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Abstract

Analysing temporal patterns in foodborne illness is important to designing and implementing
effective food safety measures. The reported incidence of illness due to Salmonella in the USA.
Foodborne Diseases Active Surveillance Network (FoodNet) sites has exhibited no declining
trend since 1996; however, there have been significant annual trends among principal
Salmonella serotypes, which may exhibit complex seasonal patterns. Data from the original
FoodNet sites and penalised cubic B-spline regression are used to estimate temporal patterns
in the reported incidence of illness for the top three Salmonella serotypes during 1996-2014.
Our results include 95% confidence bands around the estimated annual and monthly curves
for each serotype. The results show that Salmonella serotype Typhimurium exhibits a statis-
tically significant declining annual trend and seasonality (P < 0.001) marked by peaks in late
summer and early winter. Serotype Enteritidis exhibits a significant annual trend with a
higher incidence in later years and seasonality (P < 0.001) marked by a peak in late summer.
Serotype Newport exhibits no significant annual trend with significant seasonality (P < 0.001)
marked by a peak in late summer.

Introduction

In the USA, Salmonella is estimated to be the leading cause of annual illnesses, hospitalisa-
tions, deaths and monetised losses due to foodborne bacterial pathogens [1, 2]. Despite the
introduction of food safety measures intended to reduce the incidence of foodborne salmon-
ellosis, the reported overall incidence of Salmonella infection in the USA exhibited year-to-year
variation but did not decline between 1996 and 2013 [3]. However, temporal and spatial pat-
terns vary among Salmonella serotypes, and different serotypes may be more frequently asso-
ciated with different animal reservoirs and food commodities [4-7].

The Foodborne Diseases Active Surveillance Network (FoodNet) is a collaboration among
the Centers for Diseases Control and Prevention (CDC), ten state health departments, the US
Department of Agriculture’s Food Safety and Inspection Service (USDA-FSIS) and the Food
and Drug Administration (FDA). FoodNet conducts active, population-based surveillance
for laboratory-confirmed infections transmitted commonly through food, including
Salmonella. The FoodNet surveillance area currently includes the full states of Connecticut,
Georgia, Maryland, Minnesota, New Mexico, Oregon and Tennessee, and selected counties
in California, Colorado and New York.

During 1996-2014, Salmonella enterica subsp. enterica serotypes Typhimurium, Enteritidis
and Newport were the three most common serotypes reported by FoodNet sites. Based on the
most recent data available, the reported incidence rate is highest for Enteritidis, and these prin-
cipal three serotypes represent over 40% of the serotyped Salmonella strains reported [8-10].
This analysis focuses on temporal patterns in the trends of the three principal Salmonella ser-
otypes and extends methodologically on previous work by examining both annual trends and
seasonal variation in reported incidence.

Methods
Data

The analysis includes the FoodNet data for serotypes Typhimurium, Enteritidis and Newport
during 1996-2014. Case counts (number of reported laboratory-confirmed infections) and
surveillance area population data were obtained from the CDC FoodNet program for each
serotype by year, month and site. Since it was established in 1996, FoodNet has included
the states of Minnesota and Oregon and selected counties in California, Connecticut and
Georgia. During 1997-2004, the FoodNet surveillance area expanded to include the entire
states of Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon and Tennessee,
and selected counties in California, Colorado and New York. To control for the changing geo-
graphic composition of the FoodNet surveillance area over time, this analysis is restricted to

https://doi.org/10.1017/50950268818000195 Published online by Cambridge University Press


https://www.cambridge.org/hyg
https://doi.org/10.1017/S0950268818000195
https://doi.org/10.1017/S0950268818000195
mailto:mpowell@oce.usda.gov
http://crossmark.crossref.org/dialog/?doi=10.1017/S0950268818000195&domain=pdf
https://doi.org/10.1017/S0950268818000195

438

the aggregate annual and monthly data from the original five sites
[11]. During 1996-2014, the population of the original FoodNet
sites grew from 5 to 6% of the total US population.

Regression analysis

We analysed the reported Salmonella serotype incidence data using
penalised cubic B-spline regression [3, 12]. B-spline regression is a
semi-parametric, locally-controlled method that makes no assump-
tions about the statistical form of the trend [13]. To address the sen-
sitivity of B-spline regression to choices about the number and
location of join-points called knots, Eilers and Marx proposed pena-
lised B-spline regression that imposes a ‘roughness’ penalty on differ-
ences among neighbouring B-spline regression coefficients. The
result is a flexible smooth curve that avoids overfitting the data,
although less smoothness is imposed at domain boundaries [12].

To account for the count nature of the data, we used a generalised
additive model. A generalised additive model is a generalised linear
(e.g., log-linear Poisson regression) model in which the linear pre-
dictor depends additively on unknown smooth functions of some
covariates [12, 14]. In this analysis, the log of Salmonella serotype
cases reported in a period depends linearly on smooth functions
of the year (for annual data analysis) or year and month (for
monthly data analysis). For the monthly analysis, the month effects
estimated under the regression model are proportionally constant
to the yearly estimate. To control for the increasing population
size of the original surveillance sites over time, the log of the popu-
lation enters the model as an offset term, and a generalised Poisson
regression model allows for non-Poisson dispersion [14].

For the annual data analysis, consider the following general-
ised additive model:

Log(u,) = log(Population;) + By + f (x;) (D

where y; = E[Count,]; i = 1996, ..., 2014; Population; = population
of the original 5 FoodNet sites; smooth function
f(x;) = f(Year;) = Z]]'(:l Bj(Yeari)Bj; and Bj(x) is the B-spline
basis function.

For the monthly data analysis, consider the following general-
ised additive model:

Log(p;) = log(Population;) + By + fi1(xi) + f2(x;) 2)

where u;;=E[Count;]; i=1996, ..., 2014; j=1, ..., 12
Population;; = population of the original 5 FoodNet sites; smooth
function f(x;) = fi(Year;) = Zi:l By (Year;)3;; smooth function
f(x) = for(Month)) = ZL:I By(Month))B;; and Bi (x) is the
B-spline basis function.

For the annual data analysis, a period in which the 95% confi-
dence band about the estimated curve contains a line with zero
slopes indicates no significant annual change. If the 95% confidence
band contains a line with zero slope for 1996-2014, this would
indicate no significant annual trend with only year-to-year
variation during the entire period (i.e., we would not reject an
intercept-only regression model). A significant annual trend may
be monotonic (increasing or decreasing), non-monotonic (e.g.,
cyclic or inverted-U), linear or non-linear (e.g., a step function).

For the monthly data analysis, an F test of the model fit with
and without month as a covariate indicates the significance (with
approximate P-values) of seasonality. Analyses of the monthly
data input on a calendar year basis suggest primary peaks in
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late summer for all serotypes and secondary early winter peaks
for some serotypes. Therefore, the year and month covariates
also were inputted on a fiscal year basis (October through
September) for the monthly data analysis. This shifts the early
winter period from the boundary between calendar years to a
more central position within fiscal years and thus avoids the
potential lack of smoothness that may be imposed at domain
boundaries. Seasonal peaks identified under both calendar and
fiscal year bases are considered robust to potential boundary
effects (e.g., late summer does not lie on the boundary between
calendar or fiscal years).

The smooth functions of the generalised additive model are
obtained using a uniform cubic B-spline basis function. The
B-spline basis function provides local control over the model fit.
Thus, the local fit of the curve is insensitive to points far removed.
The degree of smoothness is controlled by a curvature penalty
term, and the smoothing penalty parameter value is estimated
by the generalised cross-validation criterion. The penalised
B-spline regression model was performed using a second-order
difference penalty and two interior knots (two boundary knots,
ten total knots), resulting in an unconstrained basis of dimension
six for each smoothed covariate. However, because the degree of
smoothness is controlled by the curvature penalty, the model fit
is insensitive to the choice of basis dimension [12, 14]. For a
cubic B-spline basis and second-order difference penalty, as the
curvature penalty increases without bound, the fit approaches a
simple log-linear model [12]. Wood provides statistical back-
ground on generalised additive models [14]. Powell describes
the application and estimation of the penalised cubic B-spline
regression model for FoodNet data in further detail [3]. The ana-
lysis presented here follows the same modelling and estimation
approach but has been extended to include more than one
smoothed covariate (i.e. year and month) to investigate seasonal
as well as annual patterns. The analysis was performed using
the R mgcv package [15, 16]. The data and computer code used
in the analysis are provided as Supplementary Materials.

Results

Serotype Typhimurium exhibits a significant, log-linear declining
annual trend over 1996-2014 (Fig. 1) and significant seasonality
(P<0.001) marked by peaks in late summer and early winter
(Fig. 2). Serotype Enteritidis exhibits a significant annual trend,
with a higher incidence in later years (Fig. 3) and significant sea-
sonality (P <0.001) marked by a peak in late summer (Fig. 4).
Serotype Newport exhibits no significant annual trend (Fig. 5)
with significant seasonality (P <0.001) marked by a peak in late
summer (Fig. 6). An apparent secondary early winter peak for
Newport was obtained when month and year are inputted on a
calendar year basis. This peak, however, is smoothed when the
covariates are inputted on a fiscal year basis. Therefore, the poten-
tial secondary early winter peak for Newport is not considered
robust. To assist in the visual interpretation of the annual trend
analysis results, Figures 1, 3, and 5 contain zero slope lines (indi-
cated by slope =0). In Figure 1 (Typhimurium), the zero slope
line is at the minimum value of the upper limit of the confidence
band. In Figure 3 (Enteritidis), zero slope lines are placed at the
minimum value of the upper limit and at the maximum value
of the lower limit of the confidence band. In Figure 5
(Newport), the zero slope line is at the minimum value of the
upper limit of the confidence band. The figures for the monthly
data analyses (Figs 2, 4, and 6) are presented on a calendar year
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Fig. 1. Penalised B-spline regression of annual reported
serotype Typhimurium incidence per 100000 person-
years for 1996-2014. Rate=reported incidence per
100000 person-years, pred=mean curve, lower and
upper =95% confidence band limits.

-+
. * Fig. 2. Penalised B-spline regression of monthly
reported serotype Typhimurium incidence per 100 000
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basis but are based on results obtained when year and month are
inputted on a fiscal year basis.

Discussion

Although the reported incidence of illness due to all Salmonella
serotypes in the USA did not exhibit a declining trend during
1996-2013 [3], we identified significant annual trends among the
three principal Salmonella serotypes. In addition to long-term
trends, Salmonella serotypes may exhibit complex seasonal patterns
with multiple peaks during the year. The significant annual trend
results for serotypes Typhimurium (decreasing) and Enteritidis
(increasing) are consistent with previous reports [5, 9]. Previous
reports indicated significant increases for serotype Newport; how-
ever, these were based on pairwise comparisons between the
reported incidence from all sites for individual years to a 1996-
1998 baseline [8, 9]. Consequently, they could not distinguish
trends from year-to-year variation and did not control for the
change in site composition over time.

The seasonal peaks observed in late summer for the three prin-
cipal Salmonella serotypes are associated with higher ambient tem-
peratures that would impact both food and environmental sources.
The possible factors underlying the secondary early winter peak (or
discontinuity of slope, strictly speaking) for serotype Typhimurium
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person-months for 1996-2014. Rate = reported incidence
per 100000 person-months, pred =mean curve, lower
and upper=95% confidence band limits.

may include seasonal changes in food consumption, composition
and quantity, food handling and preparation practices, and care-
seeking behaviour. This complex seasonal pattern of a primary
peak in summer and a secondary early winter peak is consistent
with that observed for campylobacteriosis [17, 18]. Investigating
seasonal patterns may be useful in studies to estimate the proportion
of specific illness attributable to various sources. For example, the
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Fig. 3. Penalised B-spline regression of annual reported serotype Enteritidis incidence
per 100000 person-years for 1996-2014. Rate =reported incidence per 100000
person-years, pred = mean curve, lower and upper =95% confidence band limits.
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reported incidence of campylobacteriosis cases exhibits a strong
seasonal pattern that generally precedes increases in prevalence
observed in contaminated raw chicken [17].

It is important to underscore that this study analyses temporal
patterns in the incidence of illness reported by the original
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FoodNet sites, which is an imperfect measure of the true incidence
of foodborne illness. Reported cases of laboratory-confirmed
illnesses understate the true incidence of illness due to underre-
porting and underdiagnoses, and the degree of adjustment
required to estimate true incidence is uncertain and varies
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among pathogens [1, 19]. Furthermore, the available time series
data may reflect changes in the reporting rate, whether resulting
from changes in reporting systems, diagnostic methods or resources.
The problem of uncertainty in the data is accentuated by differences
in the evolution of the surveillance system among sites over time.
The analysis also does not account for changes in demographics
or dietary exposures in the sites over the surveillance period, nor
does it seek to draw inferences about the underlying causes of the
observed temporal patterns. Moreover, there is uncertainty about
generalising from the original FoodNet sites to the national level,
but this analysis has not attempted to quantify that uncertainty.

Distinguishing bona fide trends and patterns from random vari-
ation in disease incidence presents a challenge, particularly when
the trends do not follow simple patterns (e.g., monotonic linear
or log-linear) [20]. Henao describes the methods that traditionally
have been used for monitoring changes in the incidence of food-
borne diseases, including those caused by Salmonella serotypes,
in the United States based on data reported by FoodNet [21]. The
methods involve crude rates and pairwise comparisons between
the latest reporting year and multiple reference periods using a log-
linear negative binomial regression model to account for changes in
population size and estimate site-to-site variation in incidence.
Such analysis cannot distinguish year-to-year variation from
trends, and further analysis is required to determine which changes
in reported incidence represent bona fide trends. Henao suggested
exploring variations of a generalised Poisson model and spline
regression to analyse foodborne illness trends [21, 22]. Powell
used penalised cubic B-spline regression methods to analyse annual
trends in the reported incidence of illness due to bacterial patho-
gens commonly transmitted by food in the USA during 1996-
2013 [3]. Herein, we have used penalised cubic B-spline regression
in a generalised additive model framework to investigate both
annual trends and seasonal variation in reported incidence.

In principle, generalised additive models provide a robust class
of methods that can include a variety of continuous and categorical
covariates to explain variation in disease incidence. Future studies
employing the statistical methods described herein could further
explore temporal patterns to identify specific periods of change
(e.g., by estimating uncertainty about the first derivative of the
spline over the time series) or investigate whether seasonality
changes over time and to investigate the effects of geographic,
demographic and other variables in addition to temporal patterns.
We should also continue to explore other statistical methods for
trend analyses, such as joinpoint regression analysis, change point
analysis and Bayesian hierarchical time series models [23-25].

Supplementary material. The supplementary material for this article can
be found at https:/doi.org/10.1017/S0950268818000195.
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