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1. Introduction

If a subset of an abelian group contains very few linear configurations of some given type,
then one needs to delete only a few elements from the set in order to remove all such
configurations. This is the moral of so-called arithmetic removal lemmas. For example,
if A is a subset of a cyclic group ZN = Z/NZ containing only δN2 of its own sums
(i.e. solutions to a1 + a2 = a3), then one can make A completely sum-free by deleting
only δ′N of its elements, where δ′ depends only on δ, and δ′ → 0 as δ → 0. In [5]
Green proved a result of this type dealing with the removal of solutions to a single linear
equation over an arbitrary finite abelian group. Green raised the question of whether
similar results held for systems of equations, noting that the Fourier analytic methods
employed in [5] did not extend to answering this. Shapira [12] and (independently) Král′

et al . [7] used hypergraph removal results to obtain the following extension, dealing with
systems of linear equations over finite fields.

Theorem 1.1. Let r � m be positive integers and let ε > 0. There exists δ > 0
such that the following holds. Let F be the finite field of order q, let L be an r × m

matrix with coefficients in F of rank r over F, and suppose A1, . . . , Am ⊂ F satisfy
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Ex∈ker L1A1(x1) · · · 1Am
(xm) � δ. Then there are sets E1, . . . , Em ⊂ F of cardinality at

most εq such that (A1 \ E1) × · · · × (Am \ Em) ∩ ker L = ∅.∗

Our aim here is to obtain a continuous analogue of Theorem 1.1, replacing finite fields
with the circle group T = R/Z. Previous extensions of discrete additive-combinatorial
results to the latter setting include the analogues of the Cauchy–Davenport inequality
obtained by Raikov [10] and Macbeath [9] (see the excellent notes of Ruzsa [11] for a
more detailed account of this topic) and Lev’s work [8] on sum-free sets in T.

To state our main result let us set up some notation. For any compact abelian group
G we denote the normalized Haar measure on G by µG. We denote the closed subgroup
{x ∈ Gm : Lx = 0} of the direct product Gm by kerG L, and to abbreviate the notation
we denote by µL the normalized Haar measure on kerG L. For measurable functions
f1, f2, . . . , fm : G → C we define

SL(f1, . . . , fm) =
∫

kerG L

f1(x1) · · · fm(xm) dµL(x). (1.1)

(Throughout the paper ‘measurable’ refers to Borel measurability.) If each fi is the
indicator 1Ai

of a measurable set Ai ⊂ T, then (1.1) becomes simply SL(A1, . . . , Am) =
µL(A1 × · · · × Am ∩ kerG L). We refer to the latter quantity as the solution measure of
the sets Ai. When Ai = A for all i ∈ [m] = {1, 2, . . . , m}, we write SL(A) for the solution
measure. If the group G has to be specified to avoid confusion, we shall write µL,G, SL,G

instead of µL, SL. The main result, then, is the following.

Theorem 1.2. Let L be an r×m matrix of integers, of full rank r. For any ε > 0, there
exists δ = δ(L, ε) > 0 such that the following holds. If A1, . . . , Am are measurable subsets
of T such that SL(A1, . . . , Am) � δ, then there are measurable sets E1, . . . , Em ⊂ T with
µT(Ei) � ε for all i ∈ [m], such that (A1 \ E1) × · · · × (Am \ Em) ∩ kerT L = ∅.

For completeness we also prove the following variant concerning sets with zero solution
measure, which has a much simpler proof.

Proposition 1.3. Let L be an r × m matrix of integers, of full rank r, and suppose
A1, . . . , Am are measurable subsets of T such that SL(A1, . . . , Am) = 0. Then there are
null sets E1, . . . , Em ⊂ T such that (A1 \ E1) × · · · × (Am \ Em) ∩ kerT L = ∅. We can
take Ai \ Ei to be the set of Lebesgue density points of Ai.

We now discuss briefly some consequences of these results. We say an integer matrix
L is invariant if its columns sum to zero for the constant vector 1 = (1, 1, . . . , 1). In
this case the system Lx = 0 is translation invariant in the sense that given any abelian
group G, for any x = (x1, . . . , xm) ∈ Gm and t ∈ G, we have Lx = 0 if and only if
L(x1 + t, . . . , xm + t) = 0. In particular, for any t ∈ G the element x = (t, . . . , t) is
a solution of the system. Therefore, Proposition 1.3 implies that if L is invariant then
any set A ⊂ T of positive measure has SL(A) > 0. However, the latter positive quantity
may depend on the set A. By contrast, Theorem 1.2 implies the following analogue of
Szemerédi’s Theorem [13, Theorem 11.1] for translation-invariant systems on T.

∗ One can phrase this equivalently with ε being a function of δ that vanishes as δ → 0, as in the initial
example.
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Theorem 1.4. Let L be an invariant r×m integer matrix of full rank r. Then for any
α > 0, there exists c = c(α, L) > 0 such that for any measurable set A ⊂ T, of measure
at least α, we have SL(A) � c.

For instance, since arithmetic progressions of arbitrary fixed length are translation
invariant, any subset of the circle of positive measure α contains a positive measure c of
such progressions, where c depends on α but not on the particular subset.

At the end of the paper we discuss another application of Theorem 1.2, related to
the role that groups such as the circle can play as limit objects for certain additive-
combinatorial problems.

The paper is structured as follows. Our proof of Theorem 1.2 reduces the problem to the
discrete case, where one can appeal to Theorem 1.1. This involves first approximating
each set Ai by a simpler set that can be viewed as a subset A′

i of a cyclic group Zp

for p a prime. This is done in § 2. The relationship between the solution measure of
the approximating sets and the solution counts on Zp of the sets A′

i is captured in
Lemma 2.5. This relationship is somewhat subtle, in that expressing the solution measure
in terms of the latter discrete solution counts requires many different shifts of the set
A′

1×· · ·×A′
m, each shift having a corresponding weight. We then require some control on

these weights, which is obtained in § 3 using a simple geometric characterization of kerT L

and its measure µL. The proof of Theorem 1.2 is then completed in § 4, where we also
deduce Theorem 1.4 and prove Proposition 1.3. Finally, we close with the aforementioned
application and some further remarks in § 5.

2. A discrete decomposition of the solution measure

2.1. Approximating measurable sets

For any positive integer N , we refer to the partition T =
⊔

x∈[N ][(x − 1)/N, x/N) as the
N -partition of T, and we say A ⊂ T is N -measurable if A is a union of intervals from the
N -partition. The aim in this subsection is to show that, for the proof of Theorem 1.2,
the sets Ai can be assumed to be p-measurable for some large prime p.

Lemma 2.1. Let L be an r × m matrix of integers, of full rank r, such that any
r × (m − 1) submatrix of L also has rank r. Let δ > 0 and let C1, . . . , Cm be measurable
subsets of T. Then for any large p ∈ N, there exist p-measurable sets Ai ⊂ T such that
µT(Ci∆Ai) � δ/m for all i ∈ [m], and |SL(C1, . . . , Cm) − SL(A1, . . . , Am)| � δ.

The submatrix condition in this lemma can be assumed without loss of generality when
proving Theorem 1.2. Indeed, suppose that deleting column j from L yields a matrix L′

of rank r −1. Then for some non-zero vector v ∈ Z
r, we have vTL′ = 0. Since L has rank

r, the jth entry of vTL must be a non-zero integer �. Now if x ∈ A1 × · · · × Am satisfies
Lx = 0, then in T we have �xj = (vTL) · x = vT · (Lx) = 0. Therefore, we can delete all
such solutions x by removing the finite set {a ∈ Aj : �a = 0} from Aj , so Theorem 1.2 is
clearly true for this system.

To prove Lemma 2.1 we use the following basic result, which will also be used later.
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Lemma 2.2. Let G be a locally compact abelian group with a Haar measure µ and
let H be a closed subgroup of Gm with a Haar measure µH such that, for some i ∈ [m],
the projection π : H → G, x �→ xi is surjective. Then there is a constant c > 0 such that,
for any functions f1, . . . , fm : G → C with ‖fj‖L∞ � 1 for all j, we have

∣∣∣∣
∫

H

f1(x1)f2(x2) · · · fm(xm) dµH(x)
∣∣∣∣ � c‖fi‖L1 .

If G, H are compact abelian groups and µG, µH are their respective unique probability
Haar measures, then we can take c = 1.

Proof. The left-hand side above is at most∫
H

|fi(xi)| dµH(x) =
∫

H

|fi ◦ π(x)| dµH(x).

The map π is a continuous surjective homomorphism from H to G, whence the measure
µH ◦π−1 is a Haar measure on G, so by uniqueness there exists c > 0 such that µH ◦π−1 =
cµG, and c = 1 if µG, µH are both probability measures. It follows that

∫
H

|fi ◦ π(x)| dµH(x) = c

∫
G

|fi(y)| dµG(y) = c‖fi‖L1 .

�

Proof of Lemma 2.1. First, it follows from measure theory that for sufficiently large
p there exist p-measurable sets, Ai, such that µT(Ci∆Ai) � δ/m for all i (say, by first
approximating by unions of dyadic intervals and then approximating these by p-intervals).
Now, by the multilinearity of SL we have

|SL(C1, . . . , Cm) − SL(A1, . . . , Am)|

�
∑

i∈[m]

|SL(1A1 , . . . , 1Ai−1 , 1Ci
− 1Ai

, 1Ci+1 , . . . , 1Cm
)|,

and the assumption that every r × (m − 1) submatrix of L has rank r is easily seen to
imply that each projection kerT L → T, x �→ xi is surjective, whence by Lemma 2.2 the
ith summand above is at most ‖1Ci − 1Ai‖L1(T) � µT(Ci∆Ai) � δ/m. �

2.2. The main formula

From now on, given a p-measurable set A ⊂ T, we denote by A′ the subset of Zp

defined by 1A′(x) = 1A(x/p). In order to apply Theorem 1.1, we express SL(A) in terms
of solution measures in Zp involving A′. This is done in Lemma 2.5.

For any positive integer p, let Λ = Λ(p) denote the discrete torus Z
m
p /p � T

m, with
elements denoted j/p = (j(1)/p, . . . , j(m)/p), j ∈ Z

m
p .

Definition 2.3. For any r × m integer matrix L and any positive integer p, we define

J = J(L, p) = {j/p ∈ Λ : µL((j/p + [0, 1/p)m) ∩ kerT L) > 0}.
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The fact that J consists of OL(1) shifts of Λ∩kerT L is central to the whole argument.

Lemma 2.4. For some KL > 0 depending only on L, for any p there exist elements
j1/p, j2/p, . . . , jK/p ∈ J(L, p), with K � KL, such that J =

⊔
k∈[K](jk/p+(Λ∩kerT L)).

Proof. If j/p ∈ J , then L(j/p) lies in −(L([0, 1)m) ∩ Z
r)/p mod 1. The cardinality

of the latter set is bounded above in terms of L alone. Choosing j1/p, . . . , jK/p ∈ J such
that L is a bijection from {j1/p, . . . , jK/p} to L(J), we then have K = OL(1), and the
result follows since J ⊂ L−1(L(J)) and L−1(L(jk/p)) ∩ Λ = jk/p + (Λ ∩ kerT L). �

We can now prove the main formula.

Lemma 2.5. Let L be an r×m matrix of integers of full rank r, let p be a large prime,
and let A1, . . . , Am be p-measurable subsets of T. Then there exist j1/p, . . . , jK/p ∈ J ,
with K � KL, such that

SL,T(A1, . . . , Am) =
∑

k∈[K]

λkSL,Zp(A′
1 − jk(1), . . . , A′

m − jk(m)), (2.1)

where λk = pm−rµL,T((jk/p + [0, 1/p)m) ∩ kerT L).

Proof. We have SL,T(A1, . . . , Am) equal to

µL((A1 × · · · × Am) ∩ kerT L) =
∑

j∈A′
1×···×A′

m

µL((j/p + [0, 1/p)m) ∩ kerT L).

By the definition of the set J , this sum can be restricted directly to the shifts j1/p +
kerT L, . . . , jK/p+kerT L occurring in Lemma 2.4; since the subgroup Λ∩kerT L of T

m is
clearly isomorphic to the subgroup kerZp L of Z

m
p , we see that SL,T(A1, . . . , Am) equals

∑
k∈[K]

∑
j∈A′

1×···×A′
m∩(jk+kerZp L)

µL((j/p + [0, 1/p)m) ∩ kerT L)

=
∑

k∈[K]

∑
j∈(A′

1×···×A′
m−jk)∩kerZp L

µL(((j + jk)/p + [0, 1/p)m) ∩ kerT L).

By invariance of µL under translation by j/p ∈ kerT L, this equals
∑

k∈[K]

∑
j∈(A′

1×···×A′
m−jk)∩kerZp L

µL((jk/p + [0, 1/p)m) ∩ kerT L),

and (2.1) follows. �

3. A positive lower bound for the weights λk

For each j ∈ Z
m
p , let λ(j) = pm−rµL((j/p+[0, 1/p)m)∩kerT L). In order to use Lemma 2.5,

we require that the weights λk be bounded away from 0, uniformly over p. Such a bound
is guaranteed by the following result.
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Lemma 3.1. Let L be an r × m matrix of integers of full rank r. Then there exists
λ∗ > 0 depending only on L such that for any large positive integer p, for any j/p ∈
J(L, p), we have λ(j) � λ∗.

The proof relies on a compactness argument coupled with the geometric character-
ization of µL given in Lemma 3.3. In what follows we always consider T

m as the set
[0, 1)m ⊂ R

m with coordinatewise addition modulo 1 (and with the quotient topology
on R

m/Z
m). Then kerT L is the closed subgroup {x ∈ [0, 1)m : Lx ∈ Z

r} � T
m. This

subgroup is described more precisely by the following simple result.

Lemma 3.2. Let x1, . . . , xM be a choice of points in [0, 1)m such that the linear map
L over R gives a bijection {xi : i ∈ [M ]} → L([0, 1)m) ∩ Z

r. Then we have the partition

kerT L =
⊔

i∈[M ]

((xi +R kerR L) ∩ [0, 1)m). (3.1)

Here we use +R to denote addition in R
m (or more generally addition over R), to

distinguish it from addition in T
m, which we may denote by +T. We now use (3.1) to

relate the Haar measure µL to the (m − r)-dimensional Lebesgue measure on kerR L,
which we denote µL,R.

Lemma 3.3. For any Borel set A ⊂ kerT L, let A(i) := A ∩ (xi +R kerR L) for each
i ∈ [M ]. Then there is a constant cL > 0 such that µL,T(A) = cL

∑
i µL,R(A(i) −R xi).

Proof. Let G denote the group {x ∈ R
m : Lx ∈ Z

r}. This is a closed subgroup of R
m,

and H := Z
m � G. Clearly, we may identify kerT L with G/H. Thus, in the notation from

(3.1), we have G = (
⊔

i∈[M ] xi + kerR L) + Z
m, so we may write G =

⊔
z∈Z(z + kerR L)

for some collection Z ⊂
⋃

i{xi}+Z
m containing the xi. It is then easy to verify that any

Haar measure on G must be a multiple of

µG(A) :=
∑
z∈Z

µL,R(A(z) − z), (3.2)

where A(z) = A ∩ (z + kerR L), as may be seen by restricting to kerR L. Endowing H

with counting measure, by the quotient integral formula [2, Theorem 1.5.2] there is an
invariant Radon measure µG/H 	= 0 on G/H such that

∫
G

f dµG =
∫

G/H

∑
n∈Zm

f(x +R n) dµG/H(x) (3.3)

for any f ∈ L1(G). By the uniqueness of Haar measure we have µL,T = cLµG/H for some
constant cL > 0. Now, given a Borel subset A of kerT L, the function f = 1A on G is
integrable, and the function

∑
n∈Zm f(x + n) on G/H is simply 1A, whence by (3.3) we

have µG/H(A) =
∫

G
1A(x) dµG(x) and by (3.2) this is

∑
i∈[M ] µL,R(A(i) − xi). �

Lemma 3.1 follows immediately from the following result.

Lemma 3.4. There exists a finite set Λ∗ of positive real numbers, depending only on
L, such that for all large positive integers p we have {λ(j) : j ∈ J(L, p)} ⊂ Λ∗.
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Proof. First we show that there is a finite set U ⊂ kerT L, depending only on L, such
that for any large p and j/p ∈ J there exist v ∈ Z

m and u ∈ U such that

λ(j) = cLµL,R((u +R v +R [0, 1)m) ∩ kerR L) > 0, (3.4)

where cL is the constant from Lemma 3.3. For p large enough depending only on L, by
(3.1) the set (j/p + [0, 1/p)m) ∩ kerT L lies entirely in xi +R kerR L for some i ∈ [M ], so

λ(j) = pm−rµL((j/p + [0, 1/p)m) ∩ kerT L)

= cLpm−rµL,R((j/p −R xi +R [0, 1/p)m) ∩ kerR L)

= cLµL,R((j −R pxi +R [0, 1)m) ∩ kerR L),

where j ∈ Z
m. Now let U =

⋃
i∈[M ]{−pxi mod 1: p ∈ N} ⊂ kerT L. This is a finite subset

of kerT L if we take the xi to have rational coordinates (as we do). For any j/p ∈ J , we
then have j −R pxi = u +R v for some u ∈ U and v ∈ Z

m, whence (3.4) follows.
Now, by the translation invariance of µL,R by elements of kerR L, the measure in (3.4)

depends only on L(u + v). But if this measure is positive, then L(u + v) is contained in
the finite set L(

⋃
w∈U w+Z

m)∩−L([0, 1)m). Hence there are only finitely many possible
values for the left-hand side of (3.4). �

4. Proofs of the main results

Recall that whenever A is a p-measurable subset of T we denote by A′ the corresponding
subset of Zp defined by 1A′(x) = 1A(x/p).

Proof of Theorem 1.2. Given the matrix L, fix ε > 0, let λ∗ > 0 be the lower bound
given by Lemma 3.1, and let KL > 0 be as defined in Lemma 2.4. Let δ′ > 0 be such that
Theorem 1.1 holds with initial parameter ε/2KL, and let δ = min(δ′λ∗, ε)/2. Now let
Ai ⊂ T, i ∈ [m], be any Borel sets satisfying SL(A1, . . . , Am) � δ. Applying Lemma 2.1,
we can assume that the given sets Ai are p-measurable for some large prime p, up to an
error of measure δ/m � ε/2 for each set, and such that SL(A1, . . . , Am) � 2δ � δ′λ∗. It
follows from (2.1) and the lower bound λk � λ∗ that for some K � KL and each k ∈ [K]
we have SL,Zp

(A′
1 − jk(1), . . . , A′

m − jk(m)) � δ′, and so Theorem 1.1 gives us subsets
Ek,1, . . . , Ek,m of Zp of cardinality at most εp/2KL, such that

((A′
1 \ Ek,1) − jk(1)) × · · · × ((A′

m \ Ek,m) − jk(m)) ∩ kerZp L = ∅. (4.1)

Now for each i ∈ [m], define the p-measurable set Ei =
⋃

k∈[K](Ek,i/p + [0, 1/p)), and
note that µT(Ei) � ε/2. Finally, let ∆ be the null set Zp/p in T. We now claim that

∏
i∈[m]

Ai \ (Ei ∪ ∆) ∩ kerT L = ∅.

Suppose for a contradiction that this set is non-empty, containing some point x. Then
by the p-measurability of the sets Ai \ Ei and the definition of ∆, letting j denote the
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point (�px1�, . . . , �pxm�) ∈ Z
m
p , we have

∏
i∈[m]

Ai \ (Ei ∪ ∆) ⊃ j/p + (0, 1/p)m � x.

But then (j/p+(0, 1/p)m)∩kerT L is a non-empty open subset of kerT L, so this set must
have positive µL-measure, and so j/p ∈ J . Then, by the covering of J in Lemma 2.4, there
exists k ∈ [K] such that j ∈ jk +kerZp L, and so j − jk belongs to

∏
i((A

′
i \ E′

i) − jk(i))∩
kerZp L, contradicting (4.1). �

We can now quickly deduce Theorem 1.4. We say A ⊂ T is L-free if Am ∩ kerT L = ∅.

Proof of Theorem 1.4. Let c be a positive value of δ such that Theorem 1.2 holds
with initial parameter ε = α/2m. Suppose SL(A) � c. Then by Theorem 1.2 there exists a
measurable set E ⊂ A such that A\E is L-free and µT(E) � µT(E1)+· · ·+µT(Em) � α/2.
Since for any a ∈ A \ E the constant element (a, . . . , a) ∈ T

m is in kerT L, we must have
A \ E = ∅, and therefore µT(A) = µT(E) < α. �

While Theorem 1.4 follows very easily from Theorem 1.2, one can in fact simplify the
overall argument somewhat if one is only interested in the former theorem; see the first
remark in the next section.

Proof of Proposition 1.3. For each i ∈ [m] let Di denote the set of Lebesgue density
points of Ai. Suppose for a contradiction that there exists some point x in D1 × · · · ×
Dm ∩ kerT L, and fix ε > 0. By the Lebesgue density theorem, there exists δ > 0 such
that, letting Q denote the cube centred on x and of side length δ, we have µT(Di∩πiQ) �
(1 − ε)δ for all i (where πi denotes projection to the ith component on T

m). Now, by
Lemma 3.2 and the characterization of µL,T, setting Ci := Di ∩ πiQ for each i, there
exists a constant cL > 0 such that

µL(C1 × · · · × Cm ∩ kerT L) � cLδm−rµL,R(B1 × · · · × Bm ∩ kerR L),

where Bi ⊂ [− 1
2 , 1

2 ) is the dilation by δ−1 of the set B′
i −xi, when the latter is viewed as

a subset of I := [− 1
2 , 1

2 ] ⊂ R. We claim that the large density of each Bi inside I implies
µL,R(B1 × · · · × Bm ∩ kerR L) > 0, which gives a contradiction. Indeed, by multilinearity
and Lemma 2.2 we have that |µL,R(Im ∩ kerR L) − µL,R(B1 × · · · × Bm ∩ kerR L)| is at
most

∑
i∈[m]

∣∣∣∣
∫

kerR L

1B1(x1) . . . 1Bi−1(xi−1)(1I − 1Bi)(xi)1I(xi+1) . . . 1I(xm) dµL,R(x)
∣∣∣∣

� c
∑

i∈[m]

‖1I − 1Bi
‖L1(R)

� cmε.

Setting ε = µL,R(Im∩kerR L)/2cm yields the claim. Note that the measure here is strictly
positive since Im ∩ kerR L contains a non-empty open set. (In fact µL,R(Im ∩ kerR L) � 1
by Vaaler’s Theorem [14].) �
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5. Remarks

The precision of Lemma 2.5 is not required for a proof of Theorem 1.4 per se; one can make
do with a simpler inequality of the form SL,T(A1, . . . , Am) �L SL,Zp(A′

1, . . . , A
′
m). (If L

is invariant, one can also apply Vaaler’s Theorem to obtain the more precise inequality
SL,T(A1, . . . , Am) � SL,Zp

(A′
1, . . . , A

′
m) for p-measurable sets Ai.) On the other hand, the

non-trivial shifts of A′
1 ×· · ·×A′

m that contribute to SL(A1, . . . , Am) in Lemma 2.5 need
to be taken into account when removing solutions from A1 ×· · ·×Am, as in Theorem 1.2.

As mentioned in § 1, Theorem 1.2 can be used when studying T as a limit object or
model for certain finite additive-combinatorial questions. A well-known question of this
kind asks for the maximal density dL(Zp) of a subset of Zp not containing solutions to
a given system Lx = 0. In [1], the special case of Theorem 1.2 for a single equation was
used to show that if L is a linear form with integer coefficients in at least three variables,
then dL(Zp) converges to the natural analogue dL(T) := sup{µT(A) : A ⊂ T is L-free}
as p → ∞ through the primes. Theorem 1.2 enables us to extend this convergence result
to so-called systems of complexity 1. A notion of complexity for systems of linear forms
on finite abelian groups was introduced in [4], to which we refer the reader for more
background on this topic. We use the following variant of this notion, specific to groups
Zp and T.

Definition 5.1. Let L be an r × m integer matrix. We say the system of equations
Lx = 0 (alternatively, the matrix L) has complexity k if k is the smallest integer such
that, for any ε > 0, there exists δ > 0 with the following property: let G = T or Zp for
any large prime p > p0(L); then for any f, g : G → C with ‖f‖L∞(G), ‖g‖L∞(G) both at
most 1 and ‖f − g‖Uk+1(G) � δ, we have |SL,G(f) − SL,G(g)| � ε.

Here the notation ‖f‖Uk(G) refers to the kth Gowers uniformity norm, which is defined
on L∞(G) for any compact abelian group G [3]. Using Theorem 1.2, the main convergence
result from [1] can be extended as follows.

Theorem 5.2. Let F be a finite family of full-rank integer matrices of complexity 1,
and let dF (Zp) denote the maximal density of an F-free subset of Zp. Then dF (Zp) →
dF (T) as p → ∞ over primes.

Here dF (T) := sup{µT(A) : A ⊂ T is F-free}, where we say a measurable set A ⊂ T

is F-free if A is L-free for every L ∈ F . Generalizing the argument in [1] to obtain
Theorem 5.2 is not hard; we omit the details in this paper.

Let us close with remarks regarding further generalizations of removal lemmas.
Recently, Král′ et al . extended Theorem 1.1 to all finite abelian groups [6], and upon
inspection Green’s proof [5] for single equations can be seen to hold over arbitrary com-
pact abelian groups. Can Theorem 1.2 be generalized to all compact abelian groups? The
desired generalization should hold with a function δ(L, ε) independent of the group, so
in particular δ should not depend on the group’s topological dimension. The argument
in this paper, when applied with T

n instead of T, gives a parameter δ which decays to 0
as n grows, so additional ideas are required.
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