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RANDOM WALKS ON FREE PRODUCTS,

QUOTIENTS AND AMALGAMS

DONALD I. CARTWRIGHT AND P. M. SOARDI

§tL. Introduction

Suppose that G is a discrete group and p is a probability measure
on G. Consider the associated random walk {Xn} on G. That is, let
Xn — YtY2' - - Yn, where the Y/s are independent and identically distributed
G-valued variables with density p. An important problem in the study
of this random walk is the evaluation of the resolvent (or Green's function)
R(z, x) of p. For example, the resolvent provides, in principle, the values
of the n step transition probabilities of the process, and in several cases
knowledge of R(z, x) permits a description of the asymptotic behaviour
of these probabilities.

When G is abelian, the methods of Fourier analysis are available,
but, generally, new methods must be found to study the non-commutative
case (see [15], however, where explicit knowledge of the representations
of a free group allows an extension of the Fourier methods). When G
is thought of in terms of generators and relations, a natural point of
departure is the study of free groups or, more generally, groups which
are free products of "smaller" groups. On such groups, the most natural
probabilities p are those which generate "nearest neighbour" random
walks.

Random walks on finitely generated free groups have been studied
from many points of view. One of the earliest papers on this subject is
[13]. Using the idea of the length \x\ of an element x, nearest neighbour
random walks (for which p(x) = 0 if \x\ > 1) have been considered in [12]
and [10], for example. Isotropίc random walks (in which p(x) depends
only on \x\) were studied in [15], [17] and [9]. See also [1] and [4].

For finite free products of finite groups, random walks and related
subjects have been studied in, e.g., [2], [5] and [22]. In a recent paper
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[20], the free product of two arbitrary discrete groups is considered, and
a local limit theorem is obtained for the analogue of a nearest neighbour
random walk.

A natural next step is to free products with amalgamation. One paper
in this direction is [16].

Let us briefly describe the contents of the present paper. After
establishing our notation in Section 2, we determine in Section 3 the
resolvent for "nearest neighbour" random walks on the free product of
a finite or countable family of discrete groups. It turns out to be a sort
of "free product" of the resolvents on the component groups. In Section
4, this is applied to obtain a local limit theorem for the case when each
factor group G; is finite and p is constant on each Gj\{e}. We also obtain
a quick derivation of the "Plancherel measure" of p in two cases which
had been studied in several earlier papers. In Section 5, we consider a
discrete group G having a finite normal subgroup H, and show how to
find the resolvent of a probability obtained from a probability on G/H
and one of H. We apply this to the case when G is the free product
with amalgamation *HGά of a family of discrete groups G; having a
common finite normal subgroup H. As well as proving an appropriate
local limit theorem, we are able to determine the orthogonal polynomials
of the Plancherel measure of a symmetric probability on G obtained from
ones on GjH and H.

§ 2. Notation and Definitions

Let G be a discrete group and p a probability measure on G, i.e. a
function p: G -> R such that p(x) >̂ 0 for all x e G and such that J^xeGp(x)
= 1. Associated to p there is a random walk {Xn: n = 0, 1, •} on G for
w h i c h P(Xn+ι = y\Xn = x) = p(x~ιy) for a l l x,yeG a n d n :> 0. A l t e r n a -

tively, we can associate a directed graph Γ to (G, p) in the following way.
The set V of vertices of Γ is G, and there is an edge from x to y (one
only) if p(x~1y)>0. We can then interpret the above process {Xn} as a
random walk on V in which at each step one goes from a vertex x to
one of the neighbouring vertices y with probability pix^y).

Let T denote the convolution operator f^-+p*f on £\G). We denote
the spectrum of T by X If z e C\X, then (zl — T)'1 is also a convolution
operator f*-*R(z)*f, and the function R(z) is called the relsolvent or the
Green function of p. It satisfies R(z) e S2(G) and R(z) * (zδe — p) = δβ9
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where δe(x) = 1 if x = e and δe(x) = 0 otheriswe. Writing R(z, x) for

the value of R(z) at xe G and r for max{|£|: teX}, we have

(2.1) R(z, x) = Σ ^ f - if x e G and μ| > r,

where p*7* is the nth convolution power of p (p*° = <5e). Note thatp*n(x)

= P{Zn = x I -XΌ = e}> the probability of being at x after zz steps, starting

at e. The value iϋfo e) of i?(^) at β is denoted by S(z). The number r

is called the spectral radius of p.

When p is symmetric, i.e. pOxr1) = p(x) for all x e G , the operator T

is hermitian and X<Ξ[—1,1]. Each operator S in the operator norm

closed algebra A* generated by T is a convolution operator f*-*g*f.

Identifying S and g, we can regard A* as a convolution algebra of func-

tions in £\G). In particular, T is identified with p and I with 5e. Now

A* is a C*-algebra, and we may consider the Gelfand isomorphism

Λ: A* -* ^(X), where ^(X) is the algebra of continuous functions X->C.

A probability measure μ is defined on X by the formula

f(e)= f fdμ (feA*).

In particular, R(z) e A*, and so

S(z) = iίfe e) - ί -*$L if z e C\X.
ix z — t

Thus S(z) is the Stieltjes transform of μ. The measure μ is called the

Plancherel measure of p.

Throughout this paper, when various probabilities such as pjy pj, etc.,

are discussed, the corresponding resolvents will be denoted by Rs(z), Rj(z),

etc., usually without explanation. The same applies to the correspond-

ing S(z), X and r, as well as μ in the symmetric case.

§ 3. The resolvent for free products of discrete groups

Let G be the free product of a finite or countable family {Gj}jeJ of

discrete groups. Each xeG, x φ e, may be written in a unique way as

a reduced word, i.e. a product xiχxi2 -xin, where e Φ xiυ e Giv for each v

and iv Φ iv+ί for 1 ^ v < n. For each j e J, let Pj be a probability measure

on G5. We extend p5 to G by defining Pj(x) = 0 if x e G\Gj. Let aj > 0

be numbers such that Σs aj = 1, and define a probability measure p on G
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by p(x) = ΣjajPjix). This measure corresponds to the random walk on G

in which the possible moves from a point xeG are to points xxj9 Xj e Gj

for some j . This process can be thought of as a generalized simple random

walk on G. Our first theorem shows that the resolvent of p can be

expressed in a remarkably simple way in terms of the resolvents of the

probabilities p3.

We first need two lemmas.

LEMMA 1. Let R(z) be the resolvent of a probability measure p on a

discrete group G, and let S(z) = R(z, e). Then there is a constant MOy

independent of G and p, such that \R(z,x)\<Z\S(z)\ whenever xeG and

1*1 ̂  Mo.

Proof Let |* | > 1 . Then ||fl(s)||2 £ Σ?-ollP*Ίl2/l*ln+1 ^ 1/(1*1 - 1) by
equation (2.1), since | |p*n | |2 ^ Up*"!!, = 1. Also,

\S(z)\ > ll\z\ - Σ|p*»(e)/*"+1| ^ ll\z\ - ll\z\(\z\ - 1) = (\z\ - 2)/|*|Q*| - 1).
l

Therefore \\R(z)\\H\S(z)\2 £ \zfl(\z\ - 2)2 ^ 2 once \z\ ̂  4 + 2/2", = Mo say.

Thus \R(z, x)\2 £ \\R(z)\\l - \S(z)f £ \S(z)\2 forxφe once \z\ ̂  Mo.

LEMMA 2. Let R(z) be the resolvent of a probability measure p on a

discrete group G and let S(z) = R(z, e). Let 0 < a £ 1, Then for \w\ > 6,

the equation a/S(λ) = w has a unique solution λ = λ(w) satisfying \λ\>3.

Furthermore, w^λ(w) is an analytic function on {w e C: \w\ > 6}, and

satisfies \λ(w)\ >̂ \w\/2 and

(3.1) \aλ(w) - w\£3a.

Proof Set f(u) = S(l/u) and /(0) = 0. Then f(μ) = Σn=oP*n(e)un+\

and, as in Lemma 1, \f(u)\ ̂  \u\ - Σn-i|p*n(β)"n +Ί ̂  |w|(l - 2|M|)/(1 - |M|).

Thus |/(M)| ^ 1/6 if |M| = 1/3, and /(M) Φ 0 if 0 < \u\ £ 1/3. Because also

fXO) = 1, the inverse function theorem shows that f~ι(v) exists and is

analytic for v in a neighbourhood of 0, and in fact, one can show, for

M < l / 6 .

If v = f(u) and 0 < \u\ £ 1/3, then \vju - 1| ^ Σ?-i|P*n(e)"n ^ Σ-il^l7 1

^ 3|M|/2 ^ 1/2. Hence |U/M| ̂  1/2 and \v\u - 1| ^ 3|ι;|, from which the

result follows.

If G is the free product of the groups G3, we apply Lemma 2 to the

resolvent Rj(z) of each pό to obtain an analytic function λ^w) for 6 < |u;|

< oo, such that
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(3.2)

The estimate (3.1) shows that the series Σ^oCjλ^w) — w) represents an

analytic function, bounded by Σβa5 = 3, for 6 < \w\ < oo. The equation

(3.3) z = w + Σjiajλjiw) - w)

defines w implicitly as a function w(z) of z, for Mx < \z\ < oo, say, such

that w(z)-> oo as z-> oo. For if we write z — \\t and w = 1/v, equation

(3.3) takes the form t = h(v), where h is analytic for \v\ < 1/6 with Λ(0) = 0

and Λ'(0) = 1. Combining the above observations, we obtain analytic

functions λs of z for Mί < \z\ < oo such that μ/z)| ^ | ιφ) | /2 >(\z\- 3)/2.

We can now state the main result of this section.

THEOREM 1. Suppose that G is the free product of a finite or countable

family {GJ9 j e J] of discrete groups. Form the probability p = ΣjCXjPj on

G, where aό > 0 and Σ3a3 = 1, using the probabilities pό on Gjy as above,

and let λj and w be the analytic functions of z defined via (3.2) and (3.3).

Then for some constant M the resolvent of p is given by

R(z, x) = S(z)g(z, x) for xeG and\z\^M,

where g(z, x) is defined as follows: g(z, e) — 1, and if x — xhxH- -xjm is

any reduced word in G, then g(z, x) = gjx{x^gH{x^- 'gjm(xjm), where gό(x^

Furthermore, S(z) = l[w(z).

Proof We choose M^M, so large that (M — 3)/2 ^ Mo, where Mo

is the constant in Lemma 1, and Mx was defined after (3.3). Fix z with

|s | ^ M, and write g(x) for g(z, x). Now \λj(z)\ ^(\z\- 3)/2 ^ Mo, so that

\gj(Xj)\ ^ 1 for each j and each XjβGj, by Lemma 1. Therefore g is a

bounded function on G, so that p*g and /^ *g are defined. If x = x i x^2

. xίm is a reduced word, then (pό * ̂ )(x) = {pά * gj)(e)g(x) = (Λ, -

if :£ ίi, while (pj*g)(x) = (piχ*giXxOgi&ώ'' '^in(
xϋ = K

'' 'gin(
χiJ = ^*i§(^) i f 7 = ϊ#i Therefore

(p*gXx) = Σjajipj

= [ajsM + ΣM -
= [w + Σjiajλj - w)]g(x)

Thus (p * ̂ )(x) = 2g(αc) for each x ̂  e, while
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= z — w.

Thus h(x) = g(x)lw is a bounded function satisfying (2<5e — p)*h = δe.

Now |z| > 1, so that (zδe — p)" 1 exists and is in S\G). Therefore (zδe — p)" 1

= (zδβ - p)-1 * δe = (zδe - p)" 1 * ((zδe -p)*h) = ((23β - p)-1 * φ β - p)) * λ

= de*h = h. That is, i?(2, x) = g(x)/w. In particular, S(z) = 1/w.

Remark, Nowhere in the above proof do we use the hypothesis that

p(x) ^ 0 for all x e G. We need only assume that ΣxeG \p(x)\ ̂  1.

§ 4. The free product of a family of finite groups A local limit

theorem

§ 4.1. An important special case of Theorem 1 occurs when all the

groups Gj are finite, with \Gj\ = rά (^2), say, and when pά{x) = lj{rs — 1)

for each x e G;, x Φ e. This situation has been studied (for a finite number

of groups Gj) in [5], [10] and [13], for example. Using Theorem 1, we shall

be able to prove the following local limit theorem. For convenience we

shall write \e\ = 0 and |x| = m i f x e G i s a reduced word xίχxu- xim.

THEOREM 2. Let G be the free product of a finite or countable family

{Gj, j e J) of finite groups. Form the probability p = ΣaάPj on G of the

probability measures pό on Gό described above. Let X<Ξ[—1,1] be the

spectrum associated with p, and let b = max X and a = min X.

i) If Γj Φ 2 for some j e J, then 0 < — α < 6 < 1 and for each fixed

xeG, we have

(4.1) p*»(χ) = φ(x)n-*/2bn(ll + °(—)) as n

for some φ(x) > 0.

ϋ) If Γj = 2 for all j e J, and if \J\ > 2, the — a = b < 1 and for

each fixed xeG we have (4.1) as n—> oo with n = \x\ mod 2, and p*n(x) = 0

if n^ |x |mod2.

iii) // rj = 2 for each j eJ and if \J\ = 2, then —a = 6 = 1 and

* 2 + O(τi-3/2)p ( s ) = κ
\2πaιa2

as n —> oo with n = |JC| mod 2, and p*n(x) = 0 if n =£ \x\ (mod 2).

We have included case (iii) of Theorem 2 for completeness although
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it appears more or less explicitly in [11] and [15].

Let us first calculate the resolvent for each group G3.

LEMMA 3. Let G be a finite group, with \G\ •= r, and letp(x) = l/(r — 1)

for each x e G, x Φ e. Then R(z, x) = I/O - l)((r - ΐ)z + ΐ) if x Φ e, while

S(z) = ((r - l)(z - 1) + 1)1(2 - l)((r - 1)2 + 1).

Proof Now (p */)(*) - ΣeΦveof(yx)(r - 1) - (Σueof(u))l(r - 1) -

/(*)/(r - 1) = σ - /(x)/(r - 1), say. Thus (zδe -p)*f=δe means that

(z + l/(r - l))/(x) = σ if x Φ e, and (z + l/(r - l))/(e) = (7 + 1. Therefore

( r - 1)<7 = 2 , 6 f l / W = ( ( r - l)σ + σ + l)/(z + l/(r - 1)), so that <j =

l/(r — ί)(z — 1). The result now follows.

The equations α̂  / S / ^ ) = w become in this case

a .(r, - l)λ) - (a fa - 2) + w{r, - l))λ, + w(r3 -2)-a3 =

which have solutions

(4 2) λ (w) = a^Γj" 2 )

2^/^- - 1)

where the square root is chosen so as to behave like w(rό — 1) as w-+ oo.

Thus ^j(^) is the solution described in Lemma 2. We can define the

functions λj(w) simultaneously on C\Γ, where Γ is a simple path passing

through all the points αr/r, — 2)/(r7 — 1) ± 2iaj/\/rj — 1 and meeting the

x-axis only at the origin. Note that the square root in (4.2) is positive

for w e (0, oo) and negative for w e (— oo, 0).

Equation (3.3) in this case takes the form, writing βj for ^/(r, — 1).

(4.3) z=w + (ll2)Σs{βfa - 2) - II; + V(n> - βfa - 2))2 + ψfa - 1)}.

As explained before Theorem 1, this series converges for |M;| large. In

fact, it converges for w in a neighbourhood O+ of (0, oo) in C. Indeed,

Re V(w - βj(r - 2))2 + 4β%rj - 1) = 0 if and only if

w e Lj = {βfa - 2) + iy: \y\ ^ 2βj</rJ - 1}.

So all the square roots in (4.3) have real part > 0 if Re w > 0 and w g

UjLj. Let O+ = {«;eC\Γ: Re(w) > 0 and we i)5L3}. If weθ+, the th

summand in (4.3) equals

9fa - l)l(w - βfa - 2) + J(βfa - 2) - α;)2 + 4^(rJ. - 1)),

and here the denominator has real part at least Re (w) — β3(r — 2). Thus
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the series in (4.3) converges if weθ+. Similarly the series converges if

w e O_ = {w e C\Γ: Re w < 0 and — w g U ^ } , a neighbourhood of (— oo, 0).

Let f(w) denote the function defined by the right hand side of (4.3) for

weO+(JO_.

If w e (0, oo), one can easily check that f(w) > 0 and f"{w) > 0, and

that f'(w) -> 1 as w -> oo and f\w) -> 1 - Σ3(r} - l)/r, as w-+0. Unless G

is the free product of two groups of order 2, we have 1 — Σj{rj — l)jrj < 0,

and so / has a unique minimum point w+ e (0, oo). Similarly, for w e

(— oo, 0) we have f(w) < 0 and f"(w) < 0, and f'(w) -> 1 as w -• — oo and

f'(w) -> 1 — Σj 1/Γj as ^ -> 0. So if Σ 1/r, > 1 then / has a unique maximum

point w_ 6 (— oo, 0), while if Σjl/rj^l then / is strictly increasing on

( —oo, 0), in which case we write w_ = 0 and f(w_) = —Σjβj.

LEMMA 4. We Λαue α = f(w_) and b — f(w+) unless G is the free

product of two groups of order 2, in which case b = — a = 1.

Proof. We first show that S is not regular at a and b. Suppose,

by way of contradiction, that S could be defined analytically in a neigh-

bourhood \z — b\ < ε of b. Since S(z) = S(z) for z e C\X, we must have

S(x) e R for x e (b - ε, b + ε). The Stieltjes Inversion Formula [6, p. 90]

tells us that μ((b — ε, b + ε)) = 0, which contradicts the fact that b eX

= Supp(μ). The same argument shows that a is singular for S.

Now Theorem 1 tells us that z = f(l/S(z)) for z large, and so, by ana-

lytic continuation, also for z e (b, oo). Furthermore, z — f(l/S(z)) is satisfied

for z > z+ — f(w+) because f\w) Φ 0 for w > w+. Moreover, S(z) is not

regular at z+, for otherwise we would obtain the equation f(ljS(z)) = z

for z near z+, which is impossible because f(w+) = 0. We then conclude

that b = z+. The same argument shows that a = f(w_), with an obvious

modification in the case w_ = 0. Similarly, slight modifications to the

above argument show that b = —a = l when G is the free product of

two groups of order 2.

LEMMA 5. For w e (0, oo) we have f(w) ^ —f( — w), and thus b^> —a.

Strict inequality holds unless r ; = 2 for all j .

Proof. If w 6 (0, oo), we have

f(w) = w + (1/2) J,{/3,(r, - 2) - w + <J(w - /3,(r, - 2)f + 4jSJ(r, - 1)}

and
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/ ( - w) = -w + (1/2)Σtffa -2) + w-*/(w + /3,(r, - 2))2

where the square roots are now all positive. But

(4.4, < « " " 2 )

< V(j8,(r, - 2) - wf + 4 $ ( r / - 1) + 2βj(rj - 2),

and so —f{ — w) <Lf(w). By Lemma 4, we have b = /(u>+) ^ —f( — w+) ^

—f(w_) — —a. The inequality (4.4) is strict if r ; ^ 2, and so f(w) > —f(w)

for ^ e (0, oo), and b > — α unless all r/s equal 2.

Proof of Theorem 2. We apply Darboux's method to

f]p*n(x)un+l
 = R(L,X) .

If x = xίχ - - xim is a reduced word in G, then by Theorem 1,

where riv{w) — Riv{λiv{w), xίυ)/Sίv(^ίυ(κ;)) and where w satisfies Iju =

By Lemma 3 and formula (4.2),

which has an expansion

about w+ unless we are in case (iii) of the theorem. Notice that r/w;+)

> 0 and r'j(w+) < 0. Thus r^w^Xw) -rin(w) = Ao + Ax(w - w+) +

where

(4.5) 4 , = Π ^ > + ) > 0 and A, - AoΣrίXwJIrtXwJ < 0.

Now 1/M = f(w) = f(w+) + (1/2) f"(w+)(w - w+γ + and f(w+) = b.

So w may be expanded in a power series in ((1 — ub)lu)ί/2, and thus in

(4.6) M; = α;+ + J^~-~, Λ - ub

Combining (4.5) and (4.6), we have
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(4.7) i?(—, x) = Bo + SjVl - ub + for u near 1/6,

where Bo = w~λAQ and Bx = (-w-+

2A0 + wιιAι)\/2blf"{w+) (<0). If x = e,

then R(l/u, e) = 1/w is given by an expansion (4.7) with JS0 = w'1 and

βj = —wz2*/2blf"(w+). In case (i) of Theorem 2, Lemma 5 shows that 1/6

is the only singularity of R(l/u, x) for \u\ = lib, and so Darboux' Theorem

[3, p. 498], [21, Theorem 8.8.4] shows that (4.1) holds with φ(x) = BJΓ(-1I2)

In case (ii) of Theorem 2, R(lju, x) is clearly an odd or even function

depending on whether \x\ is even or odd. So if |JC| is odd, we have

R(l/u, X) = B0+B1Λ/1 + ub H for u near —1/6, and if \x\ is even, we have

R(l/u, x) = -Bo - B^l + ub + ••• for u near -1/6. Thus Darboux's

Theorem implies that (4.1) holds with φ(x) = —Bιb/</~π' iΐ n = |x |mod2.

Finally, in case (iii) of Theorem 2, we have

and we can solve equation (4.3) explicitly (see § 4.3) to obtain w =

z-W - (A - &)2)(*2 - i)]1/2.

We find that rό(w) = -wfeβj + φό(z) and w = g(z)(z - 1)1/2, where φs(z)

and g(z) are analytic in a neighbourhood of z = 1, and 0/1) = 1 and

It follows that R(l/u9 x) has an expansion

M / V 8j9jj82

for u near 1. The rest of the proof of case (iii) follows as for case (ii).

Remark. Another natural choice for the probability on G is p' =

Σcxjp'j, where p'j(x) = 1/r, for all xe Gό. Since

p' = (Σjajr^)δe + Σjajirj - l)r^Pj,

it is easy to derive from Theorem 2 the corresponding result for p'.

Let us conclude this section by pointing out that in two cases we

can solve the equation (4.3) explicitly, and thus find the resolvent and

the Plancherel measure.

§ 4.2. When \J\ = n < oo and a5 = 1/n and rό — r for all j , equation

(4.3) becomes
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2 = 1 — —
2( Γ - 1) 2 'V Λ ( Γ _ i ) rf(r - if

We can solve this for S(z) = 1/w and obtain

- 2

S(z) = — " !—Lr *

where

- l J
r ± /ι L7 - T ±

The square root must behave like z as z—>oo, and so is positive on
(T+,oo) and negative on (—oo,Γ_). It follows that S has a removable
singularity at 1, while — l/(r — 1) is removable if and only if n 2> r. If
n<r, — l/(r—1) (<Γ_) is a pole with residue 1 — njr. The Stieltjes
inversion formula shows that the Plancherel measure is supported on
[Ϊ-JΛ if n ^ r and on [r_, Γ+]U{-l/(r - 1)} if n < r. On [r_,ϊ+], μ is
absolutely continuous with respect to Lebesgue measure, with density

- χ)(χ - r.)

- x)(x + l/(r - 1)) '

(cf. [7], [8], [14]).

§ 4.3. When | J\ = 2, write α: = βί9 β = β2, r = r1? s = r2, x0 = (α(r — 2)

+ β(s - 2))/2 and t = z - x0. Then (4.3) becomes

2ί = Λ/W2 - 2a(r —~2)w + aΨ + Vw2 - 2β(s - 2)w + ^V,

and solving for S(z) = 1/w, we obtain

S(e) = -*o*2 + K r ~ 2) - β(s - 2))(a2r2 - /3V)/8 + tQ(t)

where Q(t) is the square root of

ί4 - | ( ( α r - βs)2 + 4αβ(r + s - 2))ί2

+ {ar - βsY/16 + ccβ[(r + s - 2)(αr - /3s)2 + 2α/3(r - s)2]/2

= (t2 - P+)(f - p_),

where
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aβ(r + s-2)±

Notice that 0 ^ p_ < p+. Let ϊ and δ be the positive square roots of ρ_

and ρ+ respectively. Now Q(t) must be positive if \t\ > δ and negative if

\t\ < λ. It follows that S has a removable singularity at t = (ar + βs)/2,

a pole t = — (or + /te)/2 with residue 1 — 1/r — 1/s, and a pole with residue

|l/r - 1/51 at either |(αr - ^)/2, if (r - s)(ar - βs) ^ 0, or at -\(ar - βs)/2\,

if (r — s)(αr — βs) ^ 0. By the Stieltjes Inversion formula, the Plancherel

measure μ is supported by [x0 — δ, x0 — ϊ] U [x0 + >̂ #o + ]̂ U {̂ , x2}, where

xι = χ0 — (αr + ŝJ/2 = — (or + 8̂) and x2 = xQ + (αr — /3s)/2 or x0 — (ar — βs)/2.

For Γ ̂  |x — Λ:0| ̂  ^ /̂  iβ absolutely continuous with respect to Lebesgue

measure, with density

x - x*WW=W=Ίfi*K(x - x0Y - fj

Finally, ^({xj) = 1 - 1/r - 1/β and {̂x2} = |l/r — l/s| (cf. [5]).

§ 5. The resolvent for quotient groups and amalgams

§ 5 1 Let G be the free product with amalgamation *HGj of a finite

or countable family of discrete groups Gj having a common finite normal

subgroup H. There is a natural isomorphism between GjH and the free

product of the groups GJH. We shall now show that the study of the

random walk associated with an ίf-invariant probability on G can thus

be reduced to the study of a random walk on this free product. To this

end, it is convenient to generalize the problem and consider any discrete

group G having a finite normal subgroup H. We also consider a measure

on G which is a convex combination of an //-invariant probability on G

and an arbitrary probability on the finite subgroup H.

Thus let G be a discrete group with finite normal subgroup // of

order d. We write x for xH e G/H. Let px be a probability measure on

G/H, with resolvent R^z). Define a probability px on G by px(x) = (1/C?)A(*)

Let p2 be a probability measure on H with resolvent R2(z). We define

p2(x) = 0 for x € G\H. Let a, β > 0 with α + β = 1, and let p(x) = tfA(x)

+ βPι(χ)- Denote by XΊ, X2 and X the spectra of px, p2 andp respectively.

THEOREM 3. Let R(z) be the resolvent of the probability measure p

described above. If a, β > 0 and if zg(β + aX^ U βX2 then
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'a~1d~1R1((z — β)/a, x) if x&H

if xeH.

If a=l and β = 0, and if ^ ί , U {0}, then

{ rl~^T?('7 Ύ\ if Y & Ί-T

U/ xlilι&> Λ / vi Λ/ vo JLJL

Proof. Write λ — (z — β)ja. Let f(x) denote the function defined by
the right hand side of (5.1). Notice that f(hx) = f(x) if h e H and x e G\H
and that Σft€^/(^) = S^ja. Let V be a set of coset representations of H
in G. Then

(Pi */)(*)= Σ Σ P1(vh)f(h'ιυ-1x)
υev hen

1

— — Vjμi ^ ΛIΊ

Also,

(p*f)(χ)=lH

) iίxeG\H

( A */)(*) ifxeff.

Thus

(P * f)(χ) = i (A * Λ.WXs) + A E,α x) = 2/(χ) if x e

If JC e if, then

(P>/)(*) = ̂ ( Ά * Λtα

= zf{x)-3t(x).

Now notice that / is the sum of two functions, / = φ + ψ, say, where
has support in i ϊ and -ψ is //-invariant and corresponds to a bounded
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convolution operator on £2(G/H). Standard arguments show that / defines

a bounded convolution operator on £\G). This proves the first part of

the theorem. The second part is proved in exactly the same way or by

taking limits in (5.1) and β-+0.

Now let Gj be a family of discrete groups containing a common

normal finite subgroup H. Let G be the amalgamated product *HGj and

F the free product * Gj/H. Let q5 be an ff-invariant probability measure

on Gj for each j , and px = Σaόqό where aό > 0 and Σa5 — 1. Write px

and qό for the corresponding probabilities on F and GJH respectively.

Moreover, let p2 be a probability measure on H and form p = apx + βp2-

COROLLARY. The resolvent of the probability measure p on G = *HGά

is given by Theorem 3, where the resolvent Rx of pγ is expressed in terms

of the resolvents of the q3 using Theorem 1.

Before giving an example of the situation described in the corollary,

let us make some remarks about the spectrum X of p.

By Theorem 3, we have X^(β + aXt) U βX2 If the probabilities p1

and p2 of Theorem 3 are symmetric, we can be more specific. Indeed,

let βu μ2 and μ be the Plancherel measures of pl9 p2 and p respectively.

For the sake of clarity we state explicitly the following elementary lemma

which describes μ2.

LEMMA. Let λ1 = 1, λ2, , λr be the distinct eigenvalues of the con-

volution operator f>->p2*f on £2(H), with corresponding multiplicities

fti (^1)> n2, ' ' ', nr- Then μ2 = ΣJ=I (njl^)^xr Furthermore, nγ — 1 if and

only if the support of p2 generates H.

Proof. Let qό be the function in the algebra A* generated by p2

such that qj(λk) = δjk. Then clearly R2(z) = Σ[(z — λj)~ιqv and so μ2 =

Σ ί Qj(e)δλr O n the other hand, f >-+ qj*f is the orthogonal projection S\H)

onto Vj = {f:p2*f= λjf}, and thus ns = Trace(q^ = Σ χ 6 ^ < ^ y * ^ O =

dq^e). If K is the subgroup of H generated by the support of p2, then

the characteristic function of any right coset Kx of K in H is in VΊ. Thus

fti ̂  |<H"|/|UL|. TO see that equality holds see, e.g., Proposition I. 6.2 of [18].

COROLLARY 1. If pλ and p2 in Theorem 3 are symmetric and if a, β> 0,

then the Plancherel measure of p is given by

(5.3) μ-l, + J!Lzl*,+ %*.,„,
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where v(A) = μx{{A — β)ja) for any Borel set A ci R. If, however, a — 1

and β = 0, then

(5.4) , = ^ 1

Proof. If we take Λ; = e in (5.1) and use the lemma, we see that

f -MI = 1 f _JW}_ + (n^rJ^d^ + £ ^njd_
JR z— t d JR z — (at + β) z — β 2 z — βλj

when a, β > 0. Thus (5.3) follows from the Stieltjes Inversion Formula.

For the same reasons, (5.4) holds.

COROLLARY 2. With notation as above, if a, β > 0 then the spectrum

X of p is (aXx + β) U βX2, with the possible exception of the point β (if

nλ — \ and O^XJ. The spectral radius r of p is arι + β if τ\ is that of p{.

Proof This is immediate from formulas (5.3) and (5.4).

§ 5.2. Application to local limit theorems

Let us briefly point out how Theorem 3 may be used to obtain a

local limit theorem for p if sufficient is known about the resolvent of p^

In the notation of Theorem 3, if a — 1 and β — 0, we see from (5.2),

or directly, thatp*w(x) = d^pΐ^x) for all x e G and n^l. The asymptotic

behaviour of p*n(x) as n —> co is therefore known once we know that of

Pΐn(x).
When a, β > 0, the relationship between p * 7 ^ ) and pf n(x) and pf n(x)

is more complicated. Suppose, for simplicity, that px is symmetric. If r1

denotes the spectral radius of pu then it is clear from (5.1) that R(z, x)

is analytic for \z\ > r = β + ar^ Furthermore, z — r is the only singularity

of R(z, x) on the circle \z\ — r, because \β — arλ\ < r and β < r. Suppose

now that, as was the case in Theorem 2, R^l/z, x) has a Puiseux expan-

sion R^l/z, x) = BQ + SjVl — zfx + for z near 1/^ where Bx = B^x)

< 0. Then by (5.1), R(l/z, x) has a Puiseux expansion R(l/z, x) = Co +

d V T ^ e r + for z near 1/r, where Cr = α:-1^-1^^! - i3/r)~1/2. By Dar-

boux's Theorem again, we have

p**(x) = JΣ^Ln-
3/2rn\l + θ(—\\

2 V ^ L V^/J
as n
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§ 5.3. Application to orthogonal polynomials

Let us consider the sequence {pn} of orthogonal polynomials associated

with the Plancherel measure μ of a symmetric probability p on a discrete

group G. For G and p as in Section 4.2, the polynomials {pn} have been

studied in [7] and [14], and they are shown to be combinations of Cheby-

shev polynomials. The polynomials corresponding to the G and p of

Section 4.3 (with a = β = 1) are more complicated and were described in

[5].

When G and p are as in Theorem 3, the Plancherel measure μ is

obtained from that of A by Corollary 1 above, and so the orthogonal

polynomials associated with μ may be calculated by successive applications

of the following general proposition.

PROPOSITION. Let {qn} be the monic orthogonal polynomials relative

to a measure v on R. Form the measure μ = av + bδc, where a, b > 0,

a + b = 1 and where δc is the unit mass at ceR. Then the monic orthog-

onal polynomials {pn} relative to μ are given by

Pn(x) =

\QM^M^MRMλ + qΛx) if aιso x

J

where \\qk\\2 = f qk(x)2dv(x) and

(5.6) , . _ - ^

Proof. Define pn for n >̂ 1 by the first equation in (5.5), where σn

is given by (5.6). For n ^ 1, we have

f Pn(x)dμ = a I pn(x)dv + bpn(c)
J R JR

= aσn + 6σn[Σ ί^llftll"8] + bqn(c)

= 0.

Furthermore, if n > m >̂ 1, then

f Pn(x)Pm(x)dμ = α j Pn(x)Pm(x)dv + bpn(c)pm(c)
J R J R

σ σ ^ c ) + bpn(c)pm(c)
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= aσnpm(c) + bpn(c)pm(c)

= 0,

because aσn + bpn(c) = 0. Thus {pn} are the monic orthogonal polynomials

for μ. The second equation in (5.5) follows from the first by the Christoffel-

Darboux formula [21, Theorem 3.2.2].

EXAMPLE. Let G be the free product of n copies of the cyclic group

Zrd with the common subgroup Zd amalgamated. Define p by p(x) =

l/dn(r — 1) if x is an element of one of the copies of Zrd but x g Zd, and

set p(x) = 0 for all other x e G. Then p(x) = (1/C0A(*)> where p{ is the

probability on G/Zd ( = the free product n, copies of Zr) discussed in Sec-

tion 4.2. The Plancherel measure is given by (5.4) and the orthogonal

polynomials {qn} for fiί may be expressed simply as a combination of

Chebyshev polynomials of the second kind (see the lemma in [14]). Thus

by the above proposition with v — μu c — 0, a — Ijd and 6 = 1 — 1/d, the

orthogonal polynomials {pn} for the Plancherel measure μ of p are explic-

itly expressible in terms of these Chebyshev polynomials.

EXAMPLE. SL2(Z) ^ Z 4 * Z a Z β [19, p. 11]. The orthogonal polynomials

for a natural probability on SL2(Z)/Z2 ~ Z2* Z3 are described in [5]. Thus

the above proposition describes the orthogonal polynomials for the cor-

responding Z2-invariant probability on SL2(Z).

Note.

During the final preparation of this manuscript, the authors were

informed by W. Woess that he had also recently proved a formula for

the resolvent for probabilities on the free product of discrete groups.

His methods, which involve the study of several auxiliary functions, and

his applications are different however.

REFERENCES

[ 1 ] K. Aomoto, Spectral theory on a free group and algebraic curves, J. Fac. Sci.
Univ. Tokyo Sec. 1A, 31 (1984), 297-317.

[ 2 ] K. Aomoto and Y. Kato, Green functions and spectrums in a free product of cyclic
groups, preprint.

[ 3 ] E. A. Bender, Asymptotic methods in enumeration, SIAM Review, 16 (1974),
485-515.

[ 4 ] P. Cartier, Fonctions harmoniques sur un arbre, Symposia Math., 9 (1972), 203-
270.

[ 5 ] D. I. Cartwright and P. M. Soardi, Harmonic analysis on the free product of two
cyclic groups, J. Funct. Anal., 65 (1986), 147-171.

https://doi.org/10.1017/S0027763000000507 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000507


180 D. I. CARTWRIGHT AND P. M. SOARDI

[ 6 ] T. S. Chihara, An introduction to orthogonal polynomials, Gordon and Breach,

New York-London-Paris, 1978.

[ 7 ] J. M. Cohen and A. R. Trenholme, Orthogonal polynomials with a constant re-

cursion formula and an application to harmonic analysis, J. Funct. Anal., 59 (1984),

175-184.

[ 8 ] J. Faraut and M. A. Picardello, The Plancherel measure for symmetric graphs,

Ann. Mat. Pura Appl., 138 (1984), 151-155.

[ 9 ] A. Figa-Talamanca and M. A. Picardello, Harmonic analysis on free groups,

Lecture Notes in Pure and Applied Mathematics, 87, Marcel Dekker, New York,

1983.

[10] P. Gerl, Ein Gleichverteilungssatz auf F2, Probability Measures on Groups, Lec-

ture Notes in Math., 706, Springer-Verlag, Berlin-Heidelberg-New York, 1979,

pp. 126-130.

[11] , A local central limit theorem on some groups, The First Pannonian Sym-

posium on Mathematical Statistics, Lecture Notes in Statistics 8, Springer-Verlag,

Berlin-Heidelberg-New York, 1981, pp. 73-82.

[12] and W. Woess, Local limits and harmonic functions for non-isotropic random

walks on free groups, Probab. Th. Rel. Fields, 71 (1986), 341-355.

[13] H. Kesten, Symmetric walks on groups, Trans. Amer. Math. Soc, 92 (1959),

336-354.

[14] G. Kuhn and P. M. Soardi, The Plancherel measure for polygonal graphs, Ann.

Mat. Pura Appl., 134 (1983), 393-401.

[15] M. A. Picardello, Spherical functions and local limit theorems on free groups,

Ann. Mat. Pura Appl., 133 (1983), 177-191.

[16] M. A. Picardello and W. Woess, Random walks on amalgams, Monatsh. Math., 100

(1985), 21-33.

[17] S. Sawyer, Isotropic random walks in a tree, Z. Wahrsch. Verw. Gebiete, 42 (1978),

279-292.

[18] H. H. Schaefer, Banach lattices and positive operators, Grundlehren der Math.

Wissen. 215, Springer-Verlag, Berlin-Heidelberg-New York, 1974.

[19] J. P. Serre, Trees, Springer-Verlag, Berlin-Heidelberg-New York, 1980.

[20] P. M. Soardi, The resolvent for simple random walks on the free product of two

discrete groups, preprint.

[21] G. Szegδ, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publications, Vol.

XXIII, fourth edition, Amer. Math. Soc, Providence Rhode Island, 1975.

[22] W. Woess, A random walk on the free product of finite groups, in Springer Lecture

Notes in Mathematics 1064, (1984), 467-470.

Donald I. Cartwright

Department of Pure Mathematics

The University of Sydney

Sydney N.S.W. 2006

Australia

P. M. Soardi

Dipartimento di Matematica

Universitά di Milano

Via C. Saldini 50

Milano, 20133

Italy

https://doi.org/10.1017/S0027763000000507 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000000507



