, so that the net
scattering amplitude (4.51) is energy independent. In addition, in eikonal scattering and
LLA small-x evolution the transverse coordinates of the gluons and quarks do not change,
which implies that the transverse vectors �x2⊥, �x2′⊥, and �x1⊥ in Eq. (8.12) will not change if
we allow the quark and the gluon to multiply rescatter and branch out into more gluons in
the LLA approximation. We conclude that Eq. (8.12) is the required relation between the
momentum-space cross section and the coordinate-space scattering amplitude.

Squares of the diagrams in Fig. 8.2 giving the production cross section are shown in
Fig. 8.5 using the slight extension defined in Fig. 8.4 of the notation from Fig. 5.8 for
the interaction of the projectile with the target: now the vertical dashed line includes both
elastic and inelastic interactions with the target. Beyond the diagrams, the notation in
Fig. 5.8 includes the averaging of Wilson lines over the target fields while the notation of
Fig. 8.4 does not. The graphs shown in Fig. 8.5 represent the amplitude squared, with two
time axes, one in the amplitude and one in the complex conjugate amplitude, just as in the
case of diffraction considered above.

Figure 8.5 demonstrates all the main cases one has to consider. If x−
em is the light cone

time of the gluon emission in the amplitude while x ′−
em is that in the complex conjugate

amplitude (see diagram C in Fig. 8.5), we have four cases represented in Fig. 8.5, as follows.
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BA
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+∞ +∞

+∞

0 0 0 0

0 0
2⊥ 2 ⊥

DC

a bc b
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Fig. 8.5. Diagrams contributing to gluon production in quark–nucleus collisions. The cross
denotes the measured gluon.

(A) x−
em < 0, x ′−

em < 0: the gluon is emitted before the interaction with the target both in
the amplitude and in the complex conjugate amplitude.

(B) x−
em > 0, x ′−

em < 0: the gluon is emitted after the interaction with the target in the
amplitude but before the interaction with the target in the complex conjugate amplitude.

(C) x−
em < 0, x ′−

em > 0: the gluon is emitted before the interaction with the target in the
amplitude but after the interaction with the target in the complex conjugate amplitude.

(D) x−
em > 0, x ′−

em > 0: the gluon is emitted after the interaction with the target both in the
amplitude and in the complex conjugate amplitude.

We need to find the amplitude squared in transverse coordinate space to use in Eq. (8.12).
To do this we have to calculate the diagrams in Fig. 8.5. The transverse coordinates of the
quark (�x1⊥) together with the coordinates �x2⊥ and �x2′⊥ of the gluon to the left and to the
right of the final state cut are shown in panel A of Fig. 8.5. The calculation is easier to
carry out using LCPT, in which the process factorizes into the light cone wave function for
a quark splitting into a quark and a gluon and the amplitude for the interaction with the
target.

The soft gluon emission brings in a factor (cf. Eq. (4.60))

i
gta

π

�ελ∗
⊥ · �x21

x2
21

(8.14)

in the amplitude and the same (but conjugate) factor with the index 2 replaced by 2′ in the
complex conjugate amplitude, along with a → b (the gluon colors allocation is given in
Fig. 8.5A). In Eq. (8.14), λ is the polarization of the gluon, which remains unchanged in
the eikonal interaction with the target and is therefore the same on both sides of the cut.
Emissions with either x−

em > 0 or x ′−
em > 0 lead to an extra minus sign compared with the

early-time emissions: this can be deduced from panels A and B of Fig. 8.5. There the vertical
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dashed lines denote the intermediate states in the amplitudes A and B used in calculating
the quark splitting corresponding to Eq. (8.14). In panel B the intermediate state contains
only a quark (with the rest of the target, not shown): in building up the energy denominator
for this state we have to take the light cone energy of the quark (and the outgoing target)
and subtract the light cone energy of the incoming state, or, equivalently, the energy of the
outgoing state. We thus obtain the light cone energy of the intermediate-state quark minus
the energies of the outgoing quark and gluon. This is the negative of the energy denominator
for the intermediate state highlighted by the dotted line in panel A of Fig. 8.5. We see that
the late-time emissions bring in an extra minus sign. This conclusion is similar to that
regarding the sign difference used in deriving the cancellations in panel B of Fig. 7.10 (see
Eqs. (7.34) and (7.35)). To summarize, diagrams B and C in Fig. 8.5 have an extra minus
sign compared with diagrams A and D in the same figure.

We now need to calculate the interactions with the target in each panel of Fig. 8.5. This
is easiest to do using the language of Wilson lines defined in Eqs. (5.43) and (5.44). The
interaction with the target in Fig. 8.5A (along with the color factors resulting from the gluon
emission) gives 〈

1

Nc

tr
[
tbV

†
�x1⊥V�x1⊥ ta

]
Ubc

�x2′⊥
Uca

�x2⊥

〉
= CF SG(�x2⊥, �x2′⊥, y), (8.15)

where we have used Eq. (5.33) and definition (5.46) to simplify the expression. As in the
case of the calculation in Sec. 3.3.1 we assume that the target nucleus has rapidity 0 while
the produced gluon along with the quark that emits it have rapidity y. Note that the quark’s
interaction with the target cancels out in diagram A: the quark becomes a “spectator” and
the interaction is given by the gluon dipole S-matrix.

The contribution of Fig. 8.5B is obtained similarly, yielding, with the help of Eq. (5.31),〈
1

Nc

tr
[
taV

†
�x1⊥ tbV�x1⊥

]
Uba

�x2′⊥

〉
= CF SG(�x1⊥, �x2′⊥, y). (8.16)

By analogy diagram C brings in

CF SG(�x2⊥, �x1⊥, y) (8.17)

and diagram D contributes only a factor CF .
Combining the emission contribution (8.14) with the interaction terms we have just

found, and using it all in Eq. (8.12) while keeping in mind that diagrams B and C have an
extra minus sign, we obtain, after summation over the gluon polarizations (Kovchegov and
Mueller 1998a):

dσqA

d2kT dy
= 1

(2π )2

∫
d2x2 d2x2′ d2x1e

−i�k⊥·�x22′ αsCF

π2

�x21 · �x2′1

x2
21x

2
2′1

× [SG(�x2⊥, �x2′⊥, y) − SG(�x1⊥, �x2′⊥, y) − SG(�x2⊥, �x1⊥, y) + 1
]
. (8.18)

This result was independently confirmed by Kopeliovich, Tarasov, and Schafer (1999) and
by Dumitru and McLerran (2002). Equation (8.18) can also be rewritten in terms of the
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imaginary part of the gluon dipole–nucleus forward scattering amplitude,

NG(�x1⊥, �x0⊥, Y ) = 1 − SG(�x1⊥, �x0⊥, Y ), (8.19)

as follows:

dσqA

d2kT dy
= 1

(2π )2

∫
d2x2 d2x2′ d2x1e

−i�k⊥·�x22′ αsCF

π2

�x21 · �x2′1

x2
21x

2
2′1

× [NG(�x1⊥, �x2′⊥, y) + NG(�x2⊥, �x1⊥, y) − NG(�x2⊥, �x2′⊥, y)
]
. (8.20)

While our derivation of Eq. (8.20) was quite general, in the MV/GGM quasi-classical
approximation one should use the amplitude NG given by Eq. (5.51) in Eq. (8.20). In that
approximation for NG, Eq. (8.20) would give us the gluon production in quark–nucleus
scattering in the quasi-classical MV/GGM approximation.

It is interesting to note that Eq. (8.20) can be rewritten in the kT -factorized form seen
in Eq. (8.3). To see this we integrate over �x2⊥ in the first term in the square brackets of
Eq. (8.20), over �x2′⊥ in the second term in the same brackets, and over �x1⊥ in the third term,
with the help of Eqs. (A.10) and (A.12). This yields, after some coordinate relabeling,

dσqA

d2kT dy
= αsCF

2π3

∫
d2x2 d2x2′e−i�k⊥·�x22′

(
2i

�k⊥
k2
⊥

· �x22′

x2
22′

− ln
1

x22′�

)

× NG(�x2⊥, �x2′⊥, y) (8.21)

with � again an IR cutoff. Using the fact that NG(�x2⊥ = �x2′⊥, �x2′⊥, Y ) = 0 (a zero-size
dipole does not interact), we can rewrite Eq. (8.21) as

dσqA

d2kT dy
= αsCF

2π3

1

k2
T

∫
d2x2 d2x2′NG(�x2⊥, �x2′⊥, y)∇2

�x2⊥

(
e−i�k⊥·�x22′ ln

1

x22′�

)
, (8.22)

where ∇2
�x⊥ = ∂2

x1 + ∂2
x2 is the two-dimensional Laplace operator.

Let us write Eq. (8.22) in a projectile–target-symmetric way. The expression already
contains the dipole–nucleus scattering amplitude NG. Let us include the dipole–projectile
scattering amplitude in it as well. Since our projectile is a single quark, we will construct
the scattering amplitude of a gluon dipole on a quark in the quasi-classical approximation
by expanding Eq. (5.51) to the lowest nontrivial order and using Q2

sG(�b⊥) = 4πα2
s Tq(�b⊥)

with the “nuclear profile function” of a single quark, normalized such that∫
d2b⊥Tq(�b⊥) = 1. (8.23)

(The factor 2 difference between the value of Q2
sG that we are using now and that in

Eq. (5.41) arises because the saturation scale in Eq. (5.41) is due to scattering on an onium
“nucleon” while now we are dealing with a single-quark “nucleon”.) We obtain for the
dipole–quark scattering amplitude n

q
G at the two-gluon exchange level, integrated over all
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B⊥

b⊥

nucleus

proton

gluon

Fig. 8.6. Gluon production in proton(quark)–nucleus collisions as seen in the transverse
plane. To make the figure clearer, the gluon has been placed far from the proton; this is,
however, a highly improbable configuration.

impact parameters �b⊥,∫
d2b⊥ n

q
G(�x⊥, �b⊥, Y = 0) = πα2

s x
2
⊥ ln

1

x⊥�
, (8.24)

where �x⊥ is the dipole’s transverse size and �b⊥ is the location of its center-of-mass.
Neglecting constants under the logarithms (which were neglected in arriving at Eq. (8.24)

anyway), we write

∇2
�x⊥

(
x2

⊥ ln
1

x⊥�

)
= 4 ln

1

x⊥�
. (8.25)

Using this formula together with Eq. (8.24) in Eq. (8.22) yields, after integration by parts
in the latter,

dσqA

d2kT dy
= CF

αsπ (2π )3

1

k2
T

∫
d2B⊥d2b⊥d2x⊥

[
∇2

�x⊥n
q
G(�x⊥, �B⊥ − �b⊥, 0)

]
× e−i�k⊥·�x⊥

[
∇2

�x⊥NG(�x⊥, �b⊥, y)
]
, (8.26)

where �x⊥ = �x22′ and we have modified the notation as follows:

NG(�x2⊥, �x2′⊥, Y ) → NG(�x⊥, �b⊥, Y ). (8.27)

Now �B⊥ and �b⊥ are the impact parameters of the proton and the produced gluon respectively,
measured with respect to the center of the nucleus, as shown in Fig. 8.6.

Equation (8.26) describes gluon production in quark–nucleus scattering. However, it can
be generalized to the onium–nucleus (DIS) and proton–nucleus (pA) cases if n

q
G in it is

replaced by the dipole scattering amplitude on the onium (see Eq. (3.139)) or on a proton,
labeled nG. (The proton can be modeled as three valence quarks in a color-singlet state
or as any other number of partons moving along the light cone.) Proving this statement
for the onium–nucleus scattering is left as an exercise for the reader (see Exercise 8.2).
We can conclude that Eq. (8.26) with NG taken at y = 0 and n

q
G replaced by nG describes
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quasi-classical gluon production in onium–nucleus (DIS) and pA collisions. We will refer
to it as quasi-classical gluon production in the pA collision context.

Defining the unintegrated gluon distribution for the nucleus (in the quasi-classical
MV/GGM approximation) as

φA(k2
T ) = CF

αs(2π )3

∫
d2b⊥d2x⊥e−i�k⊥·�x⊥ ∇2

�x⊥NG

(
�x⊥, �b⊥, 0

)
(8.28)

and that for the proton as

φp(k2
T ) = CF

αs(2π )3

∫
d2b⊥d2x⊥e−i�k⊥·�x⊥ ∇2

�x⊥nG(�x⊥, �b⊥, 0), (8.29)

transforms Eq. (8.26) into a kT -factorized form of Eq. (8.3) (Kovchegov and Tuchin 2002):

dσpA

d2kT dy
= 2αs

CF

1

k2
T

∫
d2q⊥ φp(q2

T ) φA

(
(�k⊥ − �q⊥)2

)
, (8.30)

where now we use the superscript pA to signify the broader validity range of the derived
cross section. (Again we have put y = 0 in the argument of NG in Eq. (8.28) to reduce
Eq. (8.26) to the purely quasi-classical case.)

Equation (8.30) may come as a surprise: remember that kT -factorization usually results
from factorizing the diagrams into the form shown in Fig. 8.1, separating them into distribu-
tion functions with a Lipatov vertex (squared) in the middle. The diagrams in Fig. 8.5 which
led to Eq. (8.30) have no such factorization, since they include direct interactions between
the target nucleus and the projectile quark, violating the factorization picture expected from
Fig. 8.1. One may hope that perhaps in a different gauge the relevant diagrams would
factorize, yielding the picture of Fig. 8.1; to date, however, no such gauge has been found
and the physical origin of the kT -factorization in Eq. (8.30) remains a mystery.

Notice that to achieve the factorized expression (8.30) we had to define the unintegrated
gluon distributions (8.28) and (8.29). These definitions are different from the WW distri-
bution of Eq. (5.50) and are more in line with Eq. (6.16) with the quark dipole replaced
by the gluon one. (All the distributions agree at the lowest order of Eq. (8.2) up to quark
or gluon dipole color factors.) While the definitions (8.28) and (8.29) allow us to achieve
the kT -factorization formula (8.30), it is a priori not clear why one has to use these gluon
distributions in the gluon production formula. The interplay between the two unintegrated
gluon distributions has recently been explored by Dominguez et al. (2011).

To assess the impact of (8.30) on the kT -distribution of the produced gluons (also known
as the gluon transverse momentum spectrum) let us evaluate its large-kT and small-kT

asymptotics. At large kT we expand Eq. (5.51) to the lowest nontrivial order to get NG =
x2

⊥Q2
sG(�b⊥)/4, which we use in Eq. (8.28) to obtain the lowest-order φA. For simplicity,

modeling the proton again as a single quark, we use Eq. (8.24) in Eq. (8.29) to obtain
the same expression for φp as in (8.2). Finally, substituting all this into Eq. (8.30) and
remembering that Q2

sG(�b⊥) = 4πα2
s T (�b⊥), we obtain

dσpA

d2kT dy

∣∣∣∣
kT �QsG

≈ 8α3
s CF A

π

1

k4
T

ln
kT

�
, (8.31)
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QsG

Fig. 8.7. A sketch of the gluon production spectrum generated by Eq. (8.30).

in agreement with Eq. (8.5) up to a factor A, signifying that now we have A nucleons in
the nucleus that can interact with the incoming projectile quark to produce the gluon that
we are measuring (again with each nucleon modeled by a single quark). Conversely, at
kT � QsG we note that NG ≈ 1 for x⊥ > 1/QsG. Using this approximation in Eq. (8.21)
and integrating over �x2⊥, �x2′⊥ yields

dσpA

d2kT dy

∣∣∣∣
kT �QsG

≈ αsCF S⊥
π2

1

k2
T

(8.32)

with S⊥ the transverse area of the nucleus. We see that the produced gluon spectrum has
been modified by saturation effects from the factor 1/k4

T in Eq. (8.31) at kT � QsG to
the factor 1/k2

T in Eq. (8.32) at kT � QsG. This is illustrated in Fig. 8.7 (cf. Fig. 5.7).
We conclude that saturation effects in one scattering particle (the nucleus) tend to soften
the IR divergence, making the integrated cross section dependent on the IR cutoff only
logarithmically, dσpA/dy ∼ ln(QsG/�).

To better understand the result (8.30) it is useful to construct the nuclear modification
factor, which in pA collisions can be defined as

RpA(kT , y) = dσpA/d2kT dy

A dσpp/d2kT dy
. (8.33)

and has the meaning of the ratio of the number of particles produced in a pA collision
per individual proton–nucleon collision and the number of particles produced in a proton–
proton (pp) collision in the same kinematic region. Deviations of the nuclear modification
factor from unity measure collective nuclear effects in the collision.

In the quasi-classical approximation one can evaluate RpA by using NG from Eq. (5.51)
in Eq. (8.20) to find the gluon production in pA collisions and by using n

q
G from Eq. (8.24),

instead of NG, in the same formula to find the gluon production in pp. The resulting nuclear
modification factor is plotted in Fig. 8.8 (Kopeliovich, Tarasov, and Schafer 1999, Baier,

https://doi.org/10.1017/9781009291446.009 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291446.009


284 Particle production in high energy QCD
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Fig. 8.8. Nuclear modification factor as a function of kT /QsG for gluon production in pA

collisions in the quasi-classical approximation. The horizontal line at RpA = 1 is shown to
guide the eye. Since Eq. (8.33) includes an integral over b⊥, QsG should be understood as the
typical saturation scale: the same Cronin enhancement is also seen for fixed b⊥. (Reprinted
with permission from Kharzeev, Kovchegov, and Tuchin (2003). Copyright 2003 by the
American Physical Society.)

Kovner, and Wiedemann 2003, Kharzeev, Kovchegov, and Tuchin 2003): we see a depletion
in the produced gluons at low kT (kT � QsG) and an enhancement at large kT (kT � QsG).
We conclude that multiple rescatterings tend to broaden the kT -distribution of the produced
gluons, effectively pushing the gluons out to large kT . The enhancement shown in Fig. 8.8
was observed experimentally in hadron production in pA collisions and is known as the
Cronin effect (Cronin et al. 1975).

The suppression of gluons at low kT may be identified with the manifestation of nuclear
shadowing in the saturation/CGC framework. In the case of gluons the shadowing is
quantified by the ratio

RA(x,Q2) = xGA(x,Q2)

AxGN (x,Q2)
(8.34)

(with an analogous ratio for quarks). The shadowing ratio RA measures the number of
gluons per nucleon in the nucleus divided by the number of gluons in a proton (in the same
kinematic region). At small x the ratio RA is known to be below 1, which means that the
number of gluons per nucleon in a nucleus is less than the number of gluons in a free proton:
this effect is known as nuclear shadowing. (For more on nuclear shadowing see Frankfurt
and Strikman (1988).) This depletion of gluons in the nuclear wave function leads to the
suppression of produced gluons as measured by the nuclear modification factor. In fact,
one can show that the suppression of produced gluons at low kT in Fig. 8.8 results from the
suppression of low-kT gluons in the unintegrated gluon distribution of Eq. (8.28).

8.2.2 Including nonlinear evolution

We want to include the effects of nonlinear LLA small-x evolution in the inclusive gluon
production cross section (8.20) and in the more general cross section (8.30). Again we
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Fig. 8.9. Gluon production in dipole–nucleus scattering with small-x evolution emissions
both between the produced gluon (marked by a cross) and the target nucleus and between
the produced gluon and the projectile dipole.

assume that the target nucleus has zero rapidity and that the produced gluon has rapidity
y. However, now the incoming projectile has rapidity Y such that there are large rapidity
intervals between the projectile and the produced gluon and between the gluon and the
target. The process is illustrated in Fig. 8.9 for the case of dipole–nucleus scattering: gluon
emissions (and absorptions) are allowed everywhere in the rapidity interval from 0 to Y .
The target nucleus may indeed break up in this inclusive process.

To include BK/JIMWLK evolution effects in the gluon production formula, let us con-
sider the dipole–nucleus scattering case rather than the quark–nucleus scattering considered
in the previous subsection. We start by generalizing Eq. (8.20) to the case of a dipole pro-
jectile (Kovchegov 2001):

dσqq̄A

d2kT dy
(�x10) =

∫
d2x2 d2x2′ d2x1e

−i�k⊥·�x22′ αsCF

4π4

1∑
i,j=0

(−1)i+j �x2i · �x2′j

x2
2ix

2
2′j

× [NG(�xi⊥, �x2′⊥, y) + NG(�x2⊥, �xj⊥, y)

−NG(�x2⊥, �x2′⊥, y) − NG(�xi⊥, �xj⊥, y)
]
, (8.35)

where the quark in the dipole is located at �x1⊥ and the antiquark is at �x0⊥, as shown in
Fig. 8.9. (The reader is invited to derive Eq. (8.35) in Exercise 8.2.)

Including the evolution in the rapidity interval between the gluon and the target is
straightforward: in fact this was already done in deriving Eq. (8.20). Indeed, as we have
seen above, the Wilson-line formalism used in arriving at (8.20) applies equally well to
GGM multiple rescatterings and to the LLA evolution. We therefore conclude that NG

evaluated at rapidity y in Eq. (8.35) (and in Eq. (8.20) as well) does not need to come
from multiple rescatterings only but may also contain the nonlinear BK/JIMWLK LLA
evolution. In the large-Nc limit of BK evolution one can readily show that

NG(�x⊥, �b⊥, y) = 2N (�x⊥, �b⊥, y) − N2(�x⊥, �b⊥, y), (8.36)
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Fig. 8.10. One step of small-x evolution between the projectile onium and the produced
gluon, marked by a cross and labeled 2.

where N is the quark dipole amplitude found from Eq. (4.138). The formula (8.36) is due
to the fact that in the large-Nc a gluon dipole limit can be thought of as a pair of quark
dipoles, with either one or both dipoles interacting directly with the target.

Including the evolution in the rapidity interval between the projectile and the produced
gluon requires a bit more work. We will carry out the calculation in the large-Nc limit of
Mueller’s dipole model. We show one step of such an evolution in Fig. 8.10, where the
gluon labeled 3 is harder than the produced gluon 2, that is z3 � z2 with z2 and z3 the
fractions of the longitudinal momentum of the onium carried by the two gluons respectively.
For simplicity we consider a case of particular couplings of the gluons to the onium: the
gluon 3 is emitted (and absorbed) by the quark while gluon 2 is emitted by the antiquark.
Diagrams A–D in Fig. 8.10 have two real emissions while in the diagrams E–J gluon 3 is
virtual. For completeness, we show in diagrams K and L of Fig. 8.10 the emission of gluon
2 without the corrections due to gluon 3.

It is important to stress that we have only given the leading-logarithmic diagrams in
Fig. 8.10. Indeed, a diagram similar to A but with the emission of gluon 2 before gluon 3
is possible but will not lead to leading logarithms of 1/x (see Fig. 4.17 and its evaluation
for an analogous calculation). Similarly one can demonstrate that a diagram similar to D
but with the emission of gluon 3 before gluon 2 also lies outside the LLA. This is an
important observation: while for x− < 0 the harder gluons are emitted before the softer
ones, for x− > 0 the harder gluons would need to be emitted later than the softer ones to
give an LLA contribution. This rule is also valid for the virtual diagrams; this is illustrated
by the fact that graph H in Fig. 8.10 gives an LLA contribution. (Indeed, we do not
integrate over the rapidity y of gluon 2 since we are tagging this gluon (i.e., it is the
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gluon of interest): however, the leading contribution to the production cross section with all
rapidity intervals large is given by the LLA approximation as if we were about to integrate
over y.)

Using the cancellations of Fig. 7.10 (which are valid for the inelastic interactions with
the target shown in Fig. 8.4 as well), one can write down the following relations between
the squares and interference terms of the diagrams in Fig. 8.10:

|C|2 + GK∗ + G∗K = 0, |D|2 + HL∗ + H∗L = 0, (8.37a)

CD∗ + GL∗ + KH∗ = 0, AC∗ + IK∗ = 0, (8.37b)

BC∗ + JK∗ = 0, AD∗ + IL∗ = 0, BD∗ + JL∗ = 0. (8.37c)

With the help of Eqs. (8.37) we see that

|A + B + · · · + L|2
∣∣∣∣
O(α2

s )

= |A + B|2 + (E + F )(K + L)∗

+ (E + F )∗(K + L), (8.38)

that is, only emissions or absorptions of gluon 3 with x− < 0 both in the amplitude and in
the complex conjugate amplitude remain. This conclusion can be generalized to the case
of other gluon couplings and, more importantly, to the case of higher-order hard gluon
emissions: the terms which survive the cancellations of Fig. 7.10 are those with all the
emissions and absorptions at x− < 0 and x ′− < 0; all late-time (x−, x ′− > 0) emissions
cancel. We conclude that the evolution in the rapidity interval between the projectile and
the produced gluon is the evolution of Mueller’s dipole model! In fact an analysis of
the higher-order diagrams shows that not all the nonlinear dipole evolution contributes:
rather, the nonlinearities cancel leaving only the linear part of the evolution describing the
generation by the original incoming onium of the dipole in which gluon 2 was emitted.3

The quantity n1 describing such a distribution is defined in Eq. (4.81) and is found from
the dipole BFKL equation (4.82) with the initial condition (4.83).

We have thus arrived at the following physical picture of the gluon production process in
DIS and pA at large Nc: the evolution in the projectile wave function generates a distribution
of single dipoles. A gluon that we will tag (measure) is then emitted by one such dipole,
making the evolution between the projectile and the produced gluon linear. The gluon along
with the dipole from which it was emitted then interact with the target nonlinearly.

Formally the LLA evolution between the projectile and the produced gluon is included
in Eq. (8.35) by the following replacement:

dσqq̄A

d2kT dyd2B⊥
(�x10) →

∫
d2b⊥d2x1′0′ n1(�x10, �x1′0′ , �B⊥ − �b⊥, Y − y)

× dσqq̄A

d2kT dyd2b⊥
(�x1′0′ ), (8.39)

3 For instance, one can see that all subsequent evolution in the dipole formed by the (antiquark line of the) gluon 3 and
the quark line in Fig. 8.10A cancels.
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where the impact parameters are labeled as in Fig. 8.6; �B⊥ = (�x1⊥ + �x0⊥)/2 is the center
of the projectile dipole 10 and �b⊥ = (�x1′⊥ + �x0′⊥)/2 is the center of the dipole 1′0′. Note
that the integration over �b⊥ for fixed �x1′0′ in Eq. (8.39) is equivalent to the integration
over �x1⊥ in Eq. (8.35). Equation (8.35), which does not contain any evolution between the
projectile and the produced gluon, is recovered from Eq. (8.39) by inserting Eq. (4.83) into
it.

We can now write down the final expression for the gluon production in dipole–nucleus
scattering. Combining Eq. (8.39) with Eq. (8.35) yields (Kovchegov and Tuchin 2002)

dσqq̄A

d2kT dy
(�x10)

=
∫

d2B⊥d2b⊥d2x1′0′ n1(�x10, �x1′0′ , �B⊥ − �b⊥, Y − y)

×
∫

d2x2 d2x2′e−i�k⊥·�x22′ αsCF

4π4

1′∑
i,j=0′

(−1)i+j �x2i · �x2′j

x2
2ix

2
2′j

× [NG(�xi⊥, �x2′⊥, y) + NG(�x2⊥, �xj⊥, y) − NG(�x2⊥, �x2′⊥, y) − NG(�xi⊥, �xj⊥, y)
]
.

(8.40)

This is the gluon production cross section including the LLA small-x evolution both
between the projectile and the produced gluon and between the gluon and the target. While
it has been derived in the large-Nc limit, Eq. (8.40) is also valid for any Nc as was shown
by Kovner and Lublinsky (2006).

Equation (8.40) can also be written in a kT -factorized form. Defining the unintegrated
gluon distribution of the nucleus (cf. Eq. (8.28)) as

φA(y, k2
T ) = CF

αs(2π )3

∫
d2b⊥d2x⊥e−i�k⊥·�x⊥ ∇2

�x⊥NG

(
�x⊥, �b⊥, y

)
(8.41)

and that of the onium (cf. Eq. (8.4)) as

φqq̄ (y, k2
T ) = αsCF

π

1

k2
T

∫
d2b⊥d2x⊥

(
2 − e−i�k⊥·�x⊥ − ei�k⊥·�x⊥

)
× n1

(
�x10, �x⊥, �b⊥, y

)
(8.42)

and evaluating Eq. (8.40) following steps similar to those in Sec. 8.2.1, we obtain (Braun
2000c, Kovchegov and Tuchin 2002)

dσqq̄A

d2kT dy
= 2αs

CF

1

k2
T

∫
d2q⊥ φqq̄(Y − y, q2

T ) φA

(
y, (�k⊥ − �q⊥)2

)
. (8.43)

We see that the LLA small-x evolution preserves the kT -factorization of Eq. (8.30)!
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Fig. 8.11. A sketch of the nuclear modification factor as a function of kT /QsG, where
QsG is the typical saturation scale (see the caption to Fig. 8.8), for gluon production in
pA collisions: the upper solid line corresponds to the quasi-classical approximation from
Fig. 8.8, while the dashed-and-dotted, dashed, and lower solid lines demonstrate the change
in RpA with increasing rapidity, owing to small-x evolution. (Reprinted with permission
from Kharzeev, Kovchegov, and Tuchin (2003). Copyright 2003 by the American Physical
Society.)

Equation (8.43) can be generalized to the case of any projectile, in particular the proton,
for which we define the unintegrated gluon distribution

φp(y, k2
T ) = CF

αs(2π )3

∫
d2b⊥d2x⊥e−i�k⊥·�x⊥ ∇2

�x⊥nG(�x⊥, �b⊥, y), (8.44)

with nG the gluon dipole–proton forward scattering amplitude evolved by the linear BFKL
evolution equation. One then writes for the inclusive gluon production cross section (Braun
2000c, Kharzeev, Kovchegov, and Tuchin 2003)

dσpA

d2kT dy
= 2αs

CF

1

k2
T

∫
d2q⊥ φp(Y − y, q2

T ) φA

(
y, (�k⊥ − �q⊥)2

)
. (8.45)

The gluon spectrum generated by Eq. (8.45) is qualitatively similar to that obtained in
the quasi-classical approximation in Fig. 8.7: the IR divergence is softened to 1/k2

T , though
it is not removed completely. The nuclear modification factor RpA resulting from using
Eq. (8.45) is very different from the quasi-classical one in Fig. 8.8 and is shown in Fig. 8.11;
the various curves correspond to different values of rapidity y, such that the lower the curve
the higher is the rapidity y. The effect of small-x evolution and saturation is such that the
quasi-classical Cronin enhancement at large kT is replaced by suppression at all values of
kT (Kharzeev, Levin, and McLerran 2003, Albacete et al. 2004, Kharzeev, Kovchegov, and
Tuchin 2003). The diagram in Fig. 8.11 was confirmed by the precise numerical evaluation
of RpA by Albacete et al. (2004).

To understand this result analytically we use the approximate solution of the fixed-
coupling BK equation immediately outside the saturation region given by Eq. (4.161).
Concentrating on its A-dependence we see that NG ∼ A(1+2iν0)/6, where we employ the
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facts that NG ∼ N in this linear-evolution region (see Eq. (8.36)) and that Qs0 ∼ A1/6.
Using this in Eq. (8.41) we see that φA ∼ S⊥A(1+2iν0)/6 ∼ A5/6+iν0/3. This factor is the only
source of A-dependence in Eq. (8.45). Using the latter in Eq. (8.33) we obtain (Kharzeev,
Levin, and McLerran 2003)

RpA(kT � QsG) ∼ A−1/6+iν0/3 = A−0.124 � 1 for A � 1. (8.46)

We see that for large enough nuclei and for large rapidities y (such that Eq. (4.161) is
applicable) the nuclear modification factor in pA collisions becomes smaller than 1, in
agreement with Fig. 8.11.

8.3 Gluon production in nucleus–nucleus collisions

An important problem, both from the standpoint of saturation physics and for the physics
of ultrarelativistic heavy ion collisions, is to find the gluon production cross section for
nucleus–nucleus (AA) collisions. Practically, the problem means that one has to find the
gluon transverse momentum spectrum in the case when neither the saturation scale of the
projectile Qs1 nor the saturation scale of the target Qs2 is negligibly small in the kT -range
of interest. The solution of the problem would involve first constructing a quasi-classical
solution for the MV model with multiple rescatterings in both colliding nuclei. On top of
that one would have to include quantum small-x evolution. Phenomenological applications
would also require fixing the scales of all the coupling constants in the expression.

At the time of writing none of the above steps has been done analytically. For some the-
oretical developments see Balitsky (2004), Blaizot and Mehtar-Tani (2009), and Kovchegov
(2001). One may perhaps expect that the persistence of the kT -factorization formula (8.45)
for various approximations of gluon production in pA and DIS would indicate that this
formula could be valid for AA collisions as well. However, in AA collisions both nuclei
come in with fully saturated wave functions, which are completely screened in the IR (see
Eq. (5.56) and Fig. 5.7): one would therefore expect that owing to the lack of low-kT

partons the produced-gluon spectrum would have no power-law divergence at small kT ,
making it unlikely that kT -factorization gives the right answer for gluon production in AA

collisions. To see this, note that, an inspection of Eq. (8.45) shows that it always leads
to 1/k2

T divergence at small kT , thus contradicting the physical argument we have just
presented. Furthermore, the kT -factorization formula does not appear to agree with the
results of numerical solutions of the quasi-classical AA problem.

The quasi-classical gluon field in AA collision was found numerically in the works
of Krasnitz and Venugopalan (2000, 2001), Lappi (2003), and Krasnitz, Nara, and Venu-
gopalan (2003a, b). In Fig. 8.12 we show the resulting gluon spectrum and, for comparison,
the predictions of the kT -factorization formula (8.30) (Blaizot, Lappi, and Mehtar-Tani
2010). The solid line in Fig. 8.12 gives the gluon spectrum multiplied by k2

T as a function of
kT /QsG for a numerical solution of the classical Yang–Mills equations with the two nuclei
giving the source current (QsG = 2 GeV; the IR cutoff � = 0.1 GeV). The prediction of
the kT -factorization formula (8.30) is shown by the dotted line in Fig. 8.12: one can clearly
see that while the two curves are close to each other for kT � QsG, Eq. (8.30) deviates from
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Fig. 8.12. The gluon spectrum multiplied by k2
T in AA collisions in the quasi-classical

approximation as a function of kT /QsG, given by a numerical solution (solid line). The
dotted line represents the prediction of the kT -factorization formula (8.30). (Reprinted from
Blaizot, Lappi, and Mehtar-Tani (2010), with permission from Elsevier.) A color version
of this figure is available online at www.cambridge.org/9780521112574.

the full solution for kT � QsG. In fact k2
T dNAA/d2kT dy for the full numerical solution

goes to zero as kT → 0, so that the total multiplicity dNAA/dy is independent of the IR
cutoff, in agreement with the physical argument presented above.

A promising strategy for including small-x evolution corrections in numerical simula-
tions of the quasi-classical gluon production was proposed recently by Gelis, Lappi, and
Venugopalan (2007, 2008a, b, 2009). It involves a new type of kT -factorization in which
the JIMWLK evolutions of both nuclei factorize, each providing sources for quasi-classical
gluon production.

Further reading

In this chapter we presented theoretical developments addressing single inclusive gluon
production in high energy collisions in the saturation/CGC framework. The techniques
presented here have been used to calculate other inclusive observables in DIS and pA colli-
sions. Single inclusive valence quark production was found by Dumitru and Jalilian-Marian
(2002) for a hard quark, while the valence quark production at mid-rapidity was calcu-
lated by Albacete and Kovchegov (2007a). The prompt photon production cross section
was derived by Gelis and Jalilian-Marian (2002a). Two-particle inclusive production (and
hence particle correlations) can also be determined. Di-lepton pair production (the Drell–
Yan process) was found by Gelis and Jalilian-Marian (2002b), Baier, Mueller, and Schiff
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(2004), and Kopeliovich et al. (2003). Inclusive two-gluon production was found by Jalilian-
Marian and Kovchegov (2004) and by Kovner and Lublinsky (2006). Gluon–valence-quark
production was calculated by Marquet (2007) and, using a different technique, by Jalilian-
Marian and Kovchegov (2004). Quark–antiquark pair production was found by Blaizot,
Gelis, and Venugopalan (2004) and by Kovchegov and Tuchin (2006). A number of proper-
ties of two-particle correlations have been discussed recently by Dominguez et al. (2011).

Exercises

8.1 Show that the lowest-order gluon production in onium–onium scattering is given by
Eq. (8.3) with the unintegrated gluon distributions given by Eq. (8.4).

8.2 Show that the inclusive gluon production cross section in onium–nucleus scattering
and in the quasi-classical MV/GGM approximation is given by Eq. (8.35). Demon-
strate that this expression can be reduced to the kT -factorized form (8.30).

8.3 Using a simplified model for NG,

NG(�x⊥, �b⊥, 0) = 1 − exp

{
−x2

⊥Q2
sG

4

}
, (8.47)

and assuming that Q2
sG is �b⊥-independent in a very large circle of radius R and is

zero outside the circle, evaluate Eq. (8.20) exactly. Use the obtained expression to
construct the nuclear modification factor RpA defined in Eq. (8.33). Plot the resulting
RpA as a function of kT /QsG and compare the plot with Fig. 8.8.

8.4 Prove the cancellations in Eqs. (8.37).

8.5∗ Reduce Eq. (8.40) to Eq. (8.43) using the unintegrated gluon distributions defined in
Eqs. (8.41) and (8.42).
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