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We expand our previous deterministic power
calculations by calculating the required

sample size to detect C in ACE models. The theo-
retical expected value of the maximum
log-likelihood for the AE model was derived using
two optimisation methods and these gave near-
identical results. Theoretical predictions were
verified by computer simulation and the results
agreed very well. We have developed a user-
friendly web-based tool, TwinPower, to perform
power calculations to detect either A or C for the
classical twin design. This new tool can be found at
http://genepi.qimr.edu.au/cgi-bin/twinpower.cgi

The classical twin design, in which phenotypic mea-
surements are available for monozygotic (MZ) twin
pairs raised together and dizygotic (DZ) twin pairs
raised together, has been used for decades to disen-
tangle genetic and nongenetic sources of resemblance
between relatives. The design is simple and balanced
(two observations per family), the sufficient statistics
are four mean squares (between and within MZ pairs
and DZ pairs) and, in addition to the total (pheno-
typic) variance, only two variance components can
be estimated. It is remarkable therefore, that, to our
knowledge, no simple deterministic equations exist in
the literature to calculate either the sampling vari-
ance of the parameter estimates of interest, or the
power to detect genetic or non-genetic sources of
variance. Martin et al. (1978) provided a comprehen-
sive theoretical analysis of the power of the classical
twin design using weighted-least-squares to estimate
variance  components and a goodness-of-fit test to
reject ‘false’ models. We recently presented deriva-
tions to calculate power for the additive genetic
component of variance from the comparison of ACE
and CE models when using maximum likelihood
(Visscher, 2004). Here we extend those derivations to
the common environmental component of variance
by comparing ACE and AE models. We have incor-
porated all deterministic power predictions in a
user-friendly web-based program TwinPower
(http://genepi.qimr.edu.au/cgi-bin/twinpower.cgi).

Methods
The notation follows Visscher, (2004). The objective
of this note is to compare ACE versus AE models,
rather than ACE versus CE models as was dealt with
previously. As before, we will first deal with the
simple case of least squares estimation, and then use
an approximation to (RE)ML estimation.

Least Squares

Consider the between-pair (B) and within-pair (W)
observed mean squares (MS) in the standard ANOVA
table for n pairs, where the pairs can be either dizy-
gotic (DZ) or monozygotic (MZ),

df MS E(MS)

between pairs n-1 B 2σb
2 + σw

2

within pair n W σw
2

The expected mean squares and between and within
pair variances for the ACE model, when scaled by the
phenotypic variance, are

E(B) E(W) σb
2 σw

2

MZ 2(h2+c2) + (1–h2–c2) h2+c2 (1–h2–c2)
pairs (1–h2–c2)

DZ 2(1⁄2h2+c2) + (1–1⁄2h2–c2) 1⁄2h2+c2 (1–1⁄2h2–c2)
pairs (1–1⁄2h2–c2)

The variance of the observed mean squares (MS) are

var(MS) = 2 E(MS)2 / df,

with df the degrees of freedom. Hence the variance of
the estimate of the between-pair component is,
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From the ANOVA, the estimate of the intra-class cor-
relation is calculated as,

t̂ = [(B–W)/2] / [(B–W)/2 + W] = (B–W) / (B+W)

Applying this formula for m MZ pairs and n DZ pairs
gives t̂MZ and t̂DZ. A first order approximation of the
variance of these correlations is,

var(t̂MZ)   ≈ (1 – tMZ)2(1 + tMZ)2/m = (1 – tMZ
2)2 / m

var(t̂DZ)   ≈ (1 – tDZ)2(1 + tDZ)2/n = (1 – tDZ
2)2 / n

Estimates of the common environmental component
and its approximate variance are:

ĉ2 = 2t̂DZ – t̂MZ and

var(ĉ2) = 4var(t̂DZ) + var(t̂MZ) = 4(1 – tDZ
2)2 /n + [1]

(1 – tMZ
2)2 /m

Power and Sample Size

For large samples, the quantity λ = (c2/SE(ĉ2)) is the
expected mean test statistic of a normal test to detect
C. Its square is approximately equal to the non-cen-
trality parameter (NCP) of a chi-square test statistic.
The NCP per total number of pairs (N) is, from
Equation [1], with pMZ defined as the proportion of
MZ twin pairs in the sample of all twin pairs,

NCPLS/N = (2tDZ – tMZ)2 / [(1 – tMZ
2)2 /pMZ +

4(1 – tDZ
2)2 /(1-pMZ)] [2]

For a statistical test we assume that under the null
hypothesis of c2 = 0 (λ = 0)

T = ĉ2/SE(ĉ2) ~ N (0,1)

Under the alternative hypothesis, T ~ N(λ,1). This
allows a simple prediction of power. If z1-α is the one-
sided (upper tail) threshold from a standard normal
distribution corresponding to a type-I error rate of α,
and β the type-II error rate, then, for a one-sided test

Power = 1 – β = Prob(x > z1-α – λ),

with x a standard N (0,1) random variable.
Alternatively we can express the required power for a
given value of the proportion of variance due to
common environmental effects in terms of the MZ
and DZ sample size,

zβ = z1-α – λ, or, λ = z1-β + z1-α. Using the variance of
the estimate of the heritability,

λ2 = c4 / var(ĉ2) = (z1-α + z1-β)
2

Optimum Proportion of MZ Twins

For a given proportion of MZ twins in the sample, the
required total number of twins is, from Equation [2]

N = 4(z1-α + z1-β)
2 [(1 – tMZ

2)2 /pMZ + 4(1 – tDZ
2)2 /(1–pMZ)]/ c

4

From Equation [2] the optimum proportion of MZ
pairs (pMZ) can be derived as a function of the two

twin correlations. Differentiating with respect to pMZ,

setting the result to zero, and solving for pMZ gives:

pMZ = [2(1 – tMZ
2)(1 – tDZ

2) – (1 – tMZ
2)2] / [4(1 – tDZ

2)2

– (1 – tMZ
2)2] = (1 – tMZ

2) / [(1 – tMZ
2) + 2(1 – tDZ

2)]

An alternative expression is,

1/pMZ = 1 + 2(1 – tDZ
2)/ (1 – tMZ

2)

It is clear from these expressions that the optimum pro-
portion of MZ pairs is less than one-third. In Figure 1
we give a contour plot of the optimum proportion of
MZ pairs as a function of the MZ and DZ correlation
coefficient. The more similar the two correlations are
(when A goes to zero), the closer the ideal MZ propor-
tion goes to one-third. For a smaller value of C (when C
goes to zero), the sampling variance of the DZ correla-
tion is proportional to 4(1 – 1⁄4h4)2 and the sampling
variance of the MZ correlation is proportional to (1 –
h4)2. The latter is much smaller, so fewer MZ pairs are
required to minimise the overall sampling variance of the
estimate of C.

Maximum Likelihood

Given the sufficient statistics (sums of squares within
and between MZ and DZ pairs), there is a close relation-
ship between least squares and ML estimation for
balanced designs (e.g., Thompson, 1962). In Appendix A
of Visscher (2004) we showed the residual maximum
likelihood (REML) estimation for ACE and CE models
for a mixture of two one-way designs, and gave the
expected value of the likelihood-ratio test statistic per
pair from the ACE and CE model. However, for the AE
model there is no explicit closed form (RE)ML solution
from the mean squares. We can get numerical results,
however, using for an example a simple grid search over
fitted values of the additive genetic and environmental
variance components, and obtain the expected
maximum log-likelihood value for the incorrect AE
model. Asymptotically (m ≈ m–1 and n ≈ n–1), the log-
likelihood function, scaled by the total number of twin
pairs (N) can be written as,

–2lnL/N = pMZln[E(BMZ)] + pMZln[E(WMZ)] + 
(1-pMZ)ln[E(BDZ)] + (1-pMZ)ln[E(WDZ)]

+ pMZBMZ/E(BMZ) + pMZWMZ/E(WMZ) +

+ (1-pMZ)BDZ/E(BDZ) + (1-pMZ)WDZ/E(WDZ) [3]

(Appendix A of Visscher, 2004). To obtain the expected
maximum likelihood value under the AE model, we use
the values of BMZ, WMZ, BDZ, and WDZ expected under the
true ACE model, and E(BMZ), E(WMZ), E(BDZ), and
E(WDZ) under the false AE model. For example, E(BDZ) =
σe

2 + 3⁄2σa
2. We used a grid search for the variance compo-

nents scaled by the phenotypic variance in the range of
0.01 to 1.20 and an increment of 0.01 to maximise the
maximum log-likelihood function [3]. We obtained the
maximum expected NCP (= twice difference in expected
log-likelihood between ACE and AE models) by search-
ing over values of pMZ (in the range of 0.01 to 0.99, with
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an increment of 0.01). We constrained the estimates of
the number of twin pairs by forcing a minimum of two
pairs per zygosity group.

The approach to find the ML value of the AE model
was verified using Mx (Neale et al., 2006), following the
method outlined by Neale et al., (1994) and Hewitt et
al., (1988). In essence it is a three-step procedure. First,
predicted covariance matrices for MZ and DZ twin pairs
are generated from the true values of the A, C, and E
variance component parameters. Second, the false (AE)
model is fitted to these data, using sample size propor-
tions with the sample sizes selected. Minus two times the
difference in the log-likelihood of the true (ACE) model
and the false (AE) model yields a noncentrality parame-
ter which can be used to determine statistical power.
Third, using Mx’s option power = .10, 1 we obtain the
power at the .05 alpha level of the 1 df test. The reason
that the option requests the .10 alpha level, but the
program actually delivers the .05 alpha level, is because
being a variance component, the test under the null
hypothesis follows a 50:50 mixture of chi-squared of
zero (which would occur whenever the DZ correlation is
less than half the MZ correlation) and chi-squared with
one degree of freedom (which occurs whenever the DZ

twin correlation is greater than half that of the MZ
pairs; Dominicus et al., 2006; Self & Liang, 1987; Stram
& Lee, 1994; Visscher, 2006). Note that this discrepancy
was not noticed in the Neale et al. (1994) article; the
alpha levels reported as .05 in that paper should be 
interpreted as .025. An Mx script for conducting the
simulation with different proportions of MZ and DZ
twin pairs, and different true values of the population A,
C, and E parameters, is presented in the Appendix, and
is also available on the website http://www.vcu.edu/mx
in the examples section. The script uses the #loop con-
struction to repeat the analysis for the various
combinations of parameter values and MZ:DZ sample
size ratio.

A simulation study was performed to validate the
theoretical derivations. For each zygosity group, between
and within pair mean squares were simulated from a
central Wishart distribution. Residual maximum likeli-
hood values were estimated using a hill-climbing
algorithm, and likelihood-ratio test statistics were calcu-
lated from the full (ACE) and reduced (AE) models. Ten
thousand replicates were run (so that the SE of the esti-
mate of power is ~0.4%) and the proportion of test
statistics that were larger than the 5% threshold under

Figure 1

Contour plot of the optimum number of MZ pairs (pMZ) to detect C derived from the least squares approximation.
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the null hypothesis (a central χ1
2 value of 2.71) were

counted to estimate power.

Results
The theoretical prediction of the number of pairs
required to achieve 80% power, using either the REML
approach or the ML approach as implemented in Mx,
were extremely close (results not shown), which is not
surprising because the difference between REML and
ML for the models in this study only involved terms of
the order of m/(m-1) and n/(n-1), which are asymptoti-
cally unity.

Table 1 gives a number of examples of the sample
sizes required to achieve 80% power, for a fixed pro-
portion of 50% MZ twins and for an optimised
proportion of MZ twins. Note that these are asymp-
totic results. For large values of C (say, > 0.3), the AE
model is such a bad fit that very few pairs are needed
to reject the hypothesis that C = 0, and among those,
very few MZ pairs are needed. The simulation results
show that the predictions of power are very good. The
one example where the power from simulations is
much larger (0.86) than predicted (0.80) may be
because the sample sizes are so small that the distribu-
tion of the test statistic under the null hypothesis is not
a 50:50 mixture of zero and a χ1

2. Indeed, when we ran
simulations with h2 = 0.2 and c2 = 0, the mean of the
test statistic was 0.23, whereas 0.50 was expected. The
reason for the discrepancy is that with this small
sample size (17 MZ and 17 DZ twin pairs) and a small
heritability (0.2), there is a probability that there is no
evidence for twin resemblance at all, let alone evidence
for a larger resemblance of MZ pairs. Asymptotically,

for both h2 = 0 and c2 = 0 we would expect the test sta-
tistic from ACE and AE models to be zero with a
probability of one quarter, close to what we observe.
This is analogous to testing for a QTL when there is no
family resemblance (Visscher & Hopper, 2001).

The optimum proportion of MZ twins to detect C is
smaller than half, whereas the optimum proportion of
MZ twins to detect A is larger than half (Visscher,
2004). Hence, we cannot have a design that is optimised
to both detect A and detect C, which intuitively makes
sense. A reasonable and practical compromise is to have
approximately the same number of pairs of each zygos-
ity. The same conclusions were reached by Martin et al.
(1978). A comparison of our results from (RE)ML with
those from Martin et et. (1978), who used weighted-
least-squares and a goodness-of-fit test, shows that the
required sample sizes to detect C using maximum likeli-
hood are 30% to 50% smaller (results not shown in
tables). This is most likely due to the difference in the
testing approaches used: Martin et al. (1978) used a
two-sided goodness-of-fit test with two degrees of
freedom, whereas the likelihood-ratio-test we use is one-
sided and has one degree of freedom (Visscher 2004).

In Figure 2 we give examples of the required sample
size to detect C for a fixed value of the DZ correlation of
0.5 (i.e., 1⁄2h2 + c2 = 1⁄2), for a proportion of MZ twins
among all twin pairs of 50% and 33%. For proportions
of the total variance due to C of 0.05 to 0.5, the required
total sample size is 100s to 1000s, very large. Note that
the y-axis is on a logarithm scale.

We have incorporated the derivations from this note
and from Visscher (2004) into a simple web-based tool
called TwinPower (http://genepi.qimr.edu.au/cgi-
bin/twinpower.cgi).

Discussion and Conclusions
We have provided simple deterministic calculations to
calculate the power to detect A or C by contrasting
ACE and CE or AE models, and have incorporated
them in a user-friendly software tool TwinPower,
(http://genepi.qimr.edu.au/cgi-bin/twinpower.cgi). Our
examples show and confirm that very large sample
sizes are required to detect C, even if it explains, say,
10% of the phenotypic variation. A corollary of this
finding is that inference from model selection proce-
dures starting with an ACE model will often conclude
that C is not significant even if it exists. Therefore, the
twin literature based upon the classical twin design and
model selection procedures could be severely biased
towards AE models. This bias could be reduced by
having large sample sizes, so that the power to detect C
when it is present is large, or by placing less emphasis
on model selection procedures.

In addition to comparing AE and ACE models to test
C, we revisited the power to detect A, by contrasting CE
and ACE models in a simulation study. We can confirm
that the predictions in Visscher (2004) are extremely
accurate, because an explicit solution for the ML esti-

Table 1

Theoretical Total Number of Pairs Required for a Power of 80% to
Reject the AE Hypothesis When it is False at a Type-I Error Rate of 
0.05, and Achieved Statistical Power (in %) for that Number from
Simulations

True model Maximum likelihood
pMZ

h2 c2 0.51 Optimised2

0.8 0.1 2663 / 80 1598 (0.13) / 78
0.6 0.3 262 / 82 159 (0.06) / 80
0.4 0.5 80 / 82 48 (0.04) / 79
0.2 0.7 34 / 86 20 (0.08) / 82
0.6 0.1 3425 / 79 2574 (0.25) / 80
0.4 0.3 356 / 81 252 (0.17) / 80
0.2 0.5 114 / 83 79 (0.11) / 79
0.4 0.1 4486 / 80 3617 (0.27) / 79
0.2 0.3 464 / 81 368 (0.21) / 80
0.2 0.1 5394 / 79 4701 (0.27) / 80

Note: 1 Estimate power (in %) from simulation are shown after the theoretical results.
2 Lowest total number of pairs, with the proportion of MZ pairs in brackets, from
a search in 0.01 step units. Estimates of power (in %) from simulation are shown
after the theoretical results.
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mates of the variance components under the wrong CE
model exists.

For arbitrary pedigrees, including, for example,
extended twin designs, power calculations can be done
following the same strategy we have taken in this study.
That is, the approximate maximum likelihood values
for the true and false models can be derived from the
log-likelihood equation, using the expected value of the
covariance matrix from real data. Instead of using the
between and within pair mean squares, which are suffi-
cient statistics in our study, a general pedigree approach
would use the entire covariance matrix of all individu-
als in a pedigree. Mx can be used for such power
analyses, including those where the pedigrees vary in
size and structure.
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Figure 2
Prediction of the required sample size to detect C with 80% power at a type-I error rate of 0.05 for a fixed value of the DZ correlation of .5.
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Appendix A
Mx Scripts for Power Calculations

Mx Scripts for Power Calculations
! ACE Model for Power Calculations; false model AE fitted to ACE data
! #loop provides a large output to enable interpolation to find
! the optimal MZ:DZ sample size ratio. Proportions vary from 0 to 1 by
! .001 so 1000 outputs are generated per pairing of A and C variance
! components.
! A unix shell command such as
! grep ' .80 \| cannot \| NMZ \| ASQ \| CSQ ' falseAE.mxo > results.txt
! are useful to parse the output into readable form. They produce a list
! of power figures at the 80% level. Searching for CSQ or ASQ in the file
! makes it easy to find relevant sections. Note also that the cannot
! string is searched; this will detect errors.
!
! Suitable for Mx versions 1.66b and later.
!
#loop $a 1 8 1
#define r = 9 - $a
#loop $c 1 r 1
#define asq $a
#define csq $c
#define esq 10 - $c - $a
#loop $nmz 1 10001 10
#define nmz $nmz
#define ndz 10002 - nmz

! Simulate the data

#NGroups 1
G1: model parameters
Calculation
Begin Matrices;
A Lower 1 1 Fixed ! genetic structure
C Lower 1 1 Fixed ! common environmental structure
E Lower 1 1 Fixed ! specific environmental structure
H Full 1 1
Z full 1 2
End Matrices;
Matrix A asq
Matrix C csq
Matrix E esq
matrix Z nmz ndz
Matrix H .5
Begin Algebra;
M = A+C+E | A+C _
A+C | A+C+E /
D = A+C+E | H@A+C _
H@A+C | A+C+E /
End Algebra;
Options MXM = /tmp/mzsim.cov
Options MXD=/tmp/dzsim.cov
End

! Fit the wrong model to the simulated data

G1: model parameters
Calculation Ngroups=3
Begin Matrices;
X Lower 1 1 Free ! genetic structure
Y Lower 1 1 Fixed ! common environmental structure
Z Lower 1 1 Free ! specific environmental structure
End Matrices;
Matrix X 2.2360
Matrix Z 2.2360
Begin Algebra;
A= X*X' ;
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C= Y*Y' ;
E= Z*Z' ;
End Algebra;
Option no
End

G2: MZ twin pairs
Data NInput_vars=2 NObservations= nmz
CMatrix Full File=/tmp/mzsim.cov
Matrices= Group 1
Covariances A+C+E | A+C _
A+C | A+C+E /
Option No
End

G3: DZ twin pairs
Data NInput_vars=2 NObservations= ndz
CMatrix Full File=/tmp/dzsim.cov
Matrices= Group 1
H Full 1 1
Covariances A+C+E | H@A+C _
H@A+C | A+C+E /
Matrix H .5
Start .5 All
OPtion nO
Option Power= .10,1 ! .05 significance level & 1 df
End

#end loop

#end loop

#end loop
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