ON THE DETERMINATION OF SETS BY SETS OF SUMS OF FIXED ORDER

JOHN A. EWELL

1. Introduction. The present investigation is based on two papers: "On the determination of numbers by their sums of a fixed order," by J. L. Selfridge and E. G. Straus (4), and "On the determination of sets by the sets of sums of a certain order," by B. Gordon, A. S. Fraenkel, and E. G. Straus (2).

First of all, we explain the terms implicit in the above titles. Throughout these considerations we use the term "set" to mean "a totality having possible multiplicities," so that two sets will be counted as equal if, and only if, they have the same elements with identical multiplicities. In the most general sense the term "numbers" of (4) can be replaced by "elements of any given torsionfree Abelian group."

We can now state the

Problem. For any given (s, n) in $Z \times Z$, with $2 \leqslant s \leqslant n$, we choose arbitrarily an n-set $X=\left\{x_{1}, \ldots x_{n}\right\}$, then form the set $P(X)=\left\{\sigma_{i}\right\}$ of all sums of s distinct elements of X and ask whether or not there exists an n-set X^{\prime} different from X giving rise to the same set of sums as does X. More formally, we can describe the problem as follows: Define a mapping P from the set $\{X\}$ of all n-sets to the set of all $\binom{n}{s}$-sets by the rule:

$$
X \rightarrow P(X)=\left\{x_{i_{1}}+\ldots+x_{i_{8}}: 1 \leqslant i_{1}<\ldots<i_{s} \leqslant n\right\}
$$

and try to determine (for the given pair (s, n)) whether or not P is one-to-one.
We take as our point of departure the following
Theorem 4 (of 4). For each given pair (s, n) in $Z \times Z$, with $2 \leqslant s \leqslant n$, let the function $f(n, k)$ be defined by:

$$
f(n, k)=\sum_{i=1}^{s}(-1)^{i-1} \cdot\binom{n}{s-i} \cdot i^{k-1},
$$

for each k in Z^{+}. If $f(n, k) \neq 0$, for each k in $\{1, \ldots, n\}$, then the mapping P is one-to-one.

[^0]The above form of $f(n, k)$ was first established in (2). In $\S 2$ we give an elementary proof of this result. To describe the contents of §§3 and 4 we introduce some notation. For a given pair (s, n), with $2 \leqslant s \leqslant n$, we define an equivalence relation \sim on the set $\{X\}$ of all n-sets by the rule:

$$
X \sim Y \Leftrightarrow P(X)=P(Y) .
$$

Also, we define $F_{s}(n)$ as the greatest number of sets which can fall into one equivalence class. In $\S \S 3$ and 4 we settle the estimates $F_{4}(12) \leqslant 2$ and $F_{3}(6) \leqslant 6$ of (3) to $F_{4}(12)=1$ and $F_{3}(6)=4$, respectively. The first of these two results shows that the condition $f(n, k)=0$, though necessary, is not sufficient. Finally, after $(4 ; 2)$ and the results of this paper, the only cases left open under the orders $s=3,4$ are: $(3,27),(3,486)$, and $(4,8)$.
2. The general case. Before stating the main theorem of this section, we introduce some further notation. For given (s, n) in $Z \times Z$, with $2 \leqslant s \leqslant n$, let $N=\binom{n}{s}$, and for each k in Z^{+}, put

$$
S_{k}=\sum_{i=1}^{n} x_{i}{ }^{k} \quad \text { and } \quad \Sigma_{k}=\sum_{i=1}^{N} \sigma_{i}{ }^{k} .
$$

Also, recall that for an arbitrary set $X,|X|$ denotes its cardinality. In this language we have an alternative way of saying that the mapping $P:\{X\} \rightarrow\{Y\}$ is one-to-one: viz.,

$$
\left|P^{-1}(Y)\right| \leqslant 1 \quad \text { for each } Y \text { in }\{Y\} .
$$

Here, it should be borne in mind that $P^{-1}(Y)$ is a collection of sets, where the term "collection" carries the usual meaning of set. Now, let us assume (as we shall within the statement of our theorem) that we are given a set $\left\{\sigma_{i}\right\}$ of sums, N in number. Then for arbitrary k in Z^{+}, we consider the symmetric function

$$
s!\Sigma_{k}=\sum_{D(s)}\left(x_{i_{1}}+\ldots+x_{i_{s}}\right)^{k}
$$

where $D(s)$ means to extend the sum over all ordered s-tuples $\left(i_{1}, \ldots, i_{s}\right)$ of distinct elements of $\{1, \ldots, n\}$. From symmetric function theory we know that the right side of this equation can be expressed in terms of the power-sum symmetric functions S_{1}, S_{2}, \ldots It is further not difficult to see that apart from its coefficient the typical term in the complete expansion of the abovementioned right side has the appearance

$$
S_{1}^{j_{1}} S_{2}^{j_{2}} \ldots S_{k}^{j_{k}}
$$

$\left(j_{1}, j_{2}, \ldots, j_{k}\right)$ a solution of

$$
1 j_{1}+2 j_{2}+\ldots+k j_{k}=k
$$

the $j_{i} \geqslant 0$ and at most s of them >0. The import of the main theorem is that
the term involving S_{k}, corresponding to ($0,0, \ldots, 0,1$), has a coefficient given by the formula

$$
s!f(n, k)=s!\sum_{i=1}^{s}(-1)^{i-1} \cdot\binom{n}{s-i} \cdot i^{k-1}
$$

In (4) the authors outline a proof of this fact; however, the proof depends on the theory of group characters of the symmetric group on s symbols. In this paper we give a new and simple derivation, avoiding the theory of group characters entirely. Furthermore, our proof subsumes a protion of (3). For one of the tasks of that paper was to simplify the form of $f(n, k)$.

Theorem 1. Let n, s denote given integers, with $n \geqslant s \geqslant 2$. If $f(n, k) \neq 0$, for each k in $\{1, \ldots, n\}$, then $\left|P^{-1}(Y)\right| \leqslant 1$, for each given set

$$
Y=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}, \quad N=\binom{n}{s} .
$$

Proof. We break the proof up into a sequence of lemmas, first introducing some further notation.

Notation. For each given n-set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\alpha_{1}, \ldots, \alpha_{u}$ in Z^{+}, with $1 \leqslant u \leqslant n$, set

$$
S_{\alpha_{1}, \ldots, \alpha_{u}}=\sum_{D(u)} x_{i_{1}}{ }^{\alpha^{1}} \ldots x_{i_{u}}^{\alpha_{u}} .
$$

Lemma 1. The coefficient of $S_{\alpha_{1}+\ldots+\alpha_{u}}$ in the expression of $S_{\alpha_{1}, \ldots, \alpha_{u}}$ in terms of the power-sum symmetric functions is:

$$
(-1)^{u-1} \cdot(u-1)!.
$$

Proof of Lemma 1. Recall the identity

$$
S_{\alpha_{1}, \ldots, \alpha_{t}}=S_{\alpha_{1}, \ldots, \alpha_{t-1}} \cdot S_{\alpha_{t}}-S_{\alpha_{1}+\alpha_{t}, \alpha_{2}, \ldots, \alpha_{t-1}}-\ldots-S_{\alpha_{1}, \ldots, \alpha_{t-2, \alpha_{t-1}+\alpha t}}
$$

and use induction on u.
Lemma 2.

$$
\binom{n}{s-q}=\sum_{v=q}^{s}\binom{n-v}{s-v}\binom{v-1}{q-1} .
$$

Proof of Lemma 2. Use induction on n, starting with $n=s$.
Now, returning to the proof of our theorem, we allow the k 's of $S_{k_{1}, \ldots, k_{s}}$ to be 0 , and thus derive:

$$
S_{k_{1}, \ldots, k_{s-1}, 0}=(n-s+1) S_{k_{1}, \ldots, k_{s-1}}
$$

For a given t in $\{0,1, \ldots, s-1\}$, suppose that exactly t of the k 's in $\left\{k_{1}, \ldots, k_{s}\right\}$ are zero and, without loss of generality, put

$$
\left\{k_{1}, \ldots, k_{s}\right\}=\left\{l_{1}, \ldots, l_{s-t}, 0, \ldots, 0\right\}
$$

so that all l 's are positive integers and the remaining t elements of the righthand set are all 0 . Then we successively apply the above procedure to derive

$$
S_{k_{1}, \ldots, k_{s}}=(n-s+1) \ldots(n-s+t) S_{l_{1}, \ldots, l_{s-t}} .
$$

We now appeal to Lemma 1 to write:

$$
\begin{align*}
S_{k_{1}, \ldots, k_{s}}=(n-s+1) \ldots(n-s & +t)(-1)^{s-t-1}(s-t-1)!S_{k} \tag{*}\\
& + \text { terms involving } S_{1}, \ldots, S_{k-1}
\end{align*}
$$

where $k=k_{1}+\ldots+k_{s}$. And now, let us suppose explicitly that we are given $Y=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$, where $N=\binom{n}{s}$, and further that we are viewing the elements of $X=\left\{x_{1}, \ldots, x_{n}\right\}$ as unknown. Hence, choose any k in Z^{+}and write:

$$
\begin{aligned}
s!\Sigma_{k} & =\sum_{D(s)}\left(x_{i_{1}}+\ldots+x_{i_{s}}\right)^{k} \\
& =\sum_{D(s)} \sum^{k!} \frac{k!}{k_{1}!\ldots k_{s}!} x_{i_{1}}^{k_{1}} \ldots x_{i_{s}}^{k_{s}} \\
& =\sum \frac{k!}{k_{1}!\ldots k_{s}!\sum_{D(s)} x_{i_{1}}^{k_{1}} \ldots x_{i_{s}}^{k_{s}}} \\
& =\sum \frac{k!}{k!\ldots k_{s}!} S_{k_{1}}, \ldots, k_{s},
\end{aligned}
$$

where for the undescribed sigma sums one extends the sum over all nonnegative integral solutions of

$$
\sum_{i=1}^{s} k_{i}=k
$$

Now, substitute from (*) to write

$$
s!\Sigma_{k}=S_{k}\left\{\sum_{t=0}^{s-1} \frac{(n-s+t)!}{(n-s)!}(-1)^{s-t-1}(s-t-1)!\sum \frac{k!}{k_{1}!\ldots k_{s}!}\right\}+\ldots,
$$

where for the second sum one extends the sum over all non-negative integral solutions of

$$
\sum_{i=1}^{s} k_{i}=k
$$

for which exactly t of the k 's are 0 . To evaluate the inner sum choose just t of the elements k_{1}, \ldots, k_{s} to be 0 , set $r=s-t$, denote the new non-zero k 's by the letter k, as well, and write:

$$
\begin{aligned}
\sum \frac{k!}{k_{1}!\ldots k_{r}!}= & \sum \frac{k!}{k_{1}!\ldots k_{r}!}-\binom{r}{1} \sum \frac{k!}{k_{1}!\ldots k_{r-1}!} \\
& \quad+\binom{r}{2} \sum \frac{k!}{k_{1}!\ldots k_{r-2}!}-\ldots \\
= & \sum_{m=0}^{r-1}(-1)^{m}\binom{r}{m}(r-m)^{k} \\
= & \sum_{l=1}^{r}(-1)^{r-l}\binom{r}{l} l^{k},
\end{aligned}
$$

setting $l=r-m$. We remark that the sum on the left in the above sequence of equations extends over all positive integral solutions of $\sum k_{i}=k$. Thus, we have derived:

$$
\sum \frac{k!}{k_{1}!\ldots k_{s-t}!}=\sum_{l=1}^{s-t}(-1)^{s-t-l}\binom{s-t}{l} l^{k}
$$

and since there are precisely $\binom{s}{t}$ ways of choosing just t of the elements to be 0 (order immaterial), we have:

$$
\begin{aligned}
s!\Sigma_{k}=S_{k}\left\{\begin{array}{l}
\sum_{l=0}^{s-1} \frac{(n-s+t)!}{(n-s)!}(-1)^{s-t-1}(s
\end{array}\right) & t-1)!\binom{s}{t} \\
& \left.\times \sum_{l=1}^{s-t}(-1)^{s-t-l}\binom{s-t}{l} l^{k}\right\}+\ldots
\end{aligned}
$$

Now, we are interested in the bracketed expression. Therefore, set $s-t=v$ and reverse the order of summation, getting (with P_{0} used as an abbreviation):

$$
\begin{aligned}
P_{0} & =\sum_{v=1}^{s} \frac{(n-v)!}{(n-s)!}(-1)^{v-1}(v-1)!\frac{s!}{v!(s-v)!} \sum_{l=1}^{s-t}(-1)^{v-l} \frac{v!}{l!(v-l)!} l^{k} \\
& =s!\sum_{l=1}^{s}(-1)^{l-1} l^{k-1} \sum_{v=1}^{s}\binom{n-v}{s-v}\binom{v-1}{l-1} \\
& =s!\sum_{l=1}^{s}(-1)^{l-1} l^{k-1}\binom{n}{s-l} .
\end{aligned}
$$

However, P_{0} is just $s!f(n, k)$. Finally, to complete the proof of our theorem, we observe that: if $f(n, k) \neq 0$, for each k in $\{1, \ldots, n\}$, we can recursively determine the S_{k} in terms of $\Sigma_{1}, \ldots, \Sigma_{n}$. But as soon as we know S_{1}, \ldots, S_{n}, we equivalently know a_{1}, \ldots, a_{n}, the elementary symmetric functions in the x 's. In a word, under our present hypotheses, $\left|P^{-1}(Y)\right| \leqslant 1$.
3. The case $(4,12)$. In (2) the authors established the following general theorem.

Theorem. For a fixed $s>2$ and n sufficiently large, we have $\left|P^{-1}(Y)\right| \leqslant 1$, always.

However, the present state of the art dictates that for small n each case $2 \leqslant s \leqslant n$ be investigated separately. In this regard much has already been done: e.g., sets Y having more than one original under P have actually been constructed for the case $s=2, n=8$. Also, in cases not as thoroughly investigated, an upper bound has been found for $\left|P^{-1}(Y)\right|$, as Y ranges over all possibilities. In every case where $\left|P^{-1}(Y)\right|>1$, for some Y, we have:

$$
\begin{equation*}
f(n, k)=0 \text { for some } k \text { in }\{1, \ldots, n\} . \tag{1}
\end{equation*}
$$

It is our purpose to present in this section a special case: viz., $s=4, n=12$, for which the condition (1) holds and yet $\left|P^{-1}(Y)\right| \leqslant 1$, always. Heretofore
such an example has not been found. Accordingly, let $Y=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$ be given, where $N=\binom{12}{4}=495$. For the proof we shall also use a weak part of another result established by Gordon, Fraenkel, and Straus.

Theorem. If $\left|P^{-1}(Y)\right|>1$, for some set Y, then $\left|P^{-1}(Y)\right|>1$, for some $Y \subset Z$, the ring of integers.

We begin by choosing arbitrarily k in Z^{+}and considering the problem of expressing

$$
4!\Sigma_{k}=\sum_{D(4)}\left(x_{i_{1}}+x_{i_{2}}+x_{i_{3}}+x_{i_{4}}\right)^{k}
$$

in terms of S_{1}, \ldots, S_{k}. By effecting a simple translation we may assume, without loss of generality, that $S_{1}=0$. The first 12 and the 14th equations are given below. In (2) it is established that $\left|P^{-1}(Y)\right| \leqslant 2$, for the case $s=4$, $n=12$.

From symmetric function theory we shall also need the following lemma, which we state without proof. (For the proof, see p. 6 of (3).)

Lemma (*). If $m>n$ and S_{1}, S_{2}, \ldots are the power-sum symmetric functions in x_{1}, \ldots, x_{n}, then

$$
\frac{1}{m} S_{m}=\sum_{\substack{1 p_{1}+2 p_{2}+\ldots=m \\ p_{m}=0}}(-1)^{\Sigma_{p}} \frac{S_{1}^{p_{1}} S_{2}^{p_{2}} \cdots}{1^{p_{1} 2^{p_{1}} \cdots p_{1}!p_{2}!\ldots},, ~ ; ~}
$$

where
(1) $\Sigma_{1}=0$,
(2) $\Sigma_{2}=120 S_{2}$,
(3) $\Sigma_{3}=48 S_{3}$,
(4) $\Sigma_{4}=-48 S_{4}+84 S_{2}{ }^{2}$,
(5) $\Sigma_{5}=-120 S_{5}+140 S_{2} S_{3}$,
(6) $\quad \Sigma_{6}=0 . S_{6}-120 S_{2} S_{4}+40 S_{3}{ }^{2}+90 S_{2}{ }^{3}$,
(7) $\quad \Sigma_{7}=648 S_{7}-714 S_{2} S_{5}-350 S_{3} S_{4}+420 S_{2}{ }^{2} S_{3}$,
(8) $\quad \Sigma_{8}=1632 S_{8}-896 S_{2} S_{6}-1120 S_{3} S_{5}-280 S_{4}{ }^{2}$ $+0 . S_{2}{ }^{2} S_{4}+560 S_{2} S_{3}{ }^{2}+105 S_{2}{ }^{4}$,
(9) $\quad \Sigma_{9}=-3480 S_{9}+4824 S_{2} S_{7}+1176 S_{3} S_{6}+1764 S_{4} S_{5}+0 . S_{3}{ }^{3}$ $-3024 S_{2}{ }^{2} S_{5}-2520 S_{2} S_{3} S_{4}+1260 S_{2}{ }^{3} S_{3}$,
(10) $\quad \Sigma_{10}=-59,520 S_{10}+42,840 S_{2} S_{8}+29,280 S_{3} S_{7}+23,520 S_{4} S_{6}$ $+12,600 S_{5}{ }^{2}-15,120 S_{2}{ }^{2} S_{6}-8,400 S_{3}{ }^{2} S_{4}-9450 S_{2} S_{4}{ }^{2}-25,000 S_{2} S_{3} S_{5}$ $+3150 S_{2}{ }^{3} S_{4}+6300 S_{2}{ }^{2} S_{3}{ }^{2}$,

$$
\begin{align*}
& \Sigma_{11}=-407,352 S_{11}+222,530 S_{2} S_{9}+196,350 S_{3} S_{8}+155,100 S_{4} S_{7} \tag{11}\\
& \quad+150,612 S_{5} S_{6}-55,440 S_{2}{ }^{2} S_{7}-55,440 S_{3}{ }^{2} S_{5}-46,200 S_{3} S_{4}{ }^{2} \\
& -120,120 S_{2} S_{3} S_{6}-97,020 S_{2} S_{4} S_{5}+6930 S_{2}{ }^{3} S_{5}+15,400 S_{2} S_{3}{ }^{3} \\
& \\
& +34,650 S_{2}{ }^{2} S_{3} S_{4}
\end{align*}
$$

(12) $\quad \Sigma_{12}=-2,203,488 S_{12}+964,128 S_{2} S_{10}+998,800 S_{3} S_{9}$
$+827,640 S_{4} S_{8}+744,480 S_{5} S_{7}+373,296 S_{6}{ }^{2}-69,300 S_{4}{ }^{3}$
$-178,200 S_{2}{ }^{2} S_{8}-258,720 S_{3}{ }^{2} S_{6}-182,952 S_{2} S_{5}{ }^{2}-459,360 S_{2} S_{3} S_{7}$
$-415,800 S_{2} S_{4} S_{6}-443,520 S_{3} S_{4} S_{5}+15,400 S_{3}{ }^{4}+13,860 S_{2}{ }^{3} S_{6}$

$$
+83,160 S_{2}{ }^{2} S_{3} S_{5}+138,600 S_{2} S_{3}{ }^{2} S_{4}+51,975 S_{2}{ }^{2} S_{4}{ }^{2}
$$

(14)

$$
\begin{aligned}
& \Sigma_{14}=-48,517,440 S_{14}+14,260,792 S_{2} S_{12}+18,521,776 S_{3} S_{11} \\
& \quad+17,649,632 S_{4} S_{10}+15,095,080 S_{5} S_{9}+14,030,016 S_{6} S_{8} \\
& \quad+7,008,144 S_{7}{ }^{2}-1,513,512 S_{2}{ }^{2} S_{10}-3,723,720 S_{3}{ }^{2} S_{8} \\
& \quad-3,783,780 S_{4}{ }^{2} S_{6}-3,531,528 S_{4} S_{5}^{2}-2,270,268 S_{2} S_{6}{ }^{2} \\
& \quad-5,005,000 S_{2} S_{3} S_{9}-5,675,670 S_{2} S_{4} S_{8}-5,045,040 S_{2} S_{5} S_{7} \\
& \quad-7,687,680 S_{3} S_{4} S_{7}-6,726,720 S_{3} S_{5} S_{6}+45,045 S_{2}^{3} S_{8} \\
& \quad+560,560 S_{3}^{3} S_{5}+525,525 S_{2} S_{4}^{3}+378,378 S_{2}{ }^{2} S_{5}^{2} \\
& \quad+1,051,050 S_{3}{ }^{2} S_{4}^{2}+360,360 S_{2}{ }^{2} S_{3} S_{7}+630,630 S_{2}{ }^{2} S_{4} S_{6} \\
& +840,840 S_{2} S_{3}^{2} S_{6}+2,522,520 S_{2} S_{3} S_{4} S_{5} .
\end{aligned}
$$

The problem then is to decide whether (i) $\left|P^{-1}(Y)\right|=2$, for some Y or (ii) $\left|P^{-1}(Y)\right| \leqslant 1$, always. To this end, we first express S_{14} in terms of S_{2}, S_{3}, \ldots, S_{12} with the help of

$$
\begin{aligned}
\frac{S_{14}}{14}=\frac{1}{24} S_{2} S_{12} & +\frac{1}{33} S_{3} S_{11}+\frac{1}{40} S_{4} S_{10}+\frac{1}{45} S_{5} S_{9} \\
& +\frac{1}{48} S_{6} S_{8}-\frac{1}{80} S_{2}{ }^{2} S_{10}-\frac{1}{54} S_{2} S_{3} S_{9} \\
& -\frac{1}{64} S_{2} S_{4} S_{8}-\frac{1}{144} S_{3}{ }^{2} S_{8}-\frac{14}{144} S_{2} S_{6}{ }^{2} \\
& -\frac{1}{90} S_{3} S_{5} S_{6}-\frac{1}{192} S_{4}{ }^{2} S_{6}+\frac{1}{384} S_{2}{ }^{3} S_{8} \\
& +\frac{1}{192} S_{2}{ }^{2} S_{4} S_{6}+\frac{1}{216} S_{2} S_{3}{ }^{2} S_{6}-\frac{1}{2304} S_{2}^{4} S_{6}+\ldots
\end{aligned}
$$

(This follows from Lemma (*).) Then we substitute for $S_{2}, S_{3}, \ldots, S_{12}$ and collect coefficients of $S_{6}{ }^{2}$ and S_{6} to obtain

$$
\begin{align*}
\Sigma_{14}=\{ & \left\{\frac{2 \cdot 3^{2} \cdot 7 \cdot 11 \cdot 901}{5 \cdot 17 \cdot(1093)} \cdot \Sigma_{2}\right\} S_{6}{ }^{2} \\
& \quad+\left\{-\frac{7 \cdot 2159}{2^{2} \cdot 3 \cdot 17} \Sigma_{8}+\frac{7(54,779,291,131)}{2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 17 \cdot 29 \cdot 16,973} \Sigma_{3} \Sigma_{5}\right. \\
& \quad-\frac{7 \cdot 36,941}{2^{4} \cdot 3^{3} \cdot 17 \cdot 31} \Sigma_{4}{ }^{2}+\frac{7(3,143,656,870,861)}{2^{12} \cdot 3^{4} \cdot 17 \cdot 31 \cdot(1093)} \Sigma_{2}{ }^{2} \Sigma_{4} \\
& -\frac{7(24,630,735,707,477,213)}{2^{8} \cdot 3^{5} \cdot 5^{2} \cdot 17 \cdot 29 \cdot(1093) \cdot 16,973} \Sigma_{2} \Sigma_{3}{ }^{2} \\
& \left.\quad+\frac{7(45,882,318,990,331)}{2^{14} \cdot 3^{4} \cdot 5^{4} \cdot 17 \cdot 31 \cdot(1093)} \Sigma_{2}{ }^{4}\right\} S_{6}+\ldots
\end{align*}
$$

Let us now state the main result.
Theorem 2. The equation (14^{\prime}) cannot have two distinct positive real roots, say S_{6} and $S_{6}{ }^{\prime}$.

Proof. For otherwise, we can assume, without loss of generality, that $0 \leqslant S_{6}<S_{6}{ }^{\prime}$.

We can further assume that $Y=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$ does not consist entirely of 0 's, since in the contrary case it is clear that $P^{-1}(Y)=\{\theta\}$, where θ is the 12 -set consisting entirely of 0 's. So, $\Sigma_{2}>0$ and the coefficient of $\mathrm{S}_{6}{ }^{2}$ in (14^{\prime}) is positive. Hence, the coefficient of S_{6} must be negative. However, we shall now show that the coefficient of S_{6} is always positive. We, first of all, establish the following simple lemma.

Lemma 3. (i) $\Sigma_{8} \leqslant \Sigma_{4}{ }^{2} \leqslant \Sigma_{2}{ }^{2} \Sigma_{4} \leqslant \Sigma_{2}{ }^{4}$,
(ii) $\quad \Sigma_{2} \Sigma_{3}{ }^{2} \leqslant \Sigma_{2}{ }^{2} \Sigma_{4}$,
(iii) $\quad\left|\Sigma_{3} \Sigma_{5}\right| \leqslant \Sigma_{2}{ }^{2} \Sigma_{4}$.

Proof of Lemma 3.

$$
\Sigma_{2}^{2}=\Sigma_{4}+2 \sum_{1 \leqslant i<j \leqslant N} \sigma_{i}{ }^{2} \sigma_{j}^{2} \geqslant \Sigma_{4}
$$

and

$$
\Sigma_{4}{ }^{2}=\Sigma_{8}+2 \sum_{1 \leqslant i<j \leqslant N} \sigma_{i}{ }^{4} \sigma_{j}{ }^{4} \geqslant \Sigma_{8} .
$$

This proves (i). By Schwarz's inequality we have

$$
\Sigma_{3}{ }^{2}=\left|\sum_{j=1}^{N} \sigma_{j}{ }^{3}\right|^{2} \leqslant \sum_{j=1}^{N} \sigma_{j}{ }^{2} \cdot \sum_{j=1}^{N} \sigma_{j}{ }^{4}=\Sigma_{2} \Sigma_{4},
$$

and (ii) follows. Finally, the same argument shows that

$$
\left|\Sigma_{5}\right| \leqslant \Sigma_{2}^{1 / 2} \Sigma_{8}{ }^{1 / 2} \leqslant \Sigma_{2}^{1 / 2} \Sigma_{4} .
$$

But

$$
\left|\Sigma_{3}\right| \leqslant \Sigma_{2}^{1 / 2} \Sigma_{4}^{1 / 2} \leqslant \Sigma_{2}^{3 / 2},
$$

whence

$$
\left|\Sigma_{3} \Sigma_{5}\right| \leqslant \Sigma_{2}{ }^{2} \Sigma_{4} .
$$

Now, after all cancellations have been effected and equation (14^{\prime}) has been multiplied by the LCD of the resulting fractions, the coefficient of S_{6} becomes:

$$
\begin{aligned}
& \quad-7,466,483,185,927,856,640,000 \cdot \Sigma_{8} \\
& + \\
& \quad 427,642,380,608,641,459,200 \cdot \Sigma_{3} \Sigma_{5} \\
& \quad-114,474,275,132,088,960,000 \cdot \Sigma_{4}{ }^{2} \\
& + \\
& \quad 11,605,210,155,034,416,277,500 \cdot \Sigma_{2}{ }^{2} \Sigma_{4} \\
& \quad-1,221,684,491,090,869,764,800 \cdot \Sigma_{2} \Sigma_{3}{ }^{2} \\
& \\
& +67,752,172,219,391,261,481 \cdot \Sigma_{2}{ }^{4} .
\end{aligned}
$$

And now, in view of our lemma, it is easy to check that the " $\Sigma_{2}{ }^{2} \Sigma_{4}$ " term dominates the possibly negative terms in the above sum, whence it is always positive.

But now going back to the equations following Lemma (*), we see that the first five Σ 's uniquely determine the first five S 's, and once a value of S_{6} is known, this and the Σ 's uniquely determine $S_{7}, S_{8}, S_{9}, S_{10}, S_{11}$, and S_{12}. Since the Σ 's uniquely determine S_{6}, as well, they uniquely determine all of ths S 's and hence the x 's.
4. The case $(3,6)$.

Theorem $3.2 \leqslant F_{3}(6) \leqslant 4$.
Proof. Without loss of generality, let us assume that all sets under consideration are sets of integers. Then to see that $2 \leqslant F_{3}(6)$ it suffices to choose any $X=\left\{x_{1}, \ldots, x_{6}\right\} \subset Z$ not symmetric with respect to the origin, so that $X \neq-X$, and write

$$
x_{i_{1}}+x_{i_{2}}+x_{i_{3}}=\left(-x_{j_{1}}\right)+\left(-x_{j_{2}}\right)+\left(-x_{j_{3}}\right),
$$

where $1 \leqslant i_{1}<i_{2}<i_{3} \leqslant 6, \quad 1 \leqslant j_{1}<j_{2}<j_{3} \leqslant 6$, and $\left\{i_{1}, i_{2}, i_{3}\right\} \cap\left\{j_{1}\right.$, $\left.j_{2}, j_{3}\right\}=\emptyset$. Since the j indices trace all possibilities as do the i indices, we have $X \sim-X$, whence $2 \leqslant F_{3}(6)$.

The arguments for demonstrating that $F_{3}(6) \leqslant 4$ are similar to those used in §3. They are sketched below, omitting the details. The normalization $S_{1}=0$ makes the set of sums symmetric with respect to the origin. Hence, $\Sigma_{k}=0$ for odd $k . S_{2}$ and S_{4} are determined uniquely from the equations for Σ_{2} and Σ_{4}. The equation for Σ_{6} is used to express S_{6} in terms of $S_{3}{ }^{2}$. The equation
for Σ_{8} involves $S_{3}{ }^{2}, S_{3}, S_{5}, S_{8}$, and the equation for Σ_{10} involves $S_{3}{ }^{2}, S_{3} S_{5}, S_{5}{ }^{2}$, S_{7}, S_{8}, S_{10}. Now, S_{7}, S_{8}, and S_{10} can be expressed by terms of lower-order S^{\prime} s, using Lemma (${ }^{*}$). This eliminates S_{8} in the equation for Σ_{8}, and permits writing it in the form $S_{3} S_{5}=\alpha S_{3}{ }^{2}+\beta$, where α and β are rational functions of the Σ 's and $\alpha>0$. It also eliminates S_{7}, S_{8}, S_{10} from the equation for Σ_{10}. The resulting equation for Σ_{10} is now multiplied by $S_{3}{ }^{2}$, and $S_{3} S_{5}$ is replaced by $\alpha S_{3}{ }^{2}+\beta$. This gives a quartic equation in S_{3}, and it turns out that the coefficient of $S_{3}{ }^{4}$ does not vanish identically. Hence, $F_{3}(6) \leqslant 4$.

We now sharpen our last result by the following theorem.
Theorem 4. $F_{3}(6)=4$.
Proof. To see this, it suffices to exhibit four distinct sets giving rise to the same set of sums. But we wish to do more. We wish to characterize the fourmember equivalence classes. And since the one-member classes are solely determined by the sets symmetric to the origin, all classes will be determined up to the appearance of the elements of the sets in two-member classes.

So, let there be given any two equivalent 6 -sets $X=\left\{x_{1}, \ldots, x_{6}\right\}$ and $Y=\left\{y_{1}, \ldots, y_{6}\right\}$, with elements ordered according to size: i.e.,

$$
x_{1} \leqslant x_{2} \leqslant \ldots \leqslant x_{6} \text { and } y_{1} \leqslant y_{2} \leqslant \ldots \leqslant y_{6}
$$

This ordering of X and Y induces an ordering on $P(X)$ and $P(Y)$, so that (with $x_{i j k}$ used as abbreviation for $x_{i}+x_{j}+x_{k}$) we have:

$$
x_{123} \leqslant x_{124} \leqslant x_{i_{1} i_{2} i_{3}} \text { and } x_{456} \geqslant x_{356} \geqslant x_{i_{1} i_{2} i_{3}}
$$

for all $1 \leqslant i_{1}<i_{2}<i_{3} \leqslant 6$. We make a similar statement about the y-sums and therefore must have

$$
x_{123}=y_{123}, \quad x_{124}=y_{124}, \quad x_{356}=y_{356}, \quad x_{456}=y_{456}
$$

Now, the next smallest x-sum after x_{124} must be either x_{125} or x_{134}. We make a similar statement about the y-sums and thus assert that exactly one of the following three alternatives must prevail:

$$
\begin{array}{lll}
x_{123}=y_{123} & x_{123}=y_{123} & x_{123}=y_{123} \\
x_{124}=y_{124} \quad \text { or } \quad x_{124}=y_{124} & \text { or } & x_{124}=y_{124} \\
x_{125}=y_{125} & x_{134}=y_{134} & x_{125}=y_{134}
\end{array}
$$

Since we are only interested in comparing the sets X and Y up to their being either identical or one being the set of negatives of the other, we can assume, without loss of generality, that the second of these alternatives holds. For putting $z_{i}=-x_{7-i}$, for each i in $\{1, \ldots, 6\}$, we have $x_{1} \leqslant x_{2} \leqslant \ldots \leqslant x_{6}$ if and only if $z_{1} \leqslant z_{2} \leqslant \ldots \leqslant z_{6}$, whence

$$
\begin{gathered}
z_{123}=-x_{654}=x_{123}, \quad z_{124}=-x_{653}=x_{124}, \\
z_{125}=-x_{652}=x_{134}, \quad z_{134}=-x_{643}=x_{125} . \\
x_{256}=y_{256}, \quad x_{356}=y_{356}, \quad x_{456}=y_{456},
\end{gathered}
$$

there are (as a first approximation to solution) 14 ! ways of pairing the remaining sums. However, the following lemma greatly simplifies the matter.

Lemma 4. If alternative 2 holds and therefore the complementary couplings (*); and if a single pair of x - and y-sums which are indexed the same way, not including the six mentioned pairs, are equal, then we must have $Y=X$ or $Y=-X$.

Proof. Because of symmetry it suffices to choose the additional equality from the following seven possibilities:

$$
\begin{array}{lll}
x_{125}=y_{125}, & x_{126}=y_{126}, & x_{135}=y_{135}, \quad x_{136}=y_{136}, \\
x_{145}=y_{145}, & x_{146}=y_{146}, & x_{156}=y_{156} .
\end{array}
$$

For each $i \in\{1, \ldots, 6\}$, put $\Delta_{i}=x_{i}-y_{i}$. Then
and

$$
\begin{gathered}
\Delta_{3}=\Delta_{4}=\Delta, \text { say } ; \\
x_{12}=y_{12}-\Delta ; \\
x_{56}=y_{56}-\Delta .
\end{gathered}
$$

The diagram

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
2Δ	$-\Delta$	$-\Delta$	$-\Delta$	$-\Delta_{5}$	$-\Delta_{6}$

is to be interpreted as follows. Add the (signed) Δ 's to the x 's under which they stand to obtain

$$
\begin{array}{lllllll}
y_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} .
\end{array}
$$

The hypothesis and any one of the above seven equations imply that either $\Delta=0$ (in which case $Y=X$) or one of the two patterns
$\left(*_{2}\right)$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
2Δ	$-\Delta$	$-\Delta$	$-\Delta$	$-\Delta$	2Δ
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
2Δ	$-\Delta$	$-\Delta$	$-\Delta$	2Δ	$-\Delta$

must prevail. Therefore, suppose $\Delta \neq 0$ and ($*_{1}$). Then equal sums correspond to the indices $123,124,125,134,135,145,456,356,346,256,246,236$ while unequal sums correspond to $126,136,146,156,345,245,235,234$. Hence

$$
x_{126}=y_{234}, \quad x_{136}=y_{235}, \quad x_{146}=y_{245}, \quad x_{156}=y_{345}
$$

From the first of these equations

$$
\Delta=-\left(x_{1}-x_{3}-x_{4}+x_{6}\right) / 3
$$

while from the second we derive

$$
\Delta=-\left(x_{1}-x_{2}-x_{5}+x_{6}\right) / 3
$$

Therefore

$$
x_{3}+x_{4}=x_{2}+x_{5} .
$$

But then

$$
\begin{aligned}
3 \Delta & =-x_{1}+x_{3}+x_{4}-x_{6} \\
& =-x_{1}-x_{2}-x_{3}-x_{4}-x_{5}-x_{6}+x_{2}+x_{5}+2\left(x_{3}+x_{4}\right) \\
& =3\left(x_{3}+x_{4}\right)=3\left(x_{2}+x_{5}\right),
\end{aligned}
$$

whence

$$
\Delta=x_{3}+x_{4}=x_{2}+x_{5} .
$$

So,

$$
\begin{aligned}
& x_{3}-y_{3}=x_{3}+x_{4} \rightarrow y_{3}=-x_{4}, \\
& x_{4}-y_{4}=x_{3}+x_{4} \rightarrow y_{4}=-x_{3}, \\
& x_{2}-y_{2}=x_{2}+x_{5} \rightarrow y_{2}=-x_{5},
\end{aligned}
$$

and

$$
x_{5}-y_{5}=x_{2}+x_{5} \rightarrow y_{5}=-x_{2}
$$

Further,

$$
y_{1}=x_{1}+2 \Delta=x_{1}+\left(x_{2}+x_{5}\right)+\left(x_{3}+x_{4}\right)=-x_{6}
$$

and

$$
y_{6}=x_{6}+2 \Delta=x_{6}+\left(x_{2}+x_{5}\right)+\left(x_{3}+x_{4}\right)="-x_{1} .
$$

Thus $Y=-X$. If $\Delta \neq 0$ and $\left(*_{2}\right)$ holds, the same argument leads to

$$
\begin{array}{ll}
y_{1}=-x_{5}, & y_{2}=-x_{6}, \\
y_{4}=-x_{3}, & y_{5}=-x_{4} \\
y_{1}, & y_{6}=-x_{2} .
\end{array}
$$

This proves the lemma.
Let us call either of the cases $Y=X$ and $Y=-X$ trivial. Then any other case will be called non-trivial. With the help of our lemma we argue that the first four equations of any pairings of the x - and y-sums which would lead to a non-trivial case must be:

$$
x_{123}=y_{123}, \quad x_{124}=y_{124}, \quad x_{134}=y_{134}, \quad x_{125}=y_{234} .
$$

Now, there are three possibilities for the fifth equation:

$$
\text { (I) } x_{234}=y_{125}, \text { (II) } x_{126}=y_{125}, \text { or (III) } x_{135}=y_{125 .}
$$

Case I. Here we have

$$
\begin{array}{lll}
x_{125}=y_{234} & & x_{346}=y_{156} \\
\text { and } & \\
x_{234}=y_{125} & & x_{156}=y_{346}
\end{array}
$$

Subtracting the second of the right pair of equations from the first of the left pair we have

$$
x_{2}-y_{2}=x_{6}-y_{6} .
$$

Hence, the pattern $\left(*_{2}\right)$ must prevail. So, once more either $\Delta=0$ (in which case $Y=X$) or $\Delta \neq 0$ and $Y=-X$.

Case II. Here the equations

$$
x_{125}=y_{234} \quad \text { and } \quad x_{126}=y_{125}
$$

imply

$$
y_{5}=x_{6}-\Delta .
$$

So,

$$
\begin{gathered}
y_{1}=x_{1}+2 \Delta, \quad y_{2}=x_{2}-\Delta, \quad y_{3}=x_{3}-\Delta, \\
y_{4}=x_{4}-\Delta, \quad y_{5}=x_{6}-\Delta
\end{gathered}
$$

whence $-y_{6}=-x_{5}-2 \Delta$, i.e., $y_{6}=x_{5}+2 \Delta$.
If $\Delta=0$, the problem is settled. If $\Delta \neq 0$, then those sums not paired are summarized by

$$
\begin{array}{ll}
y_{126}=x_{125}+3 \Delta, & y_{234}=x_{234}-3 \Delta, \\
y_{136}=x_{135}+3 \Delta, & y_{235}=x_{236}-3 \Delta, \\
y_{146}=x_{145}+3 \Delta, & y_{245}=x_{246}-3 \Delta, \\
y_{156}=x_{156}+3 \Delta, & y_{345}=x_{346}-3 \Delta .
\end{array}
$$

Without loss of generality, we can assume that $\Delta>0$, whence

$$
x_{125}<y_{125} \leqslant y_{136} \leqslant y_{146} \leqslant y_{156}
$$

and therefore we must have $x_{125}=y_{234}$, the smallest y-sum in the complementary set. But then

$$
x_{125}=x_{234}-3 \Delta, \quad x_{135}=x_{236}-3 \Delta,
$$

whence

$$
\Delta=x_{2}+x_{6}=x_{3}+x_{4}
$$

and $Y=-X$, as in the proof of the lemma for the pattern $\left(*_{2}\right)$.
Case III. Here the reader will find it instructive to construct trees (as we have partially done at the end of this exposition) to show all possible orderings of the x - and y-sums induced by the orderings of the elements. Straightforward analysis then reveals that (i) $Y=X$ or (ii) $Y=-X$ or (iii) one of the following five descriptions must fit X and Y, where A, B, α, β, and d are parameters used for this purpose (i.e., of describing X and Y):
(1) $X=\{A, A+3 B, A+4 B, A+5 B, A+6 B, A+8 B\}$,

$$
\begin{aligned}
& Y=\{A+2 B, A+2 B, A+3 B, A+4 B, A+6 B, A+9 B\} \\
& A=x_{1}, \quad B=-\Delta, \quad \text { and } \Delta_{5}=0
\end{aligned}
$$

(2) $X=\{A, A+6 B, A+9 B, A+12 B, A+15 B, A+24 B\}$, $Y=\{A+4 B, A+4 B, A+7 B, A+10 B, A+16 B, A+25 B\}$, $A=x_{1}, \quad B=\Delta_{5}, \quad$ and $\Delta=-2 \Delta_{5} ;$
(3) $X=\{A, A+8 B, A+9 B, A+10 B, A+13 B, A+16 B\}$, $Y=\{A+4 B, A+6 B, A+7 B, A+8 B, A+12 B, A+19 B\}$, $A=x_{1}, \quad B=-\Delta_{5}, \quad$ and $\Delta=2 \Delta_{5} ;$
(4) $X=\{A, A+4 B, A+5 B, A+6 B, A+8 B, A+11 B\}$, $Y=\{A+2 B, A+3 B, A+4 B, A+5 B, A+8 B, A+12 B\}$, $A=x_{1}, \quad B=-\Delta, \quad$ and $\Delta_{5}=0 ;$
(5) $X=\left\{\alpha, \frac{1}{2}(\alpha+\beta), \frac{1}{2}(\alpha+\beta)+d, \frac{1}{2}(\alpha+\beta)+2 d, \beta, \frac{1}{2}(3 \beta-\alpha)-d\right\}$, $Y=\left\{\alpha+2 d, \frac{1}{2}(\alpha+\beta)-d, \frac{1}{2}(\alpha+\beta), \frac{1}{2}(\alpha+\beta)+d, \beta, \frac{1}{2}(3 \beta-\alpha)\right\}$, $\alpha=x_{1}, \quad \beta=x_{5}, \quad d=-\Delta, \quad$ and $\Delta_{5}=0$.

Making the convention that the y-sums shall always be on the left in the tree analysis, we are able to list the first sequence of 10 equations giving rise to each of these families as follows:
(1)

$$
\begin{aligned}
& y_{123}=x_{123} \\
& y_{124}=x_{124} \\
& y_{134}=x_{134} \\
& y_{234}=x_{125} \\
& y_{125}=x_{135} \\
& y_{135}=x_{126} \\
& y_{145}=x_{136} \\
& y_{235}=x_{145} \\
& y_{126}=x_{146} \\
& y_{136}=x_{156}
\end{aligned}
$$

(2)
(3)

$$
\begin{aligned}
& y_{123}=x_{123} \\
& y_{124}=x_{124} \\
& y_{134}=x_{134} \\
& y_{234}=x_{125} \\
& y_{125}=x_{135} \\
& y_{135}=x_{145} \\
& y_{145}=x_{126} \\
& y_{235}=x_{136} \\
& y_{245}=x_{146} \\
& y_{126}=x_{156}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& y_{123}=x_{123} \\
& y_{124}=x_{124} \\
& y_{134}=x_{134} \\
& y_{234}=x_{125} \\
& y_{125}=x_{135} \\
& y_{135}=x_{145} \\
& y_{145}=x_{126} \\
& y_{235}=x_{234} \\
& y_{126}=x_{235} \\
& y_{136}=x_{245}
\end{aligned}
$$

(5)

Now, we shall see that cases (1), (2), and (4) are but special cases of case (5). We get (1) from (5) simply by setting $\alpha=A, d=B$, and $\beta=A+6 B$. To obtain (4) from (5) set $\alpha=A, d=B$, and $\beta=A+8 B$. To see that (2) is a special case of (5), we argue as follows: For each i in $\{1, \ldots, 6\}$,

$$
-3 y_{7-i}=\left(-y_{7-i}+\sum_{j=1}^{6} y_{j}\right)-2 y_{7-i}
$$

whence it follows that under (2)

$$
-Y=\{A+18 B, A+18 B, A+15 B, A+12 B, A+6 B, A-3 B\}
$$

and

$$
X=\{A+24 B, A+15 B, A+12 B, A+9 B, A+6 B, A\}
$$

where we have reversed the ordering of the elements to show off the fact that (2) is a special case of (5), up to either one or perhaps both of the sets being replaced by the corresponding sets of negatives. Simply take $\alpha=A+24 B$, $\beta=A+6 B$, and $d=-B$.

Owing to the condition $S_{1}=0$, we can also describe (5) as a two-parameter family of classes. To this end, set

$$
a=\frac{1}{2}(\alpha+\beta), \quad b=\frac{1}{2}(\alpha+\beta)+d, \quad \text { and } c=\beta .
$$

Then

$$
\begin{aligned}
& 2 b-a=\frac{1}{2}(\alpha+\beta)+2 d, \quad 2 a-c=\alpha, \quad 2 c-b=\frac{1}{2}(3 \beta-\alpha)-d \\
& 2 a-b=\frac{1}{2}(\alpha+\beta)-d, \quad 2 c-a=\frac{1}{2}(3 \beta-\alpha), \quad 2 b-c=\alpha+2 d
\end{aligned}
$$

Now, it easily follows (because of $S_{1}=0$) that $a+b+c=0$, whence

$$
\begin{align*}
X & =\{a, b,-a-b, 2 b-a,-2 a-3 b, 3 a+b\} \\
Y & =\{a, b,-a-b, 2 a-b,-2 b-3 a, 3 b+a\} \tag{5}
\end{align*}
$$

where now the sets are not ordered according to size.
The condition $S_{1}=0$ implies

$$
A=-(28 / 3) B
$$

for family (3). Thus, we have proved the following theorem.
Theorem 5. There are two distinct families of four-member classes of sets. One family is described by two parameters a and b as by (5) above. The other family is a one-parameter family described by

$$
\begin{align*}
X & =\{A, A+8 B, A+9 B, A+10 B, A+13 B, A+16 B\} \tag{3}\\
Y & =\{A+4 B, A+6 B, A+7 B, A+8 B, A+12 B, A+19 B\}
\end{align*}
$$

where $B \neq 0$ and A is a rational multiple of B according to ($*^{\prime}$).

Figure 1. The Y tree.

Figure 2. The X tree.

References

1. M. Bôcher, Introduction to higher algebra (McMillan, New York, 1924).
2. B. Gordon, A. S. Fraenkel, and E. G. Straus, On the determination of sets by the sets of sums of a certain order, Pacific J. Math., 12, No. 1 (1962).
3. P. A. MacMahon, Combinatory analysis (Chelsea, New York, 1960).
4. J. L. Selfridge and E. G. Straus, On the determination of numbers by their sums of a fixed order, Pacific J. Math., 8, No. 4 (1958).

York University, Toronto, Ontario

[^0]: Received September 2, 1966. This paper is a condensation of the author's doctoral dissertation written under the direction of Professor E. G. Straus.

