LATTICE ISOMORPHISMS OF LIE ALGEBRAS

D. W. BARNES

(received 16 March 1964)

1. Introduction

Let L be a finite dimensional Lie algebra over the field F. We denote by $\mathscr{L}(L)$ the lattice of all subalgebras of L. By a lattice isomorphism (which we abbreviate to \mathscr{L} -isomorphism) of L onto a Lie algebra M over the same field F, we mean an isomorphism of $\mathscr{L}(L)$ onto $\mathscr{L}(M)$. It is possible for non-isomorphic Lie algebras to be \mathscr{L} -isomorphic, for example, the algebra of real vectors with product the vector product is \mathscr{L} -isomorphic to any 2-dimensional Lie algebra over the field of real numbers. Even when the field F is algebraically closed of characteristic 0, the non-nilpotent Lie algebra $L = \langle a, b_1, \dots, b_r \rangle$ with product defined by $ab_i = b_i, b_i b_j = 0$ $(i, j = 1, 2, \dots, r)$ is \mathscr{L} -isomorphic to the abelian algebra of the same dimension¹. In this paper, we assume throughout that F is algebraically closed of characteristic 0 and are principally concerned with semi-simple algebras. We show that semi-simplicity is preserved under \mathscr{L} -isomorphism, and that \mathscr{L} -isomorphic semi-simple Lie algebras are isomorphic.

We write mappings exponentially, thus the image of A under the map φ will be denoted by A^{φ} . If a_1, \dots, a_n are elements of the Lie algebra L, we denote by $\langle a_1, \dots, a_n \rangle$ the subspace of L spanned by a_1, \dots, a_n , and denote by $\langle \langle a_1, \dots, a_n \rangle$ the subalgebra generated by a_1, \dots, a_n . For a single element $a, \langle a \rangle = \langle \langle a \rangle \rangle$. The product of two elements $a, b \in L$ will be denoted by ab. We use brackets only for products of more than two elements. Put

 $\ell(L) =$ length of longest chain in $\mathcal{L}(L)$ d(L) =dimension of L.

Then clearly $d(L) \ge \ell(L)$. If L is soluble, then

 $\ell(L) = d(L) =$ length of a composition series of L.

We remark that, if L is insoluble (over an algebraically closed field of characteristic 0) then L has a subalgebra isomorphic to the simple algebra

¹ For some theorems on \mathcal{L} -isomorphisms between Lie algebras L, M both assumed nilpotent, see Barnes and Wall [1].

 \mathfrak{A}_1 . If R is the radical of L, then by Levi's theorem ², L has a subalgebra A isomorphic to L/R. A is semi-simple and (since L is insoluble) non-trivial. If α is a root of A, e_{α} , $e_{-\alpha}$, eigenvectors for α and $-\alpha$ and $h_{\alpha} = e_{\alpha}e_{-\alpha}$, then $\langle h_{\alpha}, e_{\alpha}, e_{-\alpha} \rangle$ is a subalgebra isomorphic to \mathfrak{A}_1 .

If $\langle h \rangle$ is a Cartan subalgebra of \mathfrak{A}_1 and e is a corresponding eigenvector, then

$$0 < \langle h \rangle < \langle h, e \rangle < \mathfrak{A}_1$$

is a chain of length 3 in $\mathscr{L}(\mathfrak{A}_1)$. It follows that, if $\ell(L) \leq 3$, we have $\ell(L) = d(L)$ since L must either be soluble or isomorphic to \mathfrak{A}_1 .

2. The radical

LEMMA 1. L is isomorphic to \mathfrak{A}_1 if and only if L has the properties: (i) $\ell(L) = 3$

(ii) There exists H < L, $\ell(H) = 1$ such that there are exactly two subalgebras A, B < L containing H.

(iii) For every U < A, $U \neq 0$, H, there exists V < B such that $U \cup V = L$. For every V < B, $V \neq 0$, H, there exists U < A such that $U \cup V = L$.

The subalgebras H with the above properties are the Cartan subalgebras. The subalgebra A > H has precisely one subalgebra $E \neq 0$, A which is not a Cartan subalgebra of L. E is a weight space for the representation of H on L.

PROOF. It is easily verified that if L is isomorphic to \mathfrak{A}_1 , then the Cartan subalgebras H of L have the properties (ii) and (iii), and that if E is a 1-dimensional subalgebra of L which is not a Cartan subalgebra, then E is contained in exactly one 2-dimensional subalgebra A, E is the only 1-dimensional subalgebra of A which is not a Cartan subalgebra of L, and E is a weight space for each Cartan subalgebra H < A. Thus to prove the lemma, it is sufficient to prove that (i), (ii), (iii) imply that L is isomorphic to \mathfrak{A}_1 .

Since $\ell(L) = 3$, we have d(L) = 3. It is sufficient to prove that L' = Las \mathfrak{A}_1 is the only 3-dimensional algebra with this property. L can have no 1-dimensional ideal J since, if such a J existed, we would have either H = Jcontrary to (ii) or we could take A = H+J, U = J contrary to (iii). Thus $d(L') \ge 2$. Suppose d(L') = 2. Then L is soluble and, since it has no 1-dimensional ideal, L'' = 0. Since $A \ne B$, we can suppose $A \ne L'$. But then $A \cap L'$ is 1-dimensional and is an ideal since it is an ideal in both Aand L'. Therefore L = L'.

COROLLARY 1. If L is \mathcal{L} -isomorphic to \mathfrak{A}_1 , then L is isomorphic to \mathfrak{A}_1 . PROOF. The properties (i), (ii), (iii) are all properties of $\mathcal{L}(L)$.

⁸ See Jacobson [2], p. 91.

COROLLARY 2. Let $\varphi : \mathscr{L}(L) \to \mathscr{L}(M)$ be an \mathscr{L} -isomorphism. If L is soluble, then so is M.

PROOF. L has a subalgebra isomorphic to \mathfrak{A}_1 if and only if M has. Thus L is insoluble if and only if M is insoluble.

LEMMA 2. The radical R of L is the intersection of the maximal soluble subalgebras of L.

PROOF. Every maximal soluble subalgebra of L contains R. We may therefore work in the algebra L/R and so need only consider the case R = 0.

Let H be a Cartan subalgebra of the semi-simple algebra L. Let e_{α} be an eigenvector for the root α . We suppose that the roots have been ordered in the usual manner³. Put

$$M = \langle H, e_{\alpha} | \alpha > 0 \rangle,$$

$$N = \langle H, e_{\alpha} | \alpha < 0 \rangle.$$

Then M, N are maximal soluble subalgebras of L (the Borel subalgebras) and $M \cap N = H$. It is therefore sufficient to prove that the intersection of the Cartan subalgebras of L is 0.

Suppose $u \in \cap \{H | H \text{ Cartan subalgebra of } L\}$. If x is a regular element of L, then the Fitting null component $L_{0,x}$ of the representation of $\langle x \rangle$ on L is a Cartan subalgebra of L^4 . Since $x \in L_{0,x}$ and the Cartan subalgebras of a semi-simple algebra are abelian, ux = 0 for all regular x. But the regular elements x are dense in L in the Zariski topology, and so span L. Thus u is in the centre of L and so u = 0.

THEOREM 1. Let L, M be finite dimensional Lie algebras over the algebraically closed field F of characteristic 0. Let $\phi : \mathcal{L}(L) \to \mathcal{L}(M)$ be an \mathcal{L} isomorphism of L onto M, and let R be the radical of L. Then \mathbb{R}^{φ} is the radical of M.

PROOF. From Lemma 1 Corollary 2, it follows that ϕ maps maximal soluble subalgebras of L to maximal soluble subalgebras of M. By Lemma 2, this implies that R^{φ} is the radical of M.

3. Semi-simple algebras

We investigate semi-simple algebras by studying the subalgebras generated by the weight spaces for some Cartan subalgebra.

LEMMA 3. Let L be an insoluble algebra of dimension 4. Then $L = R \oplus S$ (algebra direct sum) where $R = \langle r \rangle$ is the radical of L and S is isomorphic to \mathfrak{A}_1 .

^{*} See Jacobson [2] p. 119.

⁴ See Jacobson [2], p. 59 Theorem 1.

PROOF. L/R is semi-simple of dimension at most 4 and thus must be isomorphic to \mathfrak{A}_1 . Thus the radical R is 1-dimensional and $R = \langle r \rangle$ for some $r \in L$. By Levi's theorem, there exists a subalgebra S < L such that L = R + S and $R \cap S = 0$. To prove that $L = R \oplus S$, we have to prove that S is an ideal of L.

We can choose a basis h, e, f of S such that he = e, hf = -f, ef = hsince S is isomorphic to \mathfrak{A}_1 . Since R is an ideal, $hr = \alpha r$, $er = \beta r$, $fr = \gamma r$ for some α , β , $\gamma \in F$. By the Jacobi identity,

$$0 = (re)f + (fr)e + (ef)r = \alpha r$$

$$0 = (rh)e + (er)h + (he)r = \beta r$$

$$0 = (rf)h + (hr)f + (fh)r = \gamma r$$

and therefore $\alpha = \beta = \gamma = 0$.

LEMMA 4. Let L be a semi-simple algebra and let $\phi : \mathcal{L}(L) \to \mathcal{L}(M)$ be an \mathcal{L} -isomorphism. Let H be a Cartan subalgebra of L and let L_{α} be the weight space of the root α . Then H^{φ} is a Cartan subalgebra of M and L_{α}^{φ} is the weight space of a root α^{φ} of M.

PROOF. Since L is semi-simple, L_{α} is a 1-dimensional and so is a subalgebra. Thus L_{α}^{ϕ} is defined. There exist e_{α} , $e_{-\alpha}$, h_{α} such that $L_{\alpha} = \langle e_{\alpha} \rangle$, $L_{-\alpha} = \langle e_{-\alpha} \rangle$, $h_{\alpha} = e_{\alpha} e_{-\alpha} \in H$ and $h_{\alpha} e_{\alpha} = e_{\alpha}$, $h_{\alpha} e_{-\alpha} = -e_{-\alpha}$. By Lemma 1, we need only consider the case d(H) > 1. There exist h_1, \dots, h_s such that $h_{\alpha}, h_1, \dots, h_s$ is a basis of H and $\alpha(h_i) = 0$.

Put $K = H^{\varphi}$, $\langle k_i \rangle = \langle h_i \rangle^{\phi}$. By Lemma 1, we can choose $k_{a^{\phi}}$, $f_{a^{\phi}}$, $f_{-a^{\phi}}$ such that

$$\langle k_{a \bullet} \rangle = \langle h_a \rangle^{\phi}, \langle f_{a \bullet} \rangle = \langle e_a \rangle^{\phi}, \langle f_{-a \bullet} \rangle = \langle e_{-a} \rangle^{\phi},$$

and

$$k_{a^{\phi}}f_{a^{\phi}} = f_{a^{\phi}}, \quad k_{a^{\phi}}f_{-a^{\phi}} = -f_{-a^{\phi}}, \quad f_{a^{\phi}}f_{-a^{\phi}} = k_{a^{\phi}}.$$

Since $\langle h_{\alpha}, e_{\alpha}, e_{-\alpha}, h_i \rangle$ is an insoluble algebra of dimension 4 with radical $\langle h_i \rangle$, $\langle k_{a\phi}, f_{a\phi}, f_{-a\phi}, h_i \rangle$ is insoluble of dimension 4 with radical $\langle k_i \rangle$. By Lemma 3, $k_i k_{a\phi} = k_i f_{a\phi} = k_i f_{-a\phi} = 0$. Thus $k_{a\phi}$ is in the centre of $K = \langle k_{a\phi}, k_1, \cdots, k_{a} \rangle$. But the $k_{a\phi}$ span K and so K is abelian. For all $k \in K$, $k f_{a\phi} \in \langle f_{a\phi} \rangle$. Thus $f_{a\phi}$ is an eigenvector for the representation of K on M. Put $k f_{a\phi} = \alpha^{\phi}(k) f_{a\phi}$. Then $\alpha^{\phi}(k)$ is a weight of the representation of K on M.

Suppose $y \in N(K) = \{m | m \in M, mK \subseteq K\}$. Put $\langle x \rangle = \langle y \rangle^{\phi-1}$. Then $x = h + \sum_{\alpha} \lambda_{\alpha} e_{\alpha}, h \in H, \lambda_{\alpha} \in F$. For all $k \in K$, $ky \in K$ and so $\langle K, y \rangle$ is a subalgebra. Therefore, for all $h' \in H$,

D. W. Barnes

$$\begin{aligned} h'x &= \sum_{\alpha} \lambda_{\alpha} \alpha(h') e_{\alpha} \in \langle H, x \rangle \\ &= \mu x + h'' \quad (\mu \in F, h'' \in H). \end{aligned}$$

Therefore $\sum \alpha \lambda_{\alpha} \alpha(h') e_{\alpha} = \mu(h') \sum_{\alpha} \lambda_{\alpha} e_{\alpha}$ for all $h' \in H$. Suppose $\lambda_{\alpha_1}, \lambda_{\alpha_2} \neq 0$. Then $\alpha_1(h') = \alpha_2(h')$ for all $h' \in H$, that is, $\alpha_1 = \alpha_2$. Therefore $x = h + \lambda e_{\alpha}$ and $y = k + \rho f_{\alpha}$ for some $k \in K$, $\rho \in F$ since

$$y \in \langle x \rangle^{\phi} \leq \langle x, e_{\alpha} \rangle^{\phi} = \langle h \rangle^{\phi} \cup \langle e_{\alpha} \rangle^{\phi}.$$

But $k_{a^{\phi}}(k+\rho f_{a^{\phi}}) = \rho f_{a^{\phi}}$. Since $k_{a^{\phi}} y \in K$, we must have $\rho = 0$. Therefore N(K) = K and K is a Cartan subalgebra of M, the α^{φ} are roots. Since M is semi-simple, the weight spaces $M_{\phi_{\alpha}}$ corresponding to the roots α^{φ} are 1-dimensional. But $f_{\alpha^{\phi}} \in M_{\alpha^{\phi}}$ and therefore $L_{\alpha}^{\phi} = M_{\alpha^{\phi}}$.

COROLLARY. Let L, M be \mathcal{L} -isomorphic Lie algebras over the algebraically closed field F of characteristic 0. Then d(L) = d(M).

PROOF. Let $\phi : \mathcal{L}(L) \to \mathcal{L}(M)$ be an \mathcal{L} -isomorphism. Let R be the radical of L. Then R^{ϕ} is the radical of M and $d(R) = d(R^{\phi})$ since R, R^{ϕ} are soluble. Thus we need only consider the case R = 0. Let H be a Cartan subalgebra of L. Then H^{ϕ} is a Cartan subalgebra of M and $d(H) = d(H^{\phi})$. To every root α of L, there corresponds a root α^{ϕ} of M, and the α^{ϕ} are all the roots of M by Lemma 4 applied to ϕ and ϕ^{-1} . This correspondence is one-to-one. Since d(L) = d(H) + 2s where 2s is the number of roots, we have d(L) = d(M).

THEOREM 2. Let L, M be \mathcal{L} -isomorphic Lie algebras over the algebraically closed field F of characteristic 0. Suppose L is semi-simple. Then L and M are isomorphic.

PROOF. Let $\varphi : \mathscr{L}(L) \to \mathscr{L}(M)$ be an \mathscr{L} -isomorphism. We use the notation of the proof of Lemma 4 for Cartan subalgebras, weight spaces, etc. We have the one-to-one correspondence $\alpha \leftrightarrow \alpha^{\phi}$ between the roots of L and M by Lemma 4 applied to φ and φ^{-1} . By a well-known result⁵, it is sufficient to prove for all roots α , β of L that $(-\alpha)^{\phi} = -(\alpha^{\phi})$, that $\alpha + \beta$ is a root of L if and only if $\alpha^{\phi} + \beta^{\phi}$ is a root of M, and that if $\alpha + \beta$ is a root of L, then $(\alpha + \beta)^{\phi} = \alpha^{\phi} + \beta^{\phi}$.

 $\alpha + \beta = 0$ if and only if $\langle \langle e_{\alpha}, e_{\beta} \rangle \rangle \cap H \neq 0$. This property is preserved by \mathscr{L} -isomorphisms, so $(-\alpha)^{\phi} = -(\alpha^{\phi})$. If $\alpha + \beta \neq 0$, then

 $\langle \langle e_{\alpha}, e_{\beta} \rangle \rangle \subseteq \langle e_{\gamma} | \gamma = r\alpha + s\beta$ root of L; r, s non-negative integers \rangle .

 $\alpha + \beta$ is a root if and only if $\langle \langle e_{\alpha}, e_{\beta} \rangle \rangle \supset \langle e_{\gamma} \rangle$ for some $\gamma \neq \alpha, \beta$. Therefore $\alpha + \beta$ is a root if and only if $\alpha^{\phi} + \beta^{\phi}$ is a root.

⁵ This is essentially the assertion of [3] p. 11-06, Corollary 2.

474

Suppose $\alpha + \beta$ is a root. $\langle e_{\alpha+\beta} \rangle$ is characterised by

(i)
$$\langle e_{\alpha+\beta} \rangle \subset \langle e_{\alpha} \rangle \cup \langle e_{\beta} \rangle$$
 and
(ii) $\langle e_{\alpha+\beta} \rangle \subset \langle e_{\gamma} \rangle \cup \langle e_{\delta} \rangle \subseteq \langle e_{\alpha} \rangle \cup \langle e_{\beta} \rangle, \gamma, \delta \neq \alpha+\beta$

implies either $\gamma = \alpha$, $\delta = \beta$ or $\gamma = \beta$, $\delta = \alpha$. Therefore $(\alpha + \beta)^{\phi} = \alpha^{\phi} + \beta^{\phi}$.

References

- [1] Barnes, D. W. and Wall, G. E., On normaliser preserving lattice isomorphisms between nilpotent groups (to appear).
- [2] Jacobson, N., Lie algebras, Interscience Tracts No. 10. New York, 1962.
- [3] Séminaire "Sophus Lie": 1954/55, Théorie des algèbres de Lie, topologie des groupes de Lie (Ecole Normale Supérieure, Paris, 1955).

University of Sydney.

[6]