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ABSTRACT. The observable microstructures in ice are the result of many dynamic and competing
processes. These processes are influenced by climate variables in the firn. Layers deposited in different
climate regimes may show variations in fabric which can persist deep into the ice sheet; fabric may
‘remember’ these past climate regimes. We model the evolution of fabric variations below the firn–ice
transition and show that the addition of shear to compressive-stress regimes preserves the modeled
fabric variations longer than compression-only regimes, because shear drives a positive feedback
between crystal rotation and deformation. Even without shear, the modeled ice retains memory of the
fabric variation for �200 ka in typical polar ice-sheet conditions. Our model shows that temperature
affects how long the fabric variation is preserved, but only affects the strain-integrated fabric evolution
profile when comparing results straddling the thermal-activation-energy threshold (�–10°C). Even at
high temperatures, migration recrystallization does not eliminate the modeled fabric’s memory under
most conditions. High levels of nearest-neighbor interactions will, however, eliminate the modeled
fabric’s memory more quickly than low levels of nearest-neighbor interactions. Ultimately, our model
predicts that fabrics will retain memory of past climatic variations when subject to a wide variety of
conditions found in polar ice sheets.
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1. INTRODUCTION
Observations show that the microstructure of ice records
aspects of climate history (e.g. Paterson, 1991; Gow and
others, 1997; Durand and others, 2007; Pettit and others,
2011). However, understanding if and how the climate
‘memory’ is preserved and evolved through time is
challenging (Kennedy and others, 2013). Paterson (1991)
showed that ice-age ice typically consists of smaller grains
and stronger fabric (statistically preferred orientation of the
ice crystal lattice) than Holocene ice, providing the first hint
of a connection between paleoclimate and microstructure in
an ice sheet. More recently, both thin-section data and
sonic-velocity data from Dome C, East Antarctica, show an
abrupt transition in the ice rheology at 1750m depth, which
corresponds to a transition between the warm MIS-5 (marine
isotope stage 5) and the cool MIS-6 �150 ka ago (Durand
and others, 2007; Gusmeroli and others, 2012). Many
microstructural features (e.g. dust particles, grain size,
fabric) correlate with climate history (e.g. Durand and
others, 2006a). This correlation is caused by a number of
interdependent microstructural processes (e.g. Alley, 1992;
Faria and others, 2014b).

Classically, three main processes account for the observed
grain and fabric structure throughout the depth of the ice
sheet (e.g. Alley and others, 1986; Alley, 1992; De La

Chapelle and others, 1998; Cuffey and Paterson, 2010).
Normal grain growth is the temperature-controlled coarsen-
ing of grains through grain-boundary migration, in order to
reduce the total grain-boundary energy stored in the ice.
Large grains consume small grains in such a way that the
average grain cross-sectional area increases linearly with
time (Alley and others, 1986). This process is considered to
be active throughout the depth of the ice sheet, but is
counterbalanced by polygonization at intermediate depths
of the ice sheet, where a steady grain-size profile is observed
(Alley, 1992). Strain energy builds in a grain during deform-
ation, and bending or twisting stresses cause dislocations to
form a ‘wall’, which eventually divides (polygonizes) the
grain and causes a small misorientation between the grains’
crystal lattices. At the greatest depths of an ice sheet, where
the temperature is >–10°C, migration recrystallization
becomes active. Here temperatures are great enough for
grain boundaries to move easily, driven by differences in
stored strain energy (Alley, 1992). With high enough stored
strain energy, it becomes energetically favorable to nucleate
a new strain-free grain, which rapidly migrates through
neighboring grains and has an orientation that is dependent
on the applied stress (Duval and Castelnau, 1995). With
sufficiently high rates of migration recrystallization, an
inverse power-law relationship between grain size and stress
forms (Jacka and Jun, 1994) and an entirely new fabric
structure results. Because fabric and grain structure are a
result of recrystallization processes, conventional wisdom is
that fabric will not maintain any past climate information.

Although the classic three-process model, or ‘tripartite
paradigm’, has successfully described the average grain size
and fabric in ice cores, observations in the last decade have
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led to new perspectives on these processes (e.g. Faria and
others, 2014a,b; cf. De La Chapelle and others, 1998).
Techniques that allow observations on the scale of micro-
meters or smaller (e.g. Kipfstuhl and others, 2006; Obbard
and others, 2006; Weikusat and others, 2011) are now
common, whereas classical observations typically were on
the scale of millimeters or larger (Faria and others, 2014a).
Some observations from these high-resolution techniques
cannot be accounted for under the tripartite paradigm if it is
considered a description of the actual microstructural
physics. For example, in Dronning Maud Land, Antarctica,
the firn grain-boundary structure appears to have been
dominated by migration recrystallization during the firn–ice
transition, even though it is much colder (annual mean
temperature –46°C) than where migration recrystallization is
considered to be a dominant process (�> –10°C; Kipfstuhl
and others, 2009). However, due to its success in describing
the microstructure observed in ice (summarized by Faria
and others, 2014a,b), the tripartite paradigm provides a
robust phenomenological model of the average grain size
and especially the fabric evolution (as discussed in the next
section), despite its imperfections.

Observations of more recrystallization in the firn and ice
of an ice sheet than expected under the tripartite paradigm
(e.g. Kipfstuhl and others, 2009) would seem to reinforce the
conventional idea that fabric cannot preserve a memory of
past climate. Indeed, the memory is unlikely to be stored
directly in the grain structure or fabric strength of a
particular layer of ice, as they are continually evolving.
The relative differences in the fabric between layers,
however, can be preserved under certain conditions
(Kennedy and others, 2013).

Because the microstructural processes active in the firn
are sensitive to climatic variables (Alley and others, 1990),
layers of firn experiencing different climate regimes may
have observable variations in the fabric which can be
preserved. For example, in polar regions, vapor deposition is
the primary method of grain growth in the upper firn and it is
anisotropic: deposition will favor either the basal or prism
faces of the ice-crystalline lattice, depending on the
temperature (Nelson and Knight, 1998). This process causes
grains with the preferred face parallel to the vapor-pressure
gradient to grow more than grains in a less favorable
orientation. Because these grains grow at the expense of
other grains (Colbeck, 1983), the well-oriented grains are
more likely to remain (Carns and others (2010) are
developing a model to explore this process). Variations in
texture and fabric in the firn may reflect variations in
temperature and vapor-pressure gradients (Adams and
Miller, 2003). While measuring fabric in firn is difficult,
several studies have reported non-isotropic fabric measure-
ments from firn (DiPrinzio and others, 2005; Fujita and
others, 2009; Montagnat and others, 2012). Montagnat and
others (2012) found that using non-isotropic initial fabrics
was required during simulations of the fabric evolution in
Talos Dome, East Antarctica, for a good quantitative match
to observed fabrics. Therefore, fabric variations may arise
from climatic variations and these variations may be present
beneath the firn–ice transition. Fabric variations then may
preserve memory of past climate, as long as the fabric
variation is observable. (A loose analogy can be drawn to
the familiar climate proxy, d18O; it is the variation in d18O,
not the particular amount of the oxygen isotope present, that
allows us to extract a temperature history.)

Here, we ask how long a subtle fabric variation (of any
origin), just below the firn–ice transition, can be preserved
within an ice sheet. Kennedy and others (2013) used a
model based on the tripartite paradigm to show that a subtle
variation in fabric can persist throughout the depth of an ice
sheet when the ice is in a vertical uniaxial-compression or
pure-shear regime and experiences polygonization events
typical of ice divides. We build on this work to show that it
is possible to preserve a subtle variation in fabric in a
simple-shear stress regime and subject to migration recrys-
tallization. Ice flows dominantly by simple shear on the
flank of an ice sheet, while ice at the divide may experience
some simple shear, especially in the case of divide
migration. We also show that for any of the modeled
stresses or temperatures, migration recrystallization does not
‘erase’ the fabric variation. Together, the combination of
uniaxial compression, pure shear, simple shear, polygoniza-
tion and migration recrystallization account for the domi-
nant processes within an ice sheet that affect the fabric
evolution.

2. FABRIC
A sample of ice can display a statistically preferred
orientation of its crystal lattices called fabric. The statistical
measure of this preference is often reported as eigenvalues
and eigenvectors of the (volume-weighted) average orien-
tation tensor of the sample. The grain volume can be
determined from the measurement of the two-dimensional
grain area in a cross section of the sample (Woodcock,
1977; Gagliardini and others, 2004).

The orientation tensor is calculated from a sample of N
grains:

A ¼
XN

n¼1
fn~cn � ~cn, ð1Þ

where fn is the estimate of the grain’s volume fraction, ~cn is a
unit vector describing the grain’s c-axis orientation and � is
the vector direct (outer) product. The eigenvalues, ei, for
i ¼ 1, 2, 3, of A then represent the spatial distribution of the
orientations, and how tightly the crystals are aligned to the
eigenvectors, ~vi. The eigenvalues are labeled in descending
order (e1 > e2 > e3) and sum to unity (e1 þ e2 þ e3 ¼ 1). For
a single-maximum fabric, the statistically preferred orien-
tation is the first eigenvector, ~v1. The first eigenvalue, e1,
measures the fabric strength. Fabrics typically strengthen
throughout the depth of an ice sheet in response to stress-
induced velocity gradients driving grain rotation in the ice
(e.g. Paterson, 1991; Arnaud and others, 2000; DiPrinzio
and others, 2005; Durand and others, 2007; Gow and
Meese, 2007).

Microstructural processes further influence the volume
orientation of ice and can significantly impact the fabric
statistics. The three that affect lattice orientation are rotation
recrystallization (RRX), where new grain boundaries are
formed through the progressive rotation and migration of
subgrain boundaries (of which polygonization is a special
case), and strain-induced boundary migration (SIBM; also
called migration recrystallization) from old/existing grains
(SIBM-O) and from nucleation of new grains (SIBM-N) (see
Faria and others, 2014b, appendix A). Of these three, only
SIMB-N is known to affect the fabric strength significantly.
RRX produces new grains, of differing size, with small lattice
misorientations (<10°; Alley and others, 1995), but the
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volume average of these new grains, and what is left of the
old grain, will closely match the average before RRX,
resulting in a small weakening of the fabric. SIBM-O, in a
statistical sense, is erasing the orientation of a bit of ice and
replacing it with an orientation drawn from the same parent
distribution of grains. Given a large number of grains, this
will not affect the overall fabric statistics as long as there is
not a preference to recrystallize grains in a certain orien-
tation and the total population of grains remains large. Due
to the large amount of strain heterogeneity in deforming ice,
there should not be an orientation preference for SIBM-O
(Faria and others, 2014b).

SIBM-N, in contrast, nucleates new grains with a random
orientation (Wilson and others, 2014). The fabrics that arise
when SIBM-N dominates the fabric evolution are typically
aligned for easy glide in the basal planes (the softest
orientation) (Montagnat and others, 2009), indicating that
the nucleated grains most likely to grow are the ones
oriented for easy glide. The influence of SIBM-N on a fabric
variation will then depend on the rates of SIBM-N in each
layer, as well as the rates of grain rotation. As long as the
rates of SIBM-N remain low, or there is a differing rate in the
varying layers, SIBM-N will not immediately eliminate the
fabric variation (as shown below).

Therefore, due to the way fabric is influenced by the
microstructural processes, and the way it is measured, we
expect fabric to be particularly amenable to preserving
variations.

3. THE MODEL
We use the topological model developed by Kennedy and
others (2013), based on the analytic flow law developed by
Thorsteinsson (2001, 2002). This polycrystal model solves
for fabric through time, while incorporating nearest-neigh-
bor interactions (NNIs) and the tripartite parameterizations
of normal grain growth, polygonization and migration
recrystallization (SIBM-N). This model does not predict ice
flow; therefore, it does not account for possible strain
enhancements, such as impurity-enhanced ice flow (Pater-
son, 1991; Faria and others, 2009). Nor does it include the
feedbacks between rheologically distinct layers that can

lead to concentrated shearing on layers with crystals
oriented to be soft in shear (Budd and Jacka, 1989; Durand
and others, 2007; Pettit and others, 2007).

The model averages over a representative distribution of
N individual ice crystals to calculate the bulk response of
the ice to stress. The crystals are arranged on a regular
cuboidal grid (Fig. 1), where each crystal has six nearest
neighbors. The crystals however, are considered to evolve
independently of each other and are embedded in an ice
matrix. The matrix accommodates crystal-boundary migra-
tion and acts as seeds for migration recrystallization
(Thorsteinsson, 2002). In the case of NNIs, the resolved
shear stress of the crystal is modified by a factor depending
on the average orientation of the surrounding crystals.

The distribution of N crystals can be divided into sub-
distributions with distinct fabrics. The evolution of each sub-
distribution can then be calculated and compared with the
others or with the entire distribution through time.

Each crystal in the distribution has an associated orien-
tation, ~cn, given by the co-latitude, �n, and azimuth, �n, as
well as an associated spherical size of diameter Dn and
dislocation density �n. The model accepts an initial crystal
distribution, stress and temperature, then evolves the distri-
bution through uniform steps in time or strain. Figure 2
outlines the model process. First, the initial crystal distri-
bution is created and passed to the model. The model then
applies a stress to the distribution and calculates the
individual crystal strain rates and velocity gradients using
the flow law developed by Thorsteinsson (2001, 2002).
Next, it checks the recrystallization conditions (outlined

Fig. 2. Flow chart of the model. The model is initialized with fabric
data, deviatoric stress and temperature. For each time step, strain
rates and velocity gradients are calculated, dynamic recrystalliza-
tion processes are applied to the fabric and then the grains are
rotated to calculate new fabric data. The new fabric data together
with new stresses and temperatures are fed back into the model to
start the next time step.

Fig. 1. The polycrystal structure. Left: An example of a polycrystal-
line cuboid with three distinct fabric layers, where each color
represents a different fabric. Each small cube indicates one grain
and each layer has 4� 4� 4 ¼ 64 grains. The three-layered cuboid
in our model has 20� 20� 20 ¼ 8000 grains in each layer. Right:
An illustration of the grain packing where each grain (gray) has six
neighboring grains (white).
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below), calculates the bulk crystal properties and then
rotates the crystals. After each time- or strain-step, the model
outputs the new distribution of crystals, the bulk strain, and
the number and type of recrystallization events. This new
distribution of crystals is then fed back into the model for the
next time step, along with the new stress and temperature.
Because stress is an input for this model, stress must be
determined outside of the model.

3.1. Model physics
Grains rotate due to gradients in velocity, which result from
internal stresses experienced by the ice. For polycrystalline
ice, these stresses lie somewhere between two end-member
assumptions: uniform stress and uniform strain rates. In the
uniform-stress assumption, each grain experiences the same
stress as the surrounding grains. Because ice crystals are
highly anisotropic, an individual grain’s strain rate, there-
fore, depends on its lattice orientation. In the uniform-strain-
rate assumption, each grain has the same strain rate as the
surrounding grains. The stress the grain experiences, then,
depends on the grain’s orientation. Although the true nature
of ice is somewhere in between, the uniform-stress assump-
tion is well adapted to describing polycrystalline ice, due to
strong crystal anisotropy (Castelnau and others, 1996).
Therefore, we apply a uniform stress to each grain in the
distribution. Furthermore, we restrict the deformation of a
grain to be along the slip systems in the basal plane, causing
the grain to only respond to the components of stress that are
parallel to the basal plane (termed the resolved shear stress,
or RSS). The RSS, � ðsÞ, on a slip system, ðsÞ, is

� ðsÞ ¼ SðsÞ:�0, ð2Þ

where SðsÞ is the Schmidt tensor, which describes the
orientation of the grain’s slip system, �0 is the deviatoric
stress tensor for the stress applied to the fabric and
SðsÞ:�0 ¼ SðsÞkl �

0
kl summing over repeated indexes. The

magnitude of the RSS, T , can then be calculated as

T ¼
X

ðsÞ

� ðsÞbbðsÞ

�
�
�
�
�
�

�
�
�
�
�
�
, ð3Þ

where bbðsÞ is the direction of the Burgers vector for the slip
system. Schmidt plots of T for a variety of stress states are
shown in Figure 3.

Using the analytic flow law (Thorsteinsson, 2001, 2002),
the velocity gradient of a grain in response to a stress, Lc, is

Lc ¼ �AðTÞ
X

ðsÞ

SðsÞ Ec� ðsÞ
�
�

�
�n� 1 Ec� ðsÞ

� �
, ð4Þ

where � is an adjustable constant to control the isotropic ice
softness, AðTÞ is the temperature-dependent flow parameter
from Glen’s flow law (Cuffey and Paterson, 2010, p. 72), Ec

is the local softness parameter due to NNIs, and n is the
exponent in Glen’s flow law (Glen, 1955).

The flow parameter AðTÞ follows an Arrhenius relation
with a switch of activation energy at a transition tempera-
ture, T? ¼ � 10�C. The relationship for T in kelvin is

AðTÞ ¼ A? exp �
Q�v
R

1
T
�

1
T?

� �� �

, ð5Þ

where A? is a constant, R is the universal gas constant and
Q�v is the activation energy for volume self-diffusion (Cuffey
and Paterson, 2010, p. 72). Q�v ¼ Q

þ
v ¼ 115 kJmol� 1 for

T � T? and Q�v ¼ Q
�
v ¼ 60 kJmol� 1 for T < T? (Table 1).

The local softness parameter, Ec, averages the magnitude
of RSS the neighboring grains are experiencing, T i, relative
to the magnitude of RSS the grain is experiencing, T 0:

Ec ¼
1

� þ 6�
� þ �

X6

i¼1

T i

T 0

 !

, ð6Þ

where � is the relative contribution of the center grain, and �
is the relative contribution of each neighbor (Fig. 1).
Because the RSS, T 0, can be zero, there is a specified cap
for the maximum value of Ec. Setting ½�, �� to ½1, 0� in Eqn (6)
is equivalent to the uniform-stress assumption with no NNIs.
Changing the values of ½�, �� modifies the uniform-stress
assumption (toward the uniform-strain assumption) by
redistributing the stress through explicit NNIs. Mild NNIs
occur when ½�, �� is set to ½6, 1�, such that the center grain
contribution to Ec is the same as the sum of the neighboring
grains. Full NNIs occur when ½�, �� is set to ½1, 1�, such that

Fig. 3. Contoured Schmidt plots of the magnitude of the resolved shear stress, T . T has been normalized by the maximum resolved shear
stress (T =maxðT Þ; Eqn (3)) for grains in the stress states of uniaxial compression, pure shear and simple shear (Eqns (18), (19) and (20),
respectively).
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the center grain and individual neighbor grains all con-
tribute equally to Ec.

Finally, the strain rate of a single grain is

_�c ¼
1
2

Lc þ ðLcÞT
h i

, ð7Þ

where ðLcÞT refers to the matrix transpose of Lc.
The bulk velocity gradient is calculated by averaging the

single-crystal velocity gradients, and will be influenced
more by larger crystals than smaller crystals. We calculate
the volume of a crystal from its diameter, D, and use its
volume fraction, f , as a statistical weight for the calculation
of the bulk velocity gradient (Gödert and Hutter, 1998;
Montagnat and others, 2014). Therefore, the modeled bulk
velocity gradient is

Lm ¼
XN

n¼1
fnLcn, ð8Þ

where N is the number of crystals in the representative
distribution and

fn ¼
D3
n

PN
m¼1D3

m

:

The modeled bulk strain rate is then

_�m ¼
1
2

Lm þ ðLmÞT
h i

: ð9Þ

However, we caution readers that this modeled strain rate
will not correspond to strain rates measured in situ, because
we are solving for fabric evolution, not ice flow. The
deformation of ice is not only a function of fabric (as
modeled here) but of many co-dependent processes, which
accommodate ice deformation (Thorsteinsson and others,
1999). Further, using the uniform-stress assumption results
in ice that is too stiff (Montagnat and others, 2014), meaning
the fabric evolves too much for the modeled strain rates
compared with measured strain rates. Using NNIs partially
alleviates this problem by allowing hard grains to deform.

Nevertheless, the cumulative modeled bulk strain,
provides a good measure of the overall fabric evolution (in
the context of the model), and is useful when comparing
different model runs, as we do below. In order to compare
results from our model with measured fabrics, the flow law
constant, � (Eqn (4)), and parameters controlling the local
softness, ½�, �� (Eqn (6)), need to be tuned to reproduce the
observed fabric evolution in time. How much the strain rate
is under-represented in the model can then be determined.
The effects of changing these parameters in our model are
discussed below.

3.2. Recrystallization processes
Once the velocity gradient and strain rates are calculated for
each grain, the parameterizations of normal grain growth,
polygonization and migration recrystallization (SIBM-N) are
applied to the grain distribution before the grains are rotated
into new orientations.

3.2.1. Normal grain growth
Under the tripartite paradigm, normal grain growth occurs
when grain boundaries migrate, in order to reduce the
overall grain-boundary energy. The grain growth is a
function of boundary curvature, intrinsic properties (e.g.
temperature, thickness, diffusivity of water molecules) and
extrinsic material (e.g. impurities, bubbles). This grain
growth can be described by a parabolic growth law (Alley
and others, 1986), where the grain diameter, D, increases
with time:

D2 ¼ Kt þD0
2, ð10Þ

where K is the grain-growth factor, t is time, t0 is the initial
time and D0 is the grain diameter at time t0. The grain-
growth factor is a function of the intrinsic properties of the
ice and the temperature:

K ¼ K0 exp �
Q�b
RT

� �

, ð11Þ

where K0 is a constant that depends on the intrinsic prop-
erties of the grain boundaries,Q�b is the activation energy for

Table 1. Values of the parameters used in the model

Parameter Value Equation Source

Flow law constant, � 630 (4) Thorsteinsson (2001)
Glen’s exponent, n 3 (4) Cuffey and Paterson (2010, p. 55–57)
Flow law constant, A? 3:5� 10� 25 Pa� 3 s� 1 (5) Cuffey and Paterson (2010, p. 74)
Activation energy for volume self-diffusion, Q�v Qþv = 115 kJmol

� 1 if T � –10°C (5) Cuffey and Paterson (2010, p. 72–74)
Q�v = 60 kJmol

� 1 if T < –10°C
Initial grain diameter, D0 1.5mm (10) Benson (1962)
Grain growth constant, K0 8:2� 10� 9 m2 s� 1 (11) Alley and others (1986), Thorsteinsson (2002)
Activation energy for grain-boundary self-diffusion, Q�b Qþb = 81 kJmol

� 1 if T � –10°C (11) Cuffey and Paterson (2010, p. 40)
Q�b = 42 kJmol

� 1 if T < –10C Jacka and Jun (1994)
Dislocation absorption constant, � 1 (12) De La Chapelle and others (1998), Montagnat

and Duval (2000)
Polygonization ratio, � 0.065 Thorsteinsson (2002)
Polygonization orientation change, �� 5° Thorsteinsson (2002)
Initial dislocation density, �0 1010 m� 2 De La Chapelle and others (1998)
Minimum dislocation density to form a subgrain
boundary, �p

5.4� 1010m� 2 De La Chapelle and others (1998)

Dislocation energy constant, � 0.01 (13) Mohamed and Bacroix (2000), Thorsteinsson
(2002)

Dislocation strain field range, Re 1= ffiffiffi
�
p (13) Mohamed and Bacroix (2000)

Grain-boundary energy, �g 0.065 Jm� 2 (14) Ketcham and Hobbs (1969)
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grain-boundary self-diffusion, R is the gas constant and T is
the temperature. Q�b is �0:7�Q�v (Cuffey and Paterson,
2010, p. 40) and, similarly to the activation energy for
volume self-diffusion, Q�b ¼ Q

þ
b ¼ 81 kJmol� 1 for T � T?

and Q�b ¼ Q
�
b ¼ 42 kJmol� 1 for T < T? (Table 1). Extrinsic

materials, such as dust particles, reduce the rate of boundary
migration and can be described by a drag force on the
boundary (Alley and others, 1986). This drag effectively
reduces the grain-growth factor, K. We list the values used for
these constants in Table 1.

Normal grain growth is then implemented by growing the
diameter of the grain, D, according to Eqn (10). We reset the
growth law after each recrystallization, such that t0 and D0
are the time and size immediately after the recrystallization.

3.2.2. Polygonization
Under the tripartite paradigm, a stable grain size is typically
reached, even though grains continue growing through time
and depth, because polygonization counteracts normal
grain growth. Polygonization creates new grain boundaries
within large ice grains, effectively dividing the grain in two.
Large grains can become highly strained and experience
differential stress, which is relieved by the organization of
dislocations into subgrain boundaries (Alley, 1992). De La
Chapelle and others (1998) determined that the minimum
dislocation density needed to form a subgrain boundary is,
�p ¼ 5:4� 1010 m� 2.

Because polygonization depends on reaching a minimum
dislocation density, the rate of polygonization can be
indirectly described through the dislocation density’s rate
of change. The dislocation density changes due to two
dominant processes: it increases due to work hardening and
decreases due to the absorption of dislocations by the grain
boundary (Miguel and others, 2001). Therefore, the change
in a grain’s dislocation density can be described as

d�
dt
¼
jj _�jj

bD
� ��

K
D2 , ð12Þ

where the first term on the right describes work hardening:
jj _�jj is the second invariant of the strain-rate tensor, b is the
length of the Burgers vectors and D is the grain diameter
(Montagnat and Duval, 2000). The second term describes
the absorption of dislocations by the grain boundaries, � is
an adjustable constant and K is the grain-growth factor.

We implement polygonization such that once the min-
imum dislocation density is reached, a grain experiencing a
differential stress may polygonize. Because our NNIs only
modify the RSS and cannot directly apply a differential stress,
we use a proxy for differential stress on a grain (Thorsteins-
son, 2002). Grains that have a small amount of the applied
stress resolved onto the basal plane (RSS) will likely be
experiencing a differential stress from their neighboring
grains which are deforming. Specifically, if the ratio of the
magnitude of the RSS, T , to the second invariant of the
applied stress, jj�0jj, is less than a given value, T =jj�0jj < �,
and the dislocation density, �, in the grain is sufficient to form
a subgrain wall (� > �p), then the grain will polygonize.
When a grain polygonizes, the orientation is changed by an
angle, ��, in a direction that increases the RSS, the grain size
is halved and the dislocation density is reduced by �p. Values
for these parameters are listed in Table 1. Polygonization
tends to slow the development of fabric because grains that
are oriented very close to the preferred orientation (small
RSS) of the fabric will polygonize preferentially by the

selection criteria. Because polygonization rotates the grains
away from the preferred orientation, this process tends to
weaken the fabric.

3.2.3. Migration recrystallization (SIBM-N)
According to the tripartite paradigm, through most of the
depth of an ice sheet, the rate of fabric evolution is
controlled by a balance between the grain growth,
polygonization and grain rotation processes. However,
migration recrystallization dominates fabric evolution at
high temperatures (typically >–10°C; Duval and Castelnau,
1995). Migration recrystallization occurs when the stored
strain energy (due to dislocations) in a grain is greater than
the grain-boundary energy of a new strain-free grain. This
new strain-free grain rapidly grows at the expense of the old
grain (Duval and Castelnau, 1995). The stored energy due to
dislocations, Ed, can be estimated as

Ed ’ ��Gb2 ln
Re
b

� �

, ð13Þ

where � is a constant, G is the shear modulus and Re is the
mean average of the dislocation strain field range (Thor-
steinsson, 2002). The energy associated with grain bound-
aries, Ec, is

Ec ¼
3�g
D

, ð14Þ

where �g is the energy per unit area on the boundary (for
high-angle boundaries). When Ed > Ec it is energetically
favorable to nucleate a new grain, which quickly grows to a
diameter that scales with the effective stress, due to a
balance between nucleation of grains and grain-boundary
migration (e.g. Shimizu, 2008). The nucleated grain that
grows most rapidly will be the one in the most energetically
favorable position: about halfway between the compres-
sional and tensional axes, which maximizes the resolved
shear stress on the basal planes, causing them to deform
easily (Alley, 1992). For uniaxial compression or pure shear,
for example, this is 45° from the axis of compression, while
for simple shear, it is 45° from the principal stress axis
(Fig. 3). The new grain is initially strain-free and has a much
lower strain energy than the surrounding grains, allowing it
to grow. As the new grain grows preferentially at an
orientation favorable for the bulk deformation (highest
RSS), the fabric can change significantly when there are
large numbers of migration recrystallization events.

We implement migration recrystallization by immedi-
ately creating a new grain when the dislocation energy, Ed,
exceeds the boundary energy, Ec (Eqns (13) and (14)). An old
grain is replaced with a new ‘strain-free’ grain that has a
dislocation density �0 and a diameter that scales with the
effective stress, D � ð�0kl�

0
kl=2Þ

� 2=3 (Thorsteinsson, 2002;
Shimizu, 2008). We assume the grain grows fast enough
to reach a diameter of D within a single time step. The new
grain is given the orientation with the highest RSS (or softest
orientation; Fig. 3), taken from a random distribution of 50
orientations in the applied stress state (Thorsteinsson, 2002).

3.2.4. Lattice rotation
If the surrounding ice is fixed, each grain rotates as it
deforms, according to the standard continuum mechanics
rotation rate tensor:

_�
p
¼

1
2

Lc � ðLcÞT
h i

, ð15Þ
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where _�
p
is the rotation rate of a single grain and Lc is the

velocity gradient of a grain in response to stress from Eqn (4).
If the surrounding ice is rotating within the frame of
reference, however, the model calculates a relative grain
rotation rate:

_�
�
¼ _�

b
� _�

p
, ð16Þ

where _�
b
is the bulk rotation rate of the modeled ice in

response to stress. The new orientation of the grain is then

~c 0 ¼ I þ t _�
?

� �
~c: ð17Þ

4. EXPERIMENTAL SET-UP
The model domain is a 24 000-grain cuboid that is 20 grains
wide, 20 grains deep and 60 grains high (Fig. 1). The cuboid
is split into three vertically layered cubes of 8000 grains
each and the middle layer is initialized with a different
fabric to the top and bottom layers. Each layer of the initial
fabric is generated using a Watson distribution (Kennedy
and others, 2013). The top and bottom layers have a
concentration parameter for the Watson distribution of
ktb ¼ � 2:0. This results in a vertical single-maximum fabric,
where the largest eigenvalue of the second-order orientation
tensor is etb1 ¼ 0:538. The middle layer has a stronger fabric,

with a concentration parameter of km ¼ � 2:4 (em1 ¼ 0:567).
These concentration parameters are characteristic of ice
fabrics found near the firn–ice transition in polar ice sheets,
and correspond to fabrics at �100m depth in Taylor Dome,
East Antarctica (Kennedy and others, 2013), and at <500m
depth at Dome C, East Antarctica (Wang and others, 2003;
Durand and others, 2009). We measure the fabric variation
through time by calculating the difference in the fabric e1
eigenvalues between the middle and top (or bottom) layers:
�e1 ¼ em1 � e

t
1. e1 will best represent single-maximum-type

grain distributions typically found in ice sheets. Initially,
�e1 ¼ 0:029. A contoured Schmidt plot of the initial fabrics
is shown in Figure 4.

Over time, as the cuboid is stressed, �e1 will change and
may become smaller than the uncertainty in eigenvalues,
due to under-sampling the distribution with a finite number
of grains. Durand and others (2006b) found the maximum
under-sampling error to be � ¼ 0:004 for a distribution with
8000 grains. For this study, we consider the minimum
separation resolvable above the error in the eigenvalue
calculation to be twice the maximum error: 2� � 0:01. The
fabric variation is then preserved, as long as �e1 > 0:01. In
situ, the minimum separation required to measure a fabric
anomaly will depend on the measurement technique, the
number of grains sampled and the assumed in situ
distribution of orientations.

To model how our fabrics respond to stress, we apply a
constant temperature, T, and constant deviatoric stress, �0, at
each time step. The basic stress states within an ice sheet are
uniaxial compression, pure shear and simple shear. The
deviatoric-stress tensor for uniaxial compression has the form

�0u ¼

1
2 �
0
u 0 0

0 1
2 �
0
u 0

0 0 � �0u

0

@

1

A, ð18Þ

the deviatoric-stress tensor for pure shear has the form

�0p ¼

�0p 0 0
0 0 0
0 0 � �0p

0

@

1

A ð19Þ

and the deviatoric-stress tensor for simple shear has the form

�0s ¼

0 0 �0s
0 0 0
�0s 0 0

0

@

1

A: ð20Þ

We use �0u, p, s of 0.01 and 0.04MPa to provide a lower and
upper bound on the characteristic deviatoric stresses typic-
ally found in ice sheets (Pettit and Waddington, 2003). The
model calculates a strain rate at each time step, _�mi , and then
the fabric is evolved for the amount of time required to
achieve a strain step of 0:001, ti. The total bulk strain
undergone by the modeled ice is then � ¼

P
_�mi ti.

Ice in the vicinity of an ice divide will typically
experience a regime of compressive stress before experien-
cing significant shear stress and, for simple ice-sheet
geometries, simple-shear stresses are most important in the
bottom half of the ice sheet (Cuffey and Paterson, 2010).
Therefore we apply a constant compressive-stress regime
(R1) to the modeled ice up to a total bulk strain of �R1. We
then apply a constant-shear-stress regime (R2) to the
modeled ice up to a total bulk strain of �R2. The shear-
stress regimes consist of simple shear alone, a combination
of simple shear and pure shear, or a combination of simple
shear and uniaxial compression (Table 2).

Fig. 4. Contoured Schmidt plot of the initial fabrics for both the
constant-stress and Taylor Dome experiments. The fabrics are
contoured at levels of 0, 2�, :::, 10�. � is the standard deviation of
the density of grains from the expected density for isotropic ice
(Kamb, 1959). The upper two are contour plots of the continuous
Watson distribution (an infinite number of grains), with concen-
tration parameters k ¼ � 2:0 (left) and k ¼ � 2:4 (right). Two
random 8000-grain fabrics generated from the upper Watson
distributions are depicted in the lower two plots. The fabric
generated from the k ¼ � 2:0 and k ¼ � 2:4 distributions have
eigenvalues of e1 ¼ 0:538 and e1 ¼ 0:567, respectively.
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Kennedy and others (2013) showed that the separation in
eigenvalues between the fabric layers drops below 0.01 after
0.30 bulk strain in our model when undergoing uniaxial
compression and pure shear. Simple shear, however, causes
the fabric to rotate into a ‘soft’ orientation rather than a ‘hard’
orientation. Because the rate of grain rotation depends on the
velocity gradient, the stronger fabric (soft in simple shear) will
evolve more quickly than the weaker fabric (hard in simple
shear). Therefore, the fabric separation between layers can
increase in simple shear as the fabric evolves with each time
step. This will cause fabrics to maintain their separation to a
higher modeled bulk strain than 0:30. However, after 0.35
strain in our model runs dominated by high magnitudes of
uniaxial compression or pure shear, the time step necessary
for a 0.001 strain-step increases by over three orders of
magnitude due to stress hardening. Further evolution
becomes computationally impractical, because time steps
that result in realistic amounts of recrystallization become
too small. We therefore set �R2 ¼ 0:35 in our model, to
capture the possible enhancement of the eigenvalue separ-
ation between fabric layers due to simple shear, but do not
evolve the fabric further to avoid excessively large time steps.
Kennedy and others (2013) found that for dome-like and
ridge-like ice sheets, 0.30modeled bulk strain corresponds to
evolution through �200 ka while �0.20 bulk strain was
�100 ka. We then set �R1 ¼ 0:20 so that �R1 corresponds to
about half of our fabric evolution time.

5. RESULTS AND DISCUSSION
We evolve the layered fabric shown in Figure 4 through
each of the 288 permutations of the stress style, stress
magnitudes, NNI parameters and temperature values shown
in Table 2. Figure 5 shows a contoured ternary plot of the
eigenvalues for every time step of all 288 model runs. The
fabrics all evolve towards the expected single-maximum-
type fabrics found in ice sheets. The layered fabric initially
has an eigenvalue separation of �e1 ¼ 0:029 between the
top/bottom layer and the middle layer. The total amount of
strain where �e1 is greater than the under-sampling error
(0.01) depends on the rates and magnitudes of several
competing processes: grain rotation; NNIs; the stress regime;
and the resulting amount of recrystallization.

We focus on the results that best illustrate the effects of
simple shear, temperature and NNIs on the eigenvalue
separation. Because each of these processes affects the rate

and type of recrystallization events, recrystallization is
discussed throughout.

5.1. Simple shear
Figure 6 shows the evolution of the fabric for the stress
regimes (R1!R2) of: uniaxial compression only (�0u ! �0u);
uniaxial compression to simple shear (�0u ! �0s); and
uniaxial compression to uniaxial compression plus simple
shear (�0u ! �0u þ �

0
s). The fabrics were evolved at � 30�C

with mild NNI (½�, �� ¼ ½6, 1�; Eqn (6)) and low stress
magnitudes (�0u, s ¼ 0:01MPa).

In the �0u ! �0s model run, the eigenvalue separation,
�e1, remains above the under-sampling error for the entire
experiment. When compared with the �0u ! �0u run, fabric
evolution is slowed, polygonization events happen less
frequently and there is some migration recrystallization
(SIBM-N) happening at high modeled bulk strains (>0.30).
The fabric evolution is slowed because at 0.20 modeled
bulk strain, the fabrics are already mostly concentrated near
vertical and the grains at the periphery of the distribution are
now in the hardest orientation in simple shear (Fig. 3). These
peripheral grains rotate towards the vertical slowly, causing
e1 to increase slowly. Likewise, the polygonization fre-
quency is reduced because the grains in a hard orientation
in simple shear (and therefore likely to be experiencing a
bending moment; T =jj�0jj < �, see Section 3.2.2) have not
yet undergone enough modeled deformation to have a high

Table 2. Stress regimes, stress magnitude, NNI parameters and
temperature values used in the constant-stress experiments. Two
hundred and eighty-eight model runs were computed, where each
run used a permutation of the listed values. �0u indicates uniaxial
compression, �0p indicates pure shear and �

0
s indicates simple shear

(Eqns (18–20))

R1!R2 �0u;p �0s NNI ½�; �� T

MPa MPa °C

�0p ! �0p 0.01 0.01 None ½1; 0� � 30
�0u ! �0u 0.04 0.04 Mild ½6;1� � 15
�0p ! �0s Full ½1;1� � 10
�0u ! �0s � 5
�0p ! �0s þ �

0
p

�0u ! �0s þ �
0
u

Fig. 5. Contoured ternary plot of the eigenvalues of the fabrics for
every time step of all 288 model runs. Because by definition
e1 > e2 > e3, only one-sixth of the equilateral triangle is used. The
fabric density, �f, has been normalized by the maximum fabric
density (�f=maxð�fÞ). Example Schmidt plots show the fabrics with
the eigenvalues directly adjacent to them.
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dislocation density. The grains that have a high dislocation
density are very close to vertical and located in a soft
orientation (therefore unlikely to be experiencing a bending
moment). Further, migration recrystallization events happen
at the high modeled bulk strains for this run because the soft
grains that already have high dislocation density increase
their dislocation density further, to the point where
migration recrystallization is possible even at such low
temperatures. This agrees with observations by Kipfstuhl and
others (2009), which showed that recrystallization can be
active at much lower temperatures than previously sug-
gested. Because grains that undergo migration recrystalliza-
tion are given a random orientation with a high RSS, they are
likely to end up with an orientation either close to vertical or
close to the direction of shearing (Fig. 3). The grains that end
up pointing close to vertical will not strongly affect the fabric
eigenvalues, as they stay within the vertically clustered
distribution. The fabric in the �0u ! �0s model run remains
largely unaffected by the small number of migration
recrystallization events.

In the �0u ! �0u þ �
0
s model run, �e1 remains above the

under-sampling error to just slightly higher modeled bulk
strains than in the �0u ! �0u run. Simple shear does not slow
the fabric evolution in this case because the majority of
grains will have a large RSS (Fig. 3), causing a rapid
evolution of the fabric to the point where the fabric is too
strongly orientated to maintain much separation. Both
polygonization and migration recrystallization are active in
this model run, due to the high RSS, which causes high
modeled strain rates and a rapid build-up of dislocations. In
this stress state, migration recrystallization will grow grains
in almost any orientation. However, these grains will rapidly
rotate to a vertical orientation and the rate of migration
recrystallization events seen here does not change the fabric
eigenvalues.

Figure 7 shows the �e1 evolution for all model runs at
� 30�C with mild NNI (every permutation of stress and stress
magnitude shown in Table 2). In all cases, simple shear
stress causes the modeled bulk strain at which the eigen-
value separation stays above the under-sampling error
(�e1 > 0:01) to either remain the same (once) or increase
(15 times).

Fig. 6. The effects of simple shear on the evolution of the layered
fabric (Fig. 4). The fabric was evolved at � 30�C with mild NNI
(½�, �� ¼ ½6, 1�; Eqn (6)) and low stress magnitudes (�0u, s ¼ 0:01MPa)
for the stress regimes (R1!R2) of: uniaxial compression only
(�0u ! �0u, black curves); uniaxial compression to simple shear
(�0u ! �0s, dark gray curves) and uniaxial compression to uniaxial
compression plus simple shear (�0u ! �0u þ �

0
s, light gray curves).

(a) The �e1 eigenvalue separation between the top/bottom and
middle fabric layers. The horizontal dashed curve indicates the
under-sampling error threshold, where �e1 may not be resolvable.
(b–d) The fabric evolution (b), the cumulative percent of grains that
have undergone migration recrystallization (c) and the cumulative
percent of grains that have undergone a polygonization event (d).
Solid curves indicate the top/bottom layer, while thick dashed
curves indicate the middle layer. In all plots, light gray vertical lines
mark the change from R1 to R2.

Fig. 7. The effects of simple shear on the evolution of the layered
fabric (Fig. 4) eigenvalue separation between the top/bottom and
middle fabric layers. The fabric was evolved at � 30�CwithmildNNI
(½�, �� ¼ ½6, 1�; Eqn (6)) in every permutation of the stress regimes
(R1!R2) and stress magnitudes (�0u, p, s) shown in Table 2. Black
curves indicate runs that started with uniaxial compression, �0u,
while gray curves indicate runs that started with pure shear, �0p.
(a) Runs with a low stress magnitude initially (�0u, p ¼ 0:01MPa).
(b) Runs with a high stress magnitude initially (�0u, p ¼ 0:04MPa). In
both plots, the horizontal dashed line (b) indicates the under-
sampling error threshold, where �e1 may not be resolvable, and
light gray vertical lines in both plots mark the change from R1 to R2.
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5.2. Nearest-neighbor interaction
Figure 8 shows the repeated evolution of the same layered
fabric with no NNI (½�, �� ¼ ½1, 0�; Eqn (6)), mild NNI
(½�, �� ¼ ½6, 1�) and full NNI (½�, �� ¼ ½1, 1�) in the two stress
regimes of uniaxial compression only (�0u ! �0u; Fig. 8a–d)
and uniaxial compression to uniaxial compression plus
simple shear (�0u ! �0u þ �

0
s; Fig. 8e–h). The fabric was

evolved using T ¼ � 30�C and low stress magnitudes
(�0u, s ¼ 0:01MPa) for both the stress regimes. Higher
amounts of NNIs reduce the fabric separation at earlier
modeled bulk strains. This happens because NNIs minimize
the modeled strain-rate differences between neighboring
grains, such that the grains tend to evolve towards vertical
more slowly. This causes the grains to spend more time in a
higher strain-rate orientation, which increases the disloca-
tion density. A higher dislocation density allows the
recrystallization processes to happen at an earlier modeled
bulk strain. Polygonization then slows the fabric evolution
by moving grains away from vertical. This affects the
stronger fabric preferentially, as it has more hard grains that
are prone to polygonization. Therefore, higher levels of
NNIs decrease the modeled bulk strain at which �e1
remains >0.01.

5.3. Temperature
Figure 9 shows the repeated evolution of the same layered
fabric for the temperatures T = –30, –15, –10, –5°C in the
two stress regimes of uniaxial compression only (�0u ! �0u;
Fig. 9a–d) and uniaxial compression to uniaxial compres-
sion plus simple shear (�0u ! �0u þ �

0
s; Fig. 9e–h). The fabric

was evolved using mild NNI (½�, �� ¼ ½6, 1�; Eqn (6)) and low
stress magnitudes (�0u, s ¼ 0:01MPa) for both the stress
regimes. The results from these runs fall into two sets:
T = –30, –15°C and T = –10, –5°C. The evolution of the
fabric does not differ significantly within a set, but there is a
large change in the fabric evolution between the sets, due to
the step change in the activation energy, Qb (Eqn (11),
Table 1). At any given modeled bulk strain, the change in
activation energy results in a decrease in the eigenvalue
separation, �e1, a slowdown of the e1 evolution and an
increase in the polygonization events. Temperature, there-
fore, does not change the fabric evolution in the modeled
bulk strain, except when crossing the activation energy
threshold.

Nevertheless, because ice at a higher temperature has a
larger flow parameter (AðTÞ, Eqn (4)), the ice will deform
more quickly at higher temperatures. The actual time

Fig. 8. The effects of NNI on the evolution of the layered fabric (Fig. 4). The fabric was evolved at T ¼ � 30�C with each of the NNIs shown
in Table 2. (a–d) The evolution of uniaxial compression only (�0u ! �0u) with a low stress magnitude (�0u ¼ 0:01MPa). (e–h) The evolution of
uniaxial compression plus simple shear (�0u ! �0u þ �

0
s) with a low stress magnitude (�0u, s ¼ 0:1MPa). Black curves indicate no NNI

(½�, �� ¼ ½1, 0�; Eqn (6)), dark gray curves indicate mild NNI (½�, �� ¼ ½6, 1�) and light gray curves indicate full NNI (½�, �� ¼ ½1, 1�). (a) and (e)
show the �e1 eigenvalue separation between the fabric’s top/bottom and middle layers, and horizontal dashed lines indicate the under-
sampling error threshold, where �e1 may not be resolvable. (b–d) and (f–h) show the fabric evolution, the cumulative percent of grains that
have undergone migration recrystallization and the cumulative percent of grains that have undergone a polygonization event, respectively.
Solid curves indicate the fabric’s top/bottom layer, and dashed curves indicate the middle layer. In all plots, the light gray vertical lines mark
the change from R1 to R2.
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required for the modeled ice to reach any given bulk strain
will then be shorter at higher temperatures. This also means
that, for model runs that drop below an e1 separation of 0.01
at the same modeled bulk strain, the actual time elapsed will
be much shorter for runs at high temperatures (Fig. 10).
Critically, migration recrystallization (SIBM-N) events are
reduced for a given modeled bulk strain at the higher
temperatures because of the very large number of poly-
gonization events (which both depend on and reduce the
dislocation density). Yet, because the time required to reach
any given modeled bulk strain will be shorter, the earlier
onset of migration recrystallization for higher temperatures
still holds true.

5.4. Further discussion
In all of our experiments, a variation in fabric is either
preserved or enhanced under shear stresses. There is a
‘window of opportunity’ in which the separation of eigen-
values is sufficient to observe the variation before the fabric
becomes too strongly oriented to maintain much separation.
The length of time this window is open depends on the
magnitude of the initial fabric variation, the initial strength
of the weaker fabric, the magnitude of the applied stress,
the strength of the NNIs and the resultant number of

Fig. 9. The effects of temperature on the evolution of the layered fabric (Fig. 4). The fabric was evolved with mild NNI (½�, �� ¼ ½6, 1�; Eqn (6))
in each of the temperature regimes shown in Table 2 (T =–30, –15, –10 and –5°C). (a–d) The evolution of uniaxial compression only
(�0u ! �0u) with a low stress magnitude (�0u ¼ 0:01MPa). (e–h) The evolution of uniaxial compression plus simple shear (�0u ! �0u þ �

0
s) with

a low stress magnitude (�0u, s ¼ 0:01MPa). The black dashed curves indicate temperatures of T = –30°C, the solid dark gray curves indicate
T =–15°C, the dashed dark gray curves indicate T =–10°C and the light gray curves indicate T = –5°C. (a) and (e) show the �e1 eigenvalue
separation between the top/bottom and middle fabric layers, and the horizontal dashed line indicates the under-sampling error threshold
where �e1 may not be resolvable. (b–d) and (f–h) show the fabric evolution, the cumulative percent of grains that have undergone migration
recrystallization and the cumulative percent of grains that have undergone a polygonization event, respectively. The light gray vertical lines
in all plots mark the change from R1 to R2.

Fig. 10. The total simulation time to evolve the fabric to 0.35 bulk
strain for our different model runs. Time is shown on a logarithmic
scale. Black symbols indicate runs with low stress magnitudes
(�0u, p, s ¼ 0:01MPa) and gray symbols indicate runs with high stress
magnitudes (�0u, p, s ¼ 0:04MPa).
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recrystallization events. If the initial fabric variation is
sufficiently large, the weaker initial fabric controls the time
the window is open – the window closes as the weaker
fabric reaches the maximum fabric strength (the stronger
fabric reaches the maximum fabric strength before the
weaker fabric).

By finding the modeled strain (and therefore time) at
which the e1 separation is <0.01, we can determine how
long the window stays open. Our model results suggest that
the window will stay open at least through 0.3 modeled bulk
strain in most of the modeled constant-stress regimes, and
shear stress will keep the window open well past 0.35
modeled bulk strain. The total simulated time for any
particular run is shown in Figure 10 and ranges from a few
hundred years in the warmest, highest-stress cases to a few
hundred thousand years in the coldest, lowest-stress cases
(typical of an ice divide).

However, the parameter values in Table 1 may be
different in situ, because we are not modeling a specific
glacier. In order to test the sensitivity of our model to these
parameters, we ran a variety of experiments varying
parameters with an increase or decrease of 10%. We tested
changes in the isotropic ice softness by varying (1) �
(Eqn (4)); the grain growth (which influences the change in
dislocation density and the rates of polygonization and
SIBM-N) by varying (2) the intrinsic grain growth factor, K0,
and (3) the thermal activation energy,Q (Eqns (11) and (12));

and the migration recrystallization (SIBM-N) threshold by
varying (4) the dislocation energy constant, � (Eqn (13)).
These four parameters together allow us to vary all the
processes captured in our model. For each parameter, we
computed a set of model runs at T ¼ � 30�C, low uniaxial
compression, low shear stress and mild NNIs. We computed
another set of model runs at T ¼ � 5�C with the same
stresses and NNIs. Each set consists of a control run, a run
with a 10% increase in the parameter and a run with a 10%
decrease in the parameter. In total, we computed runs for
four parameters, each in two temperature regimes, with
three values for the parameters for 24 more model runs.

Most of the model runs are not presented here as they
show only negligible effects on the fabric evolution (the
changes are smaller than the width of the plot lines). The
only significant changes in results we see occur when
varying the thermal activation energy, Q, at T ¼ � 30�C
(Fig. 11a–d) and when varying the dislocation energy
constant, �, at T ¼ � 5�C (Fig. 11e–h). An increase in the
thermal activation energy at T ¼ � 30�C caused more
polygonization events, fewer migration recrystallization
events and a slower fabric evolution (Fig. 11b–d). However,
because these changes are small, the e1 separation is
negligibly affected (Fig. 11a). Decreasing the activation
energy had negligible effects.

Increasing the dislocation energy constant (Fig. 11g)
causes a small increase in migration recrystallization events

Fig. 11. Sensitivity to the model parameters (Table 1). (a–d) The result of varying the thermal activation energy, Q, at T ¼ � 30�C. (e–h) The
result of varying the dislocation energy constant, �, at T ¼ � 5�C. Dark gray curves indicate the control run, while black curves indicate a
10% increase in the parameter values and light gray curves indicate a 10% decrease in the parameter values. (a) and (e) show the �e1
eigenvalue separation between the fabric’s top/bottom and middle layers, and horizontal dashed lines indicate the under-sampling error
threshold where �e1 may not be resolvable. (b–d) and (f–h) show the fabric evolution, the cumulative percent of grains that have undergone
migration recrystallization and the cumulative percent of grains that have undergone a polygonization event respectively. Solid curves
indicate the fabric’s top/bottom layer, and dashed curves indicate the middle layer. In all plots, the light gray vertical lines mark the change
from R1 to R2.
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and, likewise, there was a small decrease in migration
recrystallization events when the dislocation energy con-
stant was decreased. Despite this change in migration
recrystallization, the fabric evolution, polygonization and e1
separation were negligibly affected (Fig. 11e, f and h).
Therefore, we conclude that our model is insensitive to
small changes in parameter values and the conclusions
presented above are robust.

It should also be noted that the fabric eigenvalues are not
a complete description of the ice, and layers with the same
eigenvalues may have different distributions of dislocation
densities. It is possible for a fabric that has evolved to its
maximum e1 eigenvalue and/or lost the distinction between
its layers (�e1 < 0:01) to have its layers separate again due
to different levels of recrystallization. We did not observe
this re-separation in any of our model runs, but it may be
seen with fabrics evolved to higher bulk strains than
were modeled.

6. CONCLUSIONS
Our model predicts that for constant shear-stress regimes,
modeled bulk strains >0.35 (for time, see Fig. 10) are
necessary to rid glacial ice of its past ‘memory’ of fabrics and
stress states. In our model, shear stress preserves a subtle
variation in fabric longer than compressive-stress regimes
and may act to enhance the fabric variation in certain stress
regimes by rotating grains into softer orientations and
reducing the number of polygonization events.

Our model further predicts that temperature does not
affect the modeled bulk strain at which the fabric variation is
sufficient to be observed, except when crossing a thermal
activation energy threshold. The model shows that the much
higher levels of recrystallization observed in warm, fast-
flowing ice are balanced by the increased modeled strain
rates and grain rotation, such that the fabric variation may
be observable past 0.35 modeled bulk strain. For any
combination of the modeled stresses or temperatures,
migration recrystallization (SIBM-N) does not rid the mod-
eled fabric of its memory. However, using higher amounts of
NNIs within the model reduces the fabric variation for a
given modeled bulk strain.

We therefore conclude that fabric variation below the
firn–ice transition, can be preserved in polar ice sheets.
Because the microstructural processes active in the firn layer
are dependent on climate variables, it is possible that the
fabric variations arise from climate variations. In order to
quantify the effects of climatic changes on the microstruc-
ture evolution in the firn layer, more work is needed. A
microstructure model that is able to simulate multiple
fabrics with a statistically relevant number of grains, that
captures the dynamics in the firn and ice region, and is
coupled to a flow model, is needed.
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