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1. Introduction. For any group G, we write G′ for the derived group of G. Let
IA(G) denote the kernel of the natural mapping from Aut(G) into Aut(G/G′). The
elements of IA(G) are called IA-automorphisms of G. For a positive integer n, with
n ≥ 2, let Fn be a free group of rank n with a basis (in other words, a free generating set)
{ f1, . . . , fn}. For any variety of groups V, let V(Fn) denote the verbal subgroup of Fn

corresponding to V. Also, let Fn(V) = Fn/V(Fn): thus Fn(V) is a relatively free group
of rank n and it has a basis {x1, . . . , xn}, where xi = fiV(Fn), i = 1, . . . , n. If φ is an
automorphism of Fn(V) then {x1φ, . . . , xnφ} is also a basis of Fn(V) and every basis of
Fn(V) has this form. (For information concerning relatively free groups and varieties of
groups see [14].) Since V(Fn) is a characteristic subgroup of Fn, every automorphism ϕ

of Fn induces an automorphism ϕ of Fn(V) in which xiϕ = ( fiϕ)V(Fn) for i = 1, . . . , n.
Thus we obtain a homomorphism of automorphism groups

α : Aut(Fn) −→ Aut(Fn(V)).

An automorphism of Fn(V) which belongs to the image of α is called tame. The image
of α is denoted by TV (or, briefly, T if no confusion is likely to arise). An element
h ∈ Fn(V) is called primitive if h is contained in a basis of Fn(V). We say that h is
induced by a primitive element of Fn if there exists a primitive element g of Fn such
that gV(Fn) = h. For a non-negative integer m, Am denotes the variety of all abelian
groups of exponent dividing m, interpreted in such a way that A0 = A is the variety of
all abelian groups. Furthermore we write Vm = AmA for the variety of all extensions
of groups in Am by groups in A.

Let R be a commutative ring with identity and m be a positive integer. We write
GLm(R) for the general linear group of degree m with entries in R and SLm(R) for
the corresponding special linear group. Let Em(R) denote the subgroup of SLm(R)
that is generated by the elementary matrices. We say a matrix (aij) ∈ SLm(R) is
elementary if aii = 1 for i = 1, . . . , m and there exists at most one ordered pair of
subscripts (i, j) with i �= j such that aij �= 0. Furthermore we write GEm(R) for the
subgroup of GLm(R) generated by the invertible diagonal matrices and Em(R). A
subset S of R is said to be multiplicative closed if 1 ∈ S and the product of any two
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elements of S is an element of S. We write LS(R) for the localization of R at S.
Let R[a1, . . . , ar] be the polynomial ring in indeterminates a1, . . . , ar with coefficients
in R. Let S be the multiplicative monoid generated by the set {a1, . . . , ar}. Then
LS(R[a1, . . . , ar]) = R[a±1

1 , . . . , a±1
r ] is the Laurent polynomial ring in indeterminates

a1, . . . , ar with coefficients in R. Let Z denote the ring of integers. By a famous
result of Suslin [20], SLm(Z[a±1

1 , . . . , a±1
r ]) = Em(Z[a±1

1 , . . . , a±1
r ]) for all integers m ≥ 3

and r ≥ 1. For m = r = 2, it is well-known that SL2(Z[a±1
1 , a±1

2 ]) �= E2(Z[a±1
1 , a±1

2 ])
(see [4, 8]).

Chein [6] gave an example of a non-tame automorphism of F3(V0). Bachmuth
and Mochizuki [5] have shown that Aut(F3(V0)) is not finitely generated. Hence
IA(F3(V0)) is not finitely generated as a group on which T acts by conjugation. Thus
there exist infinitely many non-tame automorphisms of F3(V0). Roman’kov [17] has
shown that there exists a primitive element of F3(V0) that is not induced by a primitive
element of F3. Such a primitive element of F3(V0) is called a non-induced primitive
element. The existence of non-induced primitive element starts from the fact that
SL2(Z[a±1

1 , a±1
2 ]) �= E2(Z[a±1

1 , a±1
2 ]). Evans [8, Theorem C] has presented a method

of constructing elements of SL2(Z[a±1
1 , a±1

2 ]) not in E2(Z[a±1
1 , a±1

2 ]). From the papers
of Evans [8] and Roman’kov [17], it follows that there exists a way of constructing
non-tame automorphisms of F3(V0).

Our main purpose in this paper is to give a way of constructing non-tame
automorphisms of F3(Vp) with p prime. In the next few lines we shall explain
our method of how to construct non-tame automorphisms of F3(Vp): For each
automorphism φ of F3(Vp) we define the Jacobian matrix Jφ over FpA3, where Fp

denotes the finite field with p elements, and A3 is the free abelian group F3/F ′
3 with a

basis {s1, s2, s3}, where si = fiF ′
3, i = 1, 2, 3. Let ζ be the Bachmuth representation of

IA(F3(Vp)), that is, the group monomorphism ζ : IA(F3(Vp)) → GL3(FpA3) defined
by φζ = Jφ . Notice that the Bachmuth representation is essentially via Fox derivatives.
Let S be the multiplicative monoid of FpA3 generated by s1 − 1, and let LS(FpA3)
be the localization of FpA3 at S. As in the paper of Bachmuth and Mochizuki [5],
we conjugate (IA(F3(V)))ζ by a specific element (ci j) of GL3(LS(FpA3)) to obtain
a group homomorphism η from the image of ζ into GL2(LS(FpA3)). Let H be a
finitely generated subgroup of IA(F3(Vp)) containing T ∩ IA(F3(Vp)). Let ρ be the
mapping from H into A3 defined by φρ = det Jφ = sµ1

1 sµ2
2 sµ3

3 where µ1, µ2, µ3 ∈ Z.
Since T ∩ IA(F3(Vp)) ⊆ H, it is easily verified that ρ is a group epimorphism. We
write N for the kernel of ρ. Since H/N is finitely presented and H is finitely
generated, we obtain from a result of Hall [10, page 421] N is finitely generated as
a group on which H acts by conjugation. Let H and N be the images of H and N,
respectively, via η. We show in Lemma 3.2 that N ⊆ E2(LP(FpA3)) for some suitable
multiplicative monoid P in FpA3. The most difficult part of our method is to show
that SL2(LP(FpA3)) �= E2(LP(FpA3)) (see Lemma 3.6). We note that the multiplicative
monoid P depends upon H. Taking H to be T ∩ IA(F3(Vp)) and an explicitly given
multiplicative monoid P, we construct infinitely many non-tame automorphisms of
F3(Vp) (see Theorem 4.2). That is, using Lemmas 3.3, 3.5 and 3.6, a particular 2 × 2
matrix, �, is constructed which is not a product of elementary matrices, which is
nonetheless in the image of the automorphism group of M3 (as is seen by explicitly
writing an appropriate 3 × 3 matrix and conjugating it) and in the kernel of the
map ρ. Lemma 3.2 then allows one to conclude that no tame automorphism can
produce �, since tame automorphisms in the kernel of ρ are products of elementary
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matrices. The process of constructing these non-tame automorphisms is effective (see
Examples 4.3).

2. Notation and preliminaries. We first fix some notation which is used through-
out this paper. For any group G, we write G′ for the derived group of G. Recall that
IA(G) denotes the group of IA-automorphisms of G. If a1, . . . , ac are elements of G
then [a1, a2] = a−1

1 a−1
2 a1a2 and for c ≥ 3, [a1, . . . , ac] = [[a1, . . . , ac−1], ac]. For elements

a and b of G, ba denotes the conjugate a−1ba. For a positive integer n, let Fn be a free
group of rank n with a basis { f1, . . . , fn}. Let An = Fn/F ′

n, the free abelian group of
rank n. Thus {s1, . . . , sn}, with si = fiF ′

n (i = 1, . . . , n), is a basis for An. Fix a prime
integer p. The variety Vp is the class of all groups satisfying the laws [[ f1, f2], [ f3, f4]]
and [ f1, f2]p. Thus Vp(F3) = F ′′

3 (F ′
3)p and so, every element w of Vp(F3) is a product

w = w1 · · · wk, where for i = 1, . . . , k, either (i) wi ∈ F ′′
3 , or (ii) wi = [u, v]p with u, v ∈ F3.

Let M3 = F3(Vp) and let xi = fiVp(F3), i = 1, 2, 3. Thus {x1, x2, x3} is a basis for M3.
Let Z and Fp be the ring of integers and the field of p elements, respectively. We write
ZG (resp. FpG) for the integral group ring (resp. the group algebra over Fp and G).

2.1. Fox derivatives. We use the partial derivatives introduced by Fox [9]. In our
notation these are defined as follows : For j = 1, 2, 3, the (left) Fox derivative associated
with fj is the linear map Dj : ZF3 −→ ZF3 satisfying the conditions

Dj( fj) = 1, Dj( fi) = 0 for i �= j (1)

and

Dj(uv) = Dj(u) + uDj(v) for all u, v ∈ F3. (2)

It follows that Dj(1) = 0 and Dj(u−1) = −u−1Dj(u) for all u ∈ F3. Let ε be the unit
augmentation map ε : ZF3 → Z. It is well-known (see, for example, [7, page 5]) that
the kernel of ε (i.e., the augmentation ideal of ZF3) is a free left ZF3-module with
basis { fj − 1 : j = 1, 2, 3}. If u ∈ ZF3 then u − uε = ∑3

i=1 ui( fi − 1), with ui ∈ ZF3,
i = 1, 2, 3. By applying Dj, we obtain Dj(u) = uj and so, we get the following Fox’s
fundamental formula

u − uε =
3∑

i=1

Di(u)( fi − 1) (3)

for all u ∈ ZF3.
There is a natural group epimorphism κ : F3 → A3 which extends to a

ring epimorphism κ : ZF3 → ZA3. Furthermore we write γ for the natural ring
epimorphism from ZA3 into FpA3 which agrees on Z with the natural ring
homomorphism from Z onto Fp. Set δ = κ◦γ and let λ be the natural group
epimorphism λ : M3 → A3 which extends to a ring epimorphism λ : FpM3 → FpA3.
Note that, for all f ∈ F3,

f δ = ( f κ)γ = ( f F ′
3)γ = f F ′

3 = ( f Vp(F3))λ. (4)
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The equation (4) is really a statement about a rather natural commuting triangle. By
an easy calculation, for all u, v ∈ F3 and j = 1, 2, 3,

Dj([u, v]) = u−1(v−1 − 1)Dj(u) + u−1v−1(u − 1)Dj(v). (5)

Let u = u1u2 · · · uk, with u1, u2, . . . , uk ∈ F3 and k ≥ 2. It follows from (2) and an
inductive argument on k that

Dj(u) = Dj(u1) + u1Dj(u2) + · · · + u1 · · · uk−1Dj(uk) (6)

for j = 1, 2, 3. We may deduce from (6) that

Dj([u, v]p) = (1 + [u, v] + · · · + [u, v]p−1)Dj([u, v]) (7)

for all u, v ∈ F3 and j = 1, 2, 3. Every element w of Vp(F3) is a product w = w1 · · · wk,
where for i = 1, . . . , k, either (i) wi ∈ F ′′

3 , or (ii) wi = [u, v]p with u, v ∈ F3. It follows
from (4)–(7) that

(Dj(w))δ = 0 (8)

for j = 1, 2, 3 and w ∈ Vp(F3).
For j, with j ∈ {1, 2, 3}, we define

dj( f Vp(F3)) = (Dj( f ))δ

for all f ∈ F3. It is easily verified that dj is well-defined. Since Dj is a linear map and δ

is a ring homomorphism, we obtain dj extends to a linear map from FpM3 into FpA3

for j = 1, 2, 3. From (1), we obtain

dj(xj) = 1, dj(xi) = 0 for i �= j.

Furthermore dj(u−1) = − (uλ)−1dj(u) for all u ∈ M3. Let u, v ∈ M3, with u = f Vp(F3),
v = gVp(F3) and f, g ∈ F3. We may deduce from (2) and (4) that

dj(uv) = dj(u) + (uλ)dj(v). (9)

Note that if u ∈ M′
3 and v ∈ M3 then (9) becomes

dj(uv) = dj(u) + dj(v). (10)

Furthermore, by (5), (9) and since δ is a ring homomorphism, we obtain

dj([u, v]) = (u−1λ)(v−1λ − 1)dj(u) + (u−1λ)(v−1λ)(uλ − 1)dj(v). (11)

Let φ be an automorphism of M3. The Jacobian matrix Jφ is defined to be the
3 × 3 matrix over FpA3 whose (i, j) entry is dj(xiφ) for i, j = 1, 2, 3. Since δ is a ring
homomorphism, it follows from (3) that

uλ − 1 =
3∑

i=1

di(u)(si − 1) (12)

for all u ∈ M3. Since M′
3 is a vector space over Fp, it may be regarded as a right

Fp(M3/M′
3)-module in the usual way, where the module action comes from conjugation
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in M3. The group epimorphism λ : M3 → A3 induces an isomorphism from M3/M′
3 to

A3. So, we may regard M′
3 as a right FpA3-module. For w ∈ M′

3 and s ∈ FpA3, we write
ws to denote the image of w under the action of s. For s ∈ FpA3 write s = ∑

i miri,
where mi ∈ Fp and ri ∈ A3 for each i and define

s∗ =
∑

i

mir−1
i .

Thus s �→ s∗ is an involutary linear mapping from FpA3 to FpA3. For w ∈ M′
3 and

s ∈ FpA3, it is easily verified that

dj(ws) = s∗dj(w). (13)

The proof of the following result is elementary.

LEMMA 2.1. Let M3 be the free group of rank 3 in the variety Vp, with p prime.
(i) For u ∈ M′

3, [xi, xj]u = [xi, xj] for all i, j.
(ii) For all u ∈ M3 such that u ≡ u′ (mod M′

3),

[xi, xj]u = [xi, xj]u
′
.

(iii) For all u, v ∈ M3,

[xi, xj]uv = [xi, xj]vu.

(iv) di(xi[xi, xj]) = s−1
j , dj(xi[xi, x−1

j ]) = 1 − si and dj(xi[xi, xj]) = s−1
j (si − 1)

for i �= j.
(v) Let w ∈ M′

3. Then we may write

w =
∏

i, j
1≤j<i≤3

[xi, xj]vi j

where vij ∈ FpA3 for all i, j.

By Lemma 2.1, [xi, xj]u is really determined by the congruence classes of u modulo
M′

3.

2.2. Ihara’s Theorem. If R is a unique factorization domain (UFD) and S ⊆
R \ {0} is a multiplicative closed subset then LS(R) is a UFD (see, for example, [1,
Chapter 2]). Recall that Fp[s1, s2, s3] is a UFD. Let C be the monoid generated by
{s1, s2, s3}. It is easily verified that FpA3 =LC(Fp[s1, s2, s3]) and so FpA3 is a UFD. Let
Q denote the quotient field of FpA3. The field Q has a discrete valuation determined
by the powers of s3. More precisely, if v ∈ FpA3 \ {0}, then v can be uniquely written
as

v =
r∑

i=t

visi
3 = st

3

r−t∑
i=0

vi+tsi
3, t < r,

where vi+t ∈ FpA2, i = 0, . . . , r − t. Define the s3-value of v to be vν = t. If u, v ∈
FpA3 \ {0}, then we define (u/v)ν = uν − vν. Let O be the valuation ring of ν i.e., O
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is the ring consisting of 0 and all w ∈ Q \ {0} such that wν ≥ 0. For the proof of the
following result, we refer to [19, Corollary 1, page 79].

LEMMA 2.2. SL2(Q) is the free product of SL2(O) and SL2(O)
( 1 0

0 s3

)
=( 1 0

0 s3

) −1
SL2(O)

( 1 0
0 s3

)
with their intersection D amalgamated.

2.3. Irreducible polynomials over finite fields. We recall a general principle
of obtaining new irreducible polynomials from known ones (see, for example, [12,
Chapter 3]). Let f ∈ Fp[x] be a non-zero polynomial. If f has a non-zero constant
term, then the least positive integer e for which f (x) divides xe − 1 is called the order
of f and denoted by ord( f ). Let f be an irreducible polynomial in Fp[x] of degree m,
with a non-zero constant term. Then ord( f ) is equal to the order of any root of f in
the multiplicative group F∗

pm , where Fpm denotes the field with pm elements. Let f (x) be
a monic irreducible polynomial in Fp[x] of degree m and order e, and let t ≥ 2 be an
integer whose prime factors divide e but not ( pm − 1)/e. Furthermore if t ≡ 0 mod 4
then pm ≡ 1 mod 4. Then f (xt) is a monic irreducible polynomial in Fp[x] of degree mt
and order et (see [12, Theorem 3.35]). The following lemma is probably well-known.

LEMMA 2.3. Let N be the set of positive integers. There exists an injective mapping
ω from N into itself and a monic irreducible polynomial π (x) in Fp[x] such that π (xnω) is
a monic irreducible polynomial in Fp[x] for all n ≥ 1.

Proof. Let p = 2. Then x2 3n + x3n + 1 is irreducible in F2[x] for all n ≥ 1 (see [12,
Chapter 3, page 146]). Thus we may assume that p is an odd prime. Let q be an odd

prime divisor of p − 1. Then there exists a ∈ {2, . . . , p − 1} such that a
p−1

q �= 1. Since
xq − a has no root in Fp, we obtain xqn − a is irreducible in Fp[x] for all n ≥ 1 (see
[12, Theorem 3.75 and page 145]). Thus we may assume that p has the form 1 + 2r,
with r ≥ 1, and so p is a Fermat prime and r = 2β , with β ∈ {0, 1, 2, . . .}. Let β = 0.
Since x3 − x − 1 is irreducible in F3[x] and ord(x3 − x − 1) = 13, we obtain x3 13n −
x13n − 1 is irreducible in F3[x] for all n ≥ 1. Finally, we assume that β ≥ 1. Recall that
( 3

p ) = 1 if and only if p ≡ 1,−1 mod 12 (see [15, page 139]). Since p ≡ 5 mod 12, we
obtain ( 3

p ) = − 1 and so x2 − 3 is irreducible in Fp[x]. Since ord(x2 − 3) = 2r+1 and
p2−1
2r+1 = 1 + 2r−1, we obtain x2n − 3 is irreducible in Fp[x] for all n ≥ 1 (see, also, [12,

Theorem 3.75]). Therefore there exists an irreducible polynomial π (x) in Fp[x] and an
injective mapping ω from N into itself such that π (xnω) is irreducible for all n.

REMARK 2.4. It is well-known that, for a prime power q, the number of monic
irreducible polynomials of degree n over Fq is given by 1

n

∑
d|n µ( n

d )qd . Thus there are
infinitely many monic irreducible polynomials over Fq of different degree. The proof
of Lemma 2.3 is needed in Section 4 for constructing non-tame automorphisms of
F3(Vp).

It is elementary to show that if R is a principal ideal domain (PID), which is not a
field, and a ∈ R \ {0} is a non-unit of R then, LS(R) is a PID, where S = {an : n ≥ 0}.

LEMMA 2.5. Let π be a monic irreducible polynomial of a positive degree with a
non-zero constant term in Fp[s1], J the ideal of Fp[s1] generated by π and I the ideal of
FpA1 generated by π . Then Fp[s1]/J is isomorphic to FpA1/I.
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Proof. Let π = sn
1 + cn−1sn−1

1 + · · · + c1s1 + c0, with n ≥ 1 and c0 �= 0, be a monic
irreducible element in Fp[s]. Let I be the ideal in FpA1 generated by π . Let
E = I ∩ Fp[s]. We claim that E = J. Since E is an ideal in Fp[s1] and Fp[s1] is a PID, E is
generated by an element d, say. Since π ∈ Fp[s1], π ∈ E and so J ⊆ E. To show that E ⊆
J it is enough to prove that d ∈ J. But d ∈ I and so d = πu for some u ∈ FpA1. Write
u = sm

1 v, where v = a0 + a1s1 + · · · + aµsµ

1 ∈ Fp[s1] and a0 �= 0. Suppose that m < 0.
Since c0a0 �= 0, we obtain a contradiction. Thus m ≥ 0 and d ∈ J. Therefore E = J.
Observe that π is irreducible in FpA1. Since both Fp[s1] and FpA1 are PID, we obtain
Fp[s1]/J and FpA1/I are fields. Let δ be the natural ring homomorphism from Fp[s1]
into FpA1/I defined by vδ = v + I for all v ∈ Fp[s1]. It is easily verified that ker δ = J and
so δ induces a ring monomorphism δ̄ fromFp[s1]/J into FpA1/I such that (v + J)δ̄ = vδ.
We claim that δ̄ is surjective. Let u = w + I , where w ∈ FpA1, and write w = sm

1 w1

where w1 ∈ Fp[s1]. If m ≥ 0, we obtain (w + J)δ̄ = u. Suppose that m < 0. Then, since
(Fp[s1] + I)/I is a field, there exists x ∈ Fp[s1] such that (s1 + I)(x + I) = 1 + I .
Also, (s1 + I)(s−1

1 + I) = 1 + I . Therefore x + I = s−1
1 + I and so, (x−mw1 + J)δ̄ =

x−mw1 + I = sm
1 w1 + I = w + I = u. Thus δ̄ is surjective and so, Fp[s1]/J is isomorphic

to FpA1/I .

3. A method. We denote by � a free left FpA3-module with a basis {t1, t2, t3}.
The set A3 × � becomes a group by defining a multiplication

(u, m1)(v, m2) = (u v, m1 + um2) = (uv, m1 + um2)

for all u, v ∈ A3, where u = uF ′
3 and v = vF ′

3, with u, v ∈ F3, and m1, m2 ∈ �. Let χ be
the mapping from F3 into A3 × � defined by f χ = (f , d1(u)t1 + d2(u)t2 + d3(u)t3), with
u = f Vp(F3). It is easily verified that χ is a group homomorphism. But kerχ = Vp(F3)
(see, for example, [11, Proposition 1]). Hence M3 is embedded into A3 × � by χ

satisfying the conditions xiχ = (si, ti), i = 1, 2, 3. The proof of the following result is
elementary.

LEMMA 3.1. For u ∈ M′
3,

uχ = (1, d1(u)t1 + d2(u)t2 + d3(u)t3).

Let φ be an IA-automorphism of M3 satisfying the conditions xiφ = xiui,
where ui ∈ M′

3, i = 1, 2, 3, and let φ̂ = χ−1φχ . It is easily verified that φ̂ is an IA-
automorphism of M3χ . Thus, for i ∈ {1, 2, 3},

(si, ti )̂φ = (xiφ)χ = (xiχ )(uiχ )
(Lemma 3.1) = (si, ti)(1, d1(ui)t1 + d2(ui)t2 + d3(ui)t3)

(Equation (9)) = (si, d1(xiui)t1 + d2(xiui)t2 + d3(xiui)t3)
= (si, ai1t1 + ai2t2 + ai3t3),

(14)

where aij = dj(xiui) for i, j ∈ {1, 2, 3}, and

ai1(s1 − 1) + ai2(s2 − 1) + ai3(s3 − 1) = si − 1 (15)

for i = 1, 2, 3. The equation (15) is just a restatement of Fox’s fundamental formula,
as stated in equation (12). Notice that equations (14) give Jφ = (aij). The mapping ζ

from IA(M3) into GL3(FpA3) given by φ �−→ Jφ = (aij) is a faithful representation of
IA(M3). (Indeed, write γij = dj(xiφψ), aij = dj(xiφ) and bij = dj(xiψ). By Lemma 2.1
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and equations (9), (10), (13) and (11), we get γij =
∑3

κ = 1 aiκbκj for i, j = 1, 2, 3
and so, ζ is a group homomorphism. If xiφ = xiui, with ui ∈ M′

3, i = 1, 2, 3, and
dj(xiφ) = dj(xiui) = δij, where δij is the Kronecker’s delta, then dj(ui) = 0 for i, j = 1, 2, 3.
Hence ui ∈ Vp(F3) with i = 1, 2, 3 (see, for example, [11, Proposition 1]). Therefore ζ

is a group monomorphism.) Suppose that (aij) ∈ Imζ . Thus the determinant of (aij) is
a unit in FpA3, and its rows satisfy equations (15). Since the units of FpA3 are of the
form q a (see, for example, [18, Lemma 3.2, page 55]), where q ∈ Fp \ {0} and a ∈ A3,
we obtain

det(aij) = qsµ1
1 sµ2

2 sµ3
3 (16)

where q ∈ Fp \ {0} and µ1, µ2, µ3 ∈ Z. For the next few lines, for each u ∈ FpA3, we
write û for the element of Fp obtained from u substituting s1, s2, s3 by 1. For s2 = s3 = 1,
equations (15) give a11(s±1

1 )(s1 − 1) = s1 − 1 and ai1(s±1
1 )(s1 − 1) = 0 with i = 2, 3. Since

FpA3 is an integral domain, we get a11(s±1
1 ) = 1 and a21(s±1

1 ) = a31(s±1
1 ) = 0. Thus â11 = 1

and â21 = â31 = 0. Similarly, â22 = â33 = 1 and âij = 0 for i �= j. Thus equation (16) (for
s1 = s2 = s3 = 1) gives q = 1. Therefore, for an element (aij) ∈ Imζ , its determinant is
equal to sµ1

1 sµ2
2 sµ3

3 , with µ1, µ2, µ3 ∈ Z, and its rows satisfy equations (15). For the
converse, the proof of Lemma 1 in [2] carries over with minor changes apart from some
obvious misprints. We note that the aforementioned equivalent statements are stated
in [3, Proposition 2]. This is the Bachmuth representation of IA(M3).

We write A for the image of IA(M3) via ζ . Let S be the multiplicative monoid
of FpA3 generated by s1 − 1. Since FpA3 is a UFD and S ⊆ FpA3 \ {0}, we obtain
LS(FpA3) is a UFD. We conjugate A by the element

(cij) =
⎛⎝s1 − 1 0 0

s2 − 1 (s1 − 1)−1 0
s3 − 1 0 1

⎞⎠ .

Using equation (15) it is easy to verify that

(cij)−1(aij)(cij) =
⎛⎝1 a12(s1 − 1)−2 a13(s1 − 1)−1

0 b11 b12

0 b21 b22

⎞⎠ , (17)

where b11 = [a22(s1 − 1) − a12(s2 − 1)](s1 − 1)−1, b12 = a23(s1 − 1) − a13(s2 − 1), b21 =
[a32(s1 − 1) − a12(s3 − 1)](s1 − 1)−2 and b22 = [a33(s1 − 1) − a13(s3 − 1)](s1 − 1)−1. It
is easily verified that the map η from A into GL2(LS(FpA3)) defined by (aij)η = (bk�) is
a group homomorphism.

Let H be a finitely generated subgroup of IA(M3) containing T ∩ IA(M3). Let ρ be
the mapping from H into A3 defined by φρ = det Jφ = sµ1

1 sµ2
2 sµ3

3 , where µ1, µ2, µ3 ∈ Z.
Since T ∩ IA(M3) ⊆ H, it is easily verified that ρ is an epimorphism. Thus we obtain
the following short exact sequence

ρ

1 → N → H → A3 → 1,

where N denotes the kernel of ρ. Since H/N is finitely presented and H is finitely
generated, we obtain from a result of Hall [10, page 421] N is finitely generated as a
group on which H acts by conjugation. The proof of the following result is based on
some ideas given in the proof of Lemma 5 in [5].
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LEMMA 3.2. Let H and N be the images of H and N, respectively, in GL2(LS(FpA3))
via the group homomorphism η. Let (aij1), . . . , (aijr) be a generating set of H, and let
(bij1), . . . , (bijs) be a generating set of N as a group on which H acts by conjugation. Then
there exist irreducible elements α1, . . . , αq ∈ FpA3 such that if P is the multiplicative
monoid generated by Fp \ {0}, {s±1

1 , s±1
2 , s±1

3 }, s1 − 1 and αj , j = 1, . . . , q, then (dij) ∈
E2(LP(FpA3)) for all (dij) ∈ N .

Proof. From (17), a12k, b12� ∈ FpA3 for k = 1, . . . , r and �= 1, . . . , s. Let α1, . . . , αq

be the irreducible elements in FpA3 which appear as a factor of a12k or b12�, k = 1, . . . , r,
�= 1, . . . , s. Let P be the multiplicative monoid generated by Fp \ {0}, {s±1

1 , s±1
2 , s±1

3 },
s1 − 1 and αj, j = 1, . . . , q. Since P is a multiplicative closed set not containing the zero
element and FpA3 is a UFD, we obtain LP(FpA3) is a UFD and

FpA3 ⊆ LS(FpA3) ⊆ LP(FpA3) ⊆ Q.

Let (dij) ∈ H. We claim that (dij) ∈ GE2(LP(FpA3)). By (17), a11ka22k − a12ka21k is a
unit in LP(FpA3) for k = 1, . . . , r. Fix k, k = 1, . . . , r, and write eij for aijk, i, j = 1, 2. Let
e12 = 0. Then(

e11 0
e21 e22

)
=

(
e11 0
0 e−1

11

)(
1 0

e11e21 1

) (
1 0
0 e11e22

)
∈ GE2(LP(FpA3)).

Thus we may assume that e12 �= 0. Since e12 ∈ P, we obtain e21 = e−1
12 (e11e22 − u), where

u = e11e22 − e21e12. Then(
e11 e12

e21 e22

)
=

(
e12 0
0 e−1

12

) (
1 0

e12e22 1

)(
u−1 0
0 1

)
(

1 −e11e−1
12

0 1

) (
0 u

−u 0

)
∈ GE2(LP(FpA3)).

Thus (dij) is a product of the (aijk), whence (dij) ∈ GE2(LP(FpA3)). For the next few
lines, we write E(x) for the matrix ( x 1

−1 0) for x ∈ LP(FpA3). Note that, for invertible
element x, (

x 0
0 x−1

)
= E(0)−1E(x−1)E(x)E(x−1)E(0)−1,

E(0) =
(

1 1
0 1

) (
1 0

−1 1

) (
1 1
0 1

)
and

E(x) =
(

1 −x
0 1

)
E(0).

Thus (x 0
0 x−1) ∈ E2(LS(FpA3)). Applying similar arguments as above, we obtain (bij�) ∈

E2(LP(FpA3)) for all � = 1, . . . , s. The group N is generated as a group by the elements

(aij)−1(bij�)(aij),
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where �= 1, . . . , s, and (aij) ∈ H. Since E2(LP(FpA3)) is a normal subgroup
of GE2(LP(FpA3)), we obtain (aij)−1(bij�)(aij) ∈ E2(LP(FpA3)). Thus (dij) ∈
E2(LP(FpA3)) if (dij) ∈ N .

We need some notation and auxiliary lemmas before we prove a result (namely,
Lemma 3.6) which is the key ingredient of our method of constructing non-tame
automorphisms of F3(Vp).

First we recall some elementary facts about unique factorization domains (UFD)
(see, for example, [1, Chapter 2]). Let R be a UFD. Two elements u and v in R are said
to be associates if u = cv, where c is a unit. Define a relation ≡ on R as follows : u ≡ v if
u and v are associates. It is an equivalence relation on R. Denote by [u] the equivalence
class of u. An element a ∈ R is irreducible if and only if it is prime. For a non-empty
subset X of R \ {0} we write Irr(X) for the set of equivalence classes [u], where u is an
irreducible element of R which appears in the factorization of some element of X . Let
u, v ∈ R \ {0}. If v = ua for some a ∈ R we say u divides v (written u | v); otherwise we
write u � v. Any set Y of nonzero elements of R has a greatest common divisor (gcd).
Note that any two gcds of Y are associates. If 1 is a gcd of Y , then we say that the set
Y is relatively prime.

Recall from the proof of Lemma 3.2 that P is the multiplicative monoid generated
by Fp \ {0}, {s±1

1 , s±1
2 , s±1

3 }, s1 − 1, and αj, j = 1, . . . , q. A typical element of P \ {1} has
the form

d a (s1 − 1)n αj1 · · ·αjµ,

where d ∈ Fp \ {0}, a ∈ A3, n a non-negative integer, and αjk ∈ {α1, . . . , αq},
k = 1, . . . , µ. Each αj, j = 1, . . . , q, has a unique expression as an element in FpA3

αj = smj

3

( nj∑
ij=mj

uij s
ij−mj

3

)
,

where mj ≤ nj, uij ∈ FpA2, ij = mj, . . . , nj, umj �= 0 and unj �= 0. Write hj = s−mj

3 αj for
j = 1, . . . , q. Let Ps3 be the submonoid of P generated by Fp \ {0}, {s±1

1 , s±1
2 }, s1 − 1 and

h1, . . . , hq. Thus an element of Ps3 \ {1} has the form

d h (s1 − 1)n hj1 · · · hjµ,

where d ∈ Fp \ {0}, h ∈ A2, n a non-negative integer, and hjk ∈ {h1, . . . , hq},
k = 1, . . . , µ. Note that Ps3 ⊆ FpA2[s3] and LP(FpA3) ∩ O=LPs3

(FpA2[s3]). Let � be
the ring epimorphism from FpA2[s3] onto FpA2 satisfying the conditions u� = u for
all u ∈ FpA2 and s3� = 0. Thus Ps3� is the monoid generated by Fp \ {0}, {s±1

1 , s±1
2 },

s1 − 1 and um1 , . . . , umq . An element of Ps3� \ {1} is written as

d h (s1 − 1)n uj1 · · · ujµ,

where d ∈ Fp \ {0}, h ∈ A2, n is a non-negative integer, and uj1 , . . . , ujµ ∈ {um1 , . . . ,

umq}. Hence Irr(Ps3�) is finite. Since 0 /∈ Ps3�, the epimorphism � induces a ring
epimorphism �̃ from LPs3

(FpA2[s3]) onto LPs3 �(FpA2) such that f
t �̃ = f �

t� .

LEMMA 3.3. Let π (s1) and ω be as in the statement of Lemma 2.3. Then, for infinitely
many n, π (snω

1 ) is not invertible in LPs3 �(FpA2).
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Proof. Let π (s1) and ω be as in the statement of Lemma 2.3. Then π (snω
1 ) is

an irreducible polynomial in FpA2 for all n ≥ 1. Suppose that π (snω
1 ) is invertible

in LPs3 �(FpA2) for some n. Then there exists u ∈ LPs3 �(FpA2) such that π (snω
1 )u = 1.

Write u = v
t where v ∈ FpA2 and t ∈ Ps3�. Thus π (snω

1 )v = t in FpA2. Since FpA2 is a
UFD, we obtain there exists t1 an irreducible element in FpA2 which appears in the
factorization of t such that π (snω

1 ) ∈ [t1]. Observe that if π (snω
1 ) ∈ [t1] then π (smω

1 ) does
not belong to [t1] for m �= n. Indeed, if π (smω

1 ) ∈ [t1] then π (snω
1 ) = π (smω

1 )c, where c is a
unit in FpA2. Since the only units in FpA2 are the elements of Fp \ {0} and the elements
of A2, we obtain a contradiction. Thus π (smω

1 ) does not belong to [t1] for m �= n. Since
Irr(Ps3�) is finite whereas π (snω

1 ) is irreducible for all n ≥ 1, we obtain π (snω
1 ) is not

invertible in LPs3 �(FpA2) for infinitely many n.

REMARK 3.4. Let π be a monic irreducible polynomial in Fp[s1] subject to π is
not invertible in LPs3 �(FpA2). Then π � x for all x ∈ Ps3�. Indeed, suppose that there
exists x ∈ Ps3� such that π |x. Thus x = πx′ for some x′ ∈ FpA2. Since x ∈ Ps3�, we
obtain x is invertible in LPs3 �(FpA2). Therefore π is invertible in LPs3 �(FpA2) which
is a contradiction. By Remark 2.4, there are infinitely many irreducible polynomials
of different degrees in Fp[s1]. Thus there are infinitely many irreducible polynomials
in FpA2. The arguments given in the proof of Lemma 3.3 guarantee that there are
infinitely many irreducible elements in FpA2 which are not invertible in LPs3 �(FpA2).

By the proof of Lemma 3.3 (and Remark 3.4), we may choose a monic irreducible
polynomial π of degree m in Fp[s1] subject to π � x for all x ∈ Ps3�, and there exists
an odd prime divisor q of pm − 1. Let I be the ideal of FpA1 generated by π . By
Lemma 2.5, FpA1/I is a field of pm elements.

From now on, we fix π and write K for FpA1/I . The natural mapping ϑ from FpA1

onto K induces a ring epimorphism ϑ1 from FpA2 onto K [s±1
2 ] in a natural way. Since

Ps3� is a multiplicative closed subset of FpA2, we obtain Ps3�ϑ1 is a multiplicative
closed subset of K [s±1

2 ]. Suppose that 0 ∈ Ps3�ϑ1. Then there exists v ∈ Ps3� such that
vϑ1 = 0. Since v ∈ Ps3�, we obtain v is invertible in LPs3 �(FpA2). Write v = ∑

v�s�
2,

with v� ∈ FpA1. By applying ϑ1, we obtain

vϑ1 =
∑

(v�ϑ)s�
2 = 0

and so, v� ∈ kerϑ for all �. Since kerϑ is the ideal in FpA1 generated by π , we obtain π

divides v� for all � and so, π divides v in FpA2 which is a contradiction by the choice
of π . Therefore 0 /∈ Ps3�ϑ1 and so, LPs3 �ϑ1 (K [s±1

2 ]) �= {0}. Observe that Irr(Ps3�ϑ1)
is finite. The epimorphism ϑ1 induces a ring epimorphism ϑ̃1 from LPs3 �(FpA2) onto

LPs3 �ϑ1 (K [s±1
2 ]) by defining u

t ϑ̃1 = uϑ1
tϑ1

for all u ∈ FpA2 and t ∈ Ps3�.

Let b be an element of K \ {0} such that b
pm−1

q �= 1. Since sq
2 − b has no root in K ,

we obtain sqn

2 − b is irreducible in K [s2] for all n ≥ 1 (see [12, Theorem 3.75 and page
145]). Since Irr(Ps3�ϑ1) is finite whereas sqn

2 − b is irreducible in K [s±1
2 ] for all n ≥ 1, we

obtain sqn

2 − b is not invertible in LPs3 �ϑ1 (K [s±1
2 ]) for infinitely many n. Thus we obtain

the following result.

LEMMA 3.5. There exists b ∈ K such that sqn

2 − b is irreducible in K [s±1
2 ] for all n ≥ 1.

Furthermore, for infinitely many n, sqn

2 − b is not invertible in LPs3 �ϑ1 (K [s±1
2 ]).
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Choose sqn

2 − b an irreducible element in K [s2] subject to sqn

2 − b is not invertible
in LPs3 �ϑ1 (K [s±1

2 ]). Let c be an element of FpA1 such that cϑ = b. Then sqn

2 − c is an

irreducible element in FpA1[s2]. Hence sqn

2 − c is irreducible in FpA2. It is easy to verify
that sqn

2 − c is not invertible in LPs3 �(FpA2). Furthermore sqn

2 − c � y for all y ∈ Ps3�,

and π , sqn

2 − c are relatively prime elements in FpA2.
Next we shall construct an element � of SL2(LP(FpA3)) \ E2(LP(FpA3)). The

proof of the following result is based on some ideas given in the proof of Theorem C
in [8].

LEMMA 3.6. Let π be an irreducible element in FpA1 subject to π � x for any element
x ∈ Ps3�. Let K =FpA1/I, where I is the ideal of FpA1 generated by π . Let σ be an
irreducible element in FpA2 such that (i) π and σ are relatively prime in FpA2, (ii) σ � x
for any element x ∈ Ps3� and (iii) σ ϑ̃1 is not invertible in LPs3 �ϑ1 (K [s±1

2 ]). Then, for
t ∈ LPs3

(FpA2[s3]) with tν = 0 and t�̃ �= 0, the matrix

� =
(

1 + σπ t2s−1
3 −σ 2t2s−1

3
π2t2s−1

3 1 − σπ t2s−1
3

)
is an element of SL2(LP(FpA3)) \ E2(LP(FpA3)).

Proof. Throughout the proof, we write X for (1 0
0 s3

). By Lemma 2.2,
SL2(Q) = SL2(O) ∗D SL2(O)X , where D = SL2(O) ∩ SL2(O)X . Clearly � ∈ SL2(Q).
Now,

� =
(

1 σ/π

0 1

)(
1 0

π2t2s−1
3 1

) (
1 −σ/π

0 1

)
.

It is easily verified that (1 ±σ/π
0 1 ) ∈ SL2(O) \ D and ( 1 0

π2t2s−1
3 1) ∈ SL2(O)X \ D.

The normal form theorem for the free products with amalgamation (see [13,
Corollary 4.4.2]) implies that if �= g1g2 · · · gr, where the gi are alternately in
SL2(O) \ D and SL2(O)X \ D, then r = 3, g1, g3 ∈ SL2(O) \ D, and g2 ∈ SL2(O)X \ D.
Note that π is not invertible in LP(FpA3). Indeed, let w ∈ LP(FpA3) such that πw = 1.
Write w = swν

3
u
v

for some u ∈ LP(FpA2[s3]) and v ∈ Ps3 . Since πν = 0, we obtain wν = 0.
By applying �̃, we obtain π is invertible in LPs3 �(FpA2) which is a contradiction by
our hypothesis. Let B = SL2(LP(FpA3)) ∩ SL2(O), � = SL2(LP(FpA3)) ∩ SL2(O)X and
G = 〈B, �〉. We claim that E2(LP(FpA3)) ≤ G. But(

0 1
−1 0

)
∈ B,

and so (
0 −1
1 0

) (
1 f
0 1

) (
0 1

−1 0

)
=

(
1 0

−f 1

)
,

for all f ∈ LP(FpA3). To show our claim, it is enough to prove that(
1 f
0 1

)
∈ G
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for all f ∈ LP(FpA3). Furthermore

(
1 0

s−1
3 1

)
∈ � and

(
1 −s3

0 1

)
∈ B,

and so

(
0 −1
1 0

) (
1 0

s−1
3 1

)(
1 −s3

0 1

) (
1 0

s−1
3 1

)
=

(−s−1
3 0

0 −s3

)
∈ G.

Let f ∈ LP(FpA3) and let r be a positive integer such that s2r
3 f ∈ LP(FpA2[s3]). Since

(
1 s2r

3 f
0 1

)
∈ G

we obtain (−s−r
3 0

0 −sr
3

) (
1 s2r

3 f
0 1

)(−sr
3 0

0 −s−r
3

)
=

(
1 f
0 1

)
∈ G.

Thus E2(LP(FpA3)) ≤ G. Suppose that � ∈ E2(LP(FpA3)). Note that B ∩ D = � ∩ D.
Since E2(LP(FpA3)) ≤ G, we may write �= g1g2 · · · gr where the gi are alternately in
B and �, and no gi lies in D. Thus by the normal form theorem for free products with
amalgamation, we may write

� =
(

d e
f g

) (
h is3

js−1
3 k

) (
� m
n q

)
,

where d, e, f, g, h, i, j, k, �, m, n, q ∈ LPs3
(FpA2[s3]). Making the calculations, we obtain

� =
(

dh� + ejs−1
3 � + is3dn + ekn dhm + ejs−1

3 m + is3dq + ekq

f h� + gjs−1
3 � + f is3n + gkn f hm + gjs−1

3 m + f is3q + gkq

)
.

Therefore

1 + σπ t2s−1
3 = dh� + ejs−1

3 � + is3dn + ekn (18)

and so, we obtain from (18)

σπ t2 = (−1 + dh� + ekn)s3 + ej� + is2
3dn. (19)

By applying �̃ on (19), we obtain

σπ (t2�̃) = (e�̃)(j�̃)(��̃). (20)

Similarly,

π2(t2�̃) = (g�̃)(j�̃)(��̃). (21)
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Since LPs3 �(FpA2) is an integral domain, and by the choice of t, we obtain from (20)
and (21)

σ (g�̃) = π (e�̃). (22)

Write g�̃ = u
t1

and e�̃ = v
t′1

, where u, v ∈ FpA2 and t1, t′1 ∈ Ps3�. Thus (22) becomes

σut′1 = vt1π.

By our hypothesis, (i) and (ii), and since FpA2 is a UFD, we obtain σ divides v

and π divides u. Therefore g�̃ = πe1 and e�̃ = σe2, where e1, e2 ∈ LPs3 �(FpA2). Since
dg − e f = 1, we have

(d�̃)(g�̃) − (e�̃)( f �̃) = 1

and so

(d�̃)πe1 − σe2( f �̃) = 1. (23)

By applying ϑ̃1 on (23), we obtain σ ϑ̃1 is invertible in LPs3 �ϑ1 (K [s±1
2 ]) which is a

contradiction by (iii). Therefore � ∈ SL2(LP(FpA3)) \ E2(LP(FpA3)).

4. A construction of non-tame automorphisms. It is well-known (see, for
instance, [13, Section 3.6, Theorem N4]) that IA(F3) is generated by the following
automorphisms Kij and Kijk, where i, j, k ∈ {1, 2, 3}, satisfying the conditions

( fi)Kij = f −1
j fifj for i �= j

( fm)Kij = fm if m �= i

and

( fi)Kijk = fi[ fj, fk] for i �= j < k �= i
( fm)Kijk = fm if m �= i.

The natural mapping from F3 onto M3 induces a group homomorphism, say α, from
Aut(F3) into Aut(M3). We write τ for the restriction of α on IA(F3). It is easily verified
that the image of τ is equal to T ∩ IA(M3). It is generated by τij = Kijτ for all i �= j
and τijk = Kijkτ for i �= j < k �= i. Thus xiτij = x−1

j xixj for i �= j, xmτij = xm if m �= i, and

xiτijk = xi[xj, xk] for i �= j < k �= i and xmτijk = xm if m �= i. Note that τ−1
ijk = τikj. Define

T = {τij, τijk : i �= j < k �= i}. Thus T is a generating set of T ∩ IA(M3). Recall that we
have the following short exact sequence

ρ1

1 → kerρ1 → T ∩ IA(M3) → A3 → 1,

where φρ1 = det Jφ = sµ1
1 sµ2

2 sµ3
3 , µ1, µ2, µ3 ∈ Z. Note that τ−1

31 τ21, τ
−1
32 τ12, τ

−1
23 τ13 ∈

kerρ1. Write Q= {τ123, τ213, τ312, τ
−1
31 τ21, τ

−1
32 τ12, τ

−1
23 τ13, (τij, τµν), (ταβγ , τκ�m), (ταβγ ,

τij) : i �= j, µ �= ν, α �= β < γ �= α, κ �= �< m �= κ}.
LEMMA 4.1. The kernel of ρ1 is finitely generated by Q as a group on which

T ∩ IA(M3) acts by conjugation.
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Proof. Let NQ be the normal closure of Q in T ∩ IA(M3), that is, the intersection
of all normal subgroups of T ∩ IA(M3) containing Q. It is easy to show that NQ
is generated by the set {γ −1xγ : x ∈ Q, γ ∈ T ∩ IA(M3)}. We claim that NQ = kerρ1.
Since Q ⊆ kerρ1 and kerρ1 is normal in T ∩ IA(M3), it is enough to show that kerρ1 ⊆
NQ. For the next few lines, we set E = T ∩ IA(M3). Since E/E′ is finitely presented and
E is finitely generated, we obtain E′ is finitely generated as a group on which E acts
by conjugation. In fact, E′ is generated by the set {(τij, τµν), (ταβγ , τκ�m), (ταβγ , τij) : i �=
j, µ �= ν, α �= β < γ �= α, κ �= �< m �= κ} as a group on which E acts by conjugation.
Thus E′ ⊆ NQ. Note that E/NQ is an abelian group generated by 3 elements. Since

(E/NQ)/(kerρ1/NQ) ∼= E/kerρ1

and E/kerρ1 is a free abelian group of rank 3, we obtain kerρ1 ⊆ NQ. Therefore
kerρ1 = NQ.

In the Appendix, we write down all Jφ = (aij) for φ ∈ T ∪ Q subject to a13 �= 0 or
a23 �= 0. For simplicity, we write (Jφ, a13, a23) for φ ∈ T ∪ Q. Let P be the multiplicative
monoid generated by Fp \ {0}, {s±1

1 , s±1
2 , s±1

3 }, s1 − 1, s2 − 1, s3 − 1, and δ1, . . . , δ5 (see
Appendix). Recall that for any element u = ∑

i miri ∈ FpA3, with mi ∈ Fp and ri ∈ A3,
u∗ = ∑

i mir−1
i , and (u∗)∗ = u. Furthermore, for w ∈ M′

3 and u ∈ FpA3, dj(wu) = u∗dj(w)
for j = 1, 2, 3. Notice that Ps3� is the multiplicative monoid generated by Fp \ {0},
{s±1

1 , s±1
2 }, s1 − 1, s2 − 1.

THEOREM 4.2. Let π be an irreducible element in FpA1 subject to π � x for any
element x ∈ Ps3�. Let K =FpA1/I, where I is the ideal of FpA1 generated by π . Let
σ be an irreducible element in FpA2 such that (i) π and σ are relatively prime in FpA2,
(ii) σ � x for any element x ∈ Ps3� and (iii) σ ϑ̃1 is not invertible in LPs3 �ϑ1 (K [s±1

2 ]). Then,
for t ∈ LPs3

(FpA2[s3]) with tν = 0 and t�̃ �= 0, the automorphism φ of M3 satisfying the
conditions

x1φ = x1

x2φ = x2 [x3, x1](s1s−1
2 σ 2)∗ [x2, x1](−s1s−1

3 (s1−1)σπ)∗

x3φ = x3 [x3, x1](s1s−1
3 (s1−1)σπ)∗ [x2, x1](−s1s2s−2

3 (s1−1)2π2)∗

is non-tame.

Proof. Since M3 is a free group in the variety Vp with a free generating set
{x1, x2, x3}, φ extends uniquely to a group homomorphism of M3. Write bi = si − 1
for i = 1, 2, 3. Using the equations (9), (10), (11) and (13), we calculate dj(xiφ), with
i, j ∈ {1, 2, 3}, and so, the Jacobian matrix Jφ becomes

Jφ =
⎛⎝ 1 0 0

σ 2b3s−1
3 − σπb1b2s−1

3 1 + σπb2
1s−1

3 −σ 2b1s−1
3

−π2b2
1b2s−1

3 + σπb1b3s−1
3 π2b3

1s−1
3 1 − σπb2

1s−1
3

⎞⎠ .

Since det Jφ = 1 and the rows of Jφ satisfy the conditions (15), we obtain Jφ ∈ Imζ .
Since ζ is a group monomorphism, we get φ ∈ IA(M3). To get a contradiction, we
assume that φ is tame. Since φ ∈ T ∩ IA(M3) and det Jφ = 1, we obtain φ ∈ kerρ1. To
get its image in GL2(LS(FpA3)) we conjugate it by

(cij) =
⎛⎝b1 0 0

b2 b−1
1 0

b3 0 1

⎞⎠
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which implies that

� =
(

1 + σπb2
1s−1

3 −σ 2b2
1s−1

3
π2b2

1s−1
3 1 − σπb2

1s−1
3

)
∈ (kerρ1)η.

By Lemma 3.2 (for H = T ∩ IA(M3) and N = kerρ1), � ∈ E2(LP(FpA3)). But,
by Lemma 3.6, � ∈ SL2(LP(FpA3)) \ E2(LP(FpA3)) and so, φ is a non-tame
automorphism of M3.

EXAMPLES 4.3. We shall give a family of examples of non-tame automorphisms
of M3 for p = 3. It is enough to construct irreducible elements π and σ in F3A2

subject to all conditions of Theorem 4.2 are satisfied. The polynomial π = s3
1 − s1 − 1

is irreducible in F3[s1]. It is easily verified that π /∈ Ps3�. By Remark 3.4, π � x for all
x ∈ Ps3�. Let I be the ideal in F3A1 generated by π , and let K = F3A1/I . Then K is
a field of 27 elements. Let q = 13. It is easily verified that s2

1 − 1 /∈ I . Let b = s1 + I .
Since the polynomial s13

2 − b has no root in K , we obtain s13n

2 − b is irreducible in
K [s2] for all n ≥ 1 (see [12, Theorem 3.75 and page 145]). The natural mapping ϑ

from F3A1 onto K induces a ring epimorphism ϑ1 from F3A2 onto K [s±1
2 ] in a natural

way. Since Ps3�ϑ1 is a multiplicative closed subset of K [s±1
2 ], and 0 /∈ Ps3�ϑ1, the

epimorphism ϑ1 induces a ring epimorphism ϑ̃1 fromLPs3 �(F3A2) ontoLPs3 �ϑ1 (K [s±1
2 ])

by defining u
v
ϑ̃1 = uϑ1

vϑ1
for all u ∈ F3A2 and v ∈ Ps3�. But s13n

2 − b /∈ Ps3�ϑ1 and s13n

2 − b
is not invertible in LPs3 �ϑ1 (K [s±1

2 ]) for all n. Write σn = s13n

2 − s1. It is easy to verify
that σn is irreducible in F3A2. In addition, σn � y for all y ∈ Ps3�, and π and σn are
relatively prime in F3A2. Thus, for all n ≥ 1, π and σn satisfy all the conditions of
Theorem 4.2.

In the next few lines, we shall prove that the IA-automorphism group of M3 is not
finitely generated. Although the aforementioned result was stated in [16], we shall apply
the aforementioned method to fill a gap to complete the proof. To get a contradiction,
we assume that IA(M3) is finitely generated. We have the following short exact
sequence

ρ2

1 → kerρ2 → IA(M3) → A3 → 1,

where φρ2 = det Jφ = sµ1
1 sµ2

2 sµ3
3 , µ1, µ2, µ3 ∈ Z. Applying Lemma 3.2 for H = IA(M3)

and N = kerρ2, there exists a multiplicative monoid P of FpA3 such that (dij) ∈
E2(LP(FpA3)) for all (dij) ∈ (kerρ2)η. By the proof of Lemma 3.2 (and Remark 3.4),
we may choose a (monic) irreducible polynomial π of degree m in Fp[s1] subject
to π � x for all x ∈ Ps3�, and there exists q an odd prime divisor of pm − 1. Let I
be the ideal of FpA1 generated by π . By Lemma 2.5, K =FpA1/I is a field of pm

elements. By Lemma 3.5, there exists b ∈ K such that sqn

2 − b is irreducible in K [s±1
2 ]

for all n ≥ 1, and, for infinitely many n, sqn

2 − b is not invertible in LPs3 �ϑ1 (K [s±1
2 ]). The

natural mapping ϑ from FpA1 onto K induces a ring epimorphism ϑ1 from FpA2 onto
K [s±1

2 ] in a natural way. Since Ps3�ϑ1 is a multiplicative closed subset of K [s±1
2 ], and

0 /∈ Ps3�ϑ1, the epimorphism ϑ1 induces a ring epimorphism ϑ̃1 fromLPsp �(FpA2) onto
LPs3 �ϑ1 (K [s±1

2 ]) by defining u
v
ϑ̃1 = uϑ1

vϑ1
for all u ∈ FpA2 and v ∈ Ps3�. Choose sqn

2 − b an

irreducible element in K [s2] subject to sqn

2 − b is not invertible in LPs3 �ϑ1 (K [s±1
2 ]). Let
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c be an element of FpA1 such that cϑ = b. Then σ = sqn

2 − c is an irreducible element
in FpA1[s2]. Hence σ is irreducible in FpA2. Furthermore σ � y for all y ∈ Ps3�. It is
easily verified that π and σ are relatively prime elements in FpA2. Let

(aij) =

⎛⎜⎝ 1 0 0

σ 2b3s−1
3 − σπb1b2s−1

3 1 + σπb2
1s−1

3 −σ 2b1s−1
3

−π2b2
1b2s−1

3 + σπb1b3s−1
3 π2b3

1s−1
3 1 − σπb2

1s−1
3

⎞⎟⎠ .

Since det(aij) = 1 and the rows of (aij) satisfy the conditions (15), we obtain (aij) ∈
(kerρ2)ζ . Since ζ is a group monomorphism, there exists φ ∈ kerρ2 such that (aij) = Jφ .
To get its image in GL2(LS(FpA3)), we conjugate it by

(cij) =
⎛⎝b1 0 0

b2 b−1
1 0

b3 0 1

⎞⎠
which implies that

� =
(

1 + σπb2
1s−1

3 −σ 2b2
1s−1

3

π2b2
1s−1

3 1 − σπb2
1s−1

3

)
∈ (kerρ2)η.

Thus, by Lemma 3.2, � is an element of E2(LP(FpA3)). By Lemma 3.6, � ∈
SL2(LP(FpA3)) \ E2(LP(FpA3)) which is a contradiction. Therefore IA(M3) is not a
finitely generated group.

Appendix(
Jτ13 , s−1

3 (s1 − 1), 0
)
,
(
Jτ23 , 0, s−1

3 (s2 − 1)
)
,
(
Jτ123 , s1s−1

2 s−1
3 (s2 − 1), 0

)
,(

Jτ213 , 0, s−1
1 s2s−1

3 (s1 − 1)
)
,
(
Jτ−1

23 τ13
, s−1

3 (s1 − 1), 1 − s2
)
, (J(τ12,τ13), (1 − s1)(s2 − 1), 0),(

J(τ12,τ23), s−1
3 (s1 − 1)(s2 − 1), 0

)
,
(
J(τ12,τ123),−s1s−1

2 s−1
3 (s2 − 1)2, 0

)
,(

J(τ12,τ213), s−1
1 s2s−1

3 (s1 − 1)2
(
1 − (

s−1
1 − 1

)(
s−1

3 − 1
))

, s−2
1 s2s−2

3 (s1 − 1)2(s3 − 1)
)
,(

J(τ13,τ21), 0, s−1
3 (s1 − 1)(1 − s2)

)
,
(
J(τ13,τ31),−s−1

1 s−1
3 (s1 − 1)2, 0

)
,(

J(τ13,τ32),−s−1
2 (s1 − 1)(s2 − 1), 0

)
,
(
J(τ13,τ123), s1s−1

2 s−1
3 (1 − s2)(s3 − 1), 0

)
,(

J(τ13,τ213), 0, s−1
1 s2s−2

3 (s3 − 1)(s1 − 1)
)
,
(
J(τ13,τ312),−s−1

1 s−1
2 (s1 − 1)2(s2 − 1), 0

)
,

(J(τ21,τ23), 0,−(s1 − 1)(s2 − 1)),(
J(τ21,τ123), s1s−2

2 s−2
3 (s2 − 1)2(s3 − 1), s1s−1

2 s−1
3 (s2 − 1)2(1 − (

s−1
2 − 1

)(
s−1

3 − 1
))

,(
J(τ21,τ213), 0,−s−1

1 s2s−1
3 (s1 − 1)2

)
,
(
J(τ23,τ31), 0, s−1

1 (s2 − 1)(1 − s1)
)
,(

J(τ23,τ32), 0,−s−1
2 s−1

3 (s2 − 1)2
)
,(

J(τ23,τ123), s1s−1
2 s−2

3 (s2 − 1)(s3 − 1), 0
)
,
(
J(τ23,τ213), 0, s−1

1 s2s−1
3 (s1 − 1)(1 − s3)

)
,(

J(τ23,τ312), 0, s−1
1 s−1

2 (s1 − 1)(s2 − 1)2
)
,
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J(τ31,τ123), s1s−1

2 s−1
3 (1 − s2)

(
s−1

1 (1 − s1) + s−1
2 s−1

3 (s2 − 1)(s3 − 1)
)
, 0

)
,(

J(τ31,τ213), 0, s−2
1 s2s−1

3 (s1 − 1)2
)
,
(
J(τ32,τ123), s1s−2

2 s−1
3 (s2 − 1)2, 0

)
,(

J(τ32,τ213), 0, s−1
1 s2s−1

3 (1 − s1)
(
s−1

2 (1 − s2) + s−1
1 s−1

3 (s1 − 1)(s3 − 1)
))

,(
J(τ123,τ213),−s−2

3 (s1 − 1)(s3 − 1) + s1s−1
2 s−3

3 (s2 − 1)(s3 − 1)2 − s−4
3 (s1 − 1)(s3 − 1)3,

−s−1
1 s2s−3

3 (s3 − 1)2(s1 − 1) + s−2
3 (s2 − 1)(s3 − 1)

)
(
J(τ123,τ312),−s1s−3

2 s−1
3 (s2 − 1)3, 0

)
,
(
J(τ213,τ312), 0, s−3

1 s2s−1
3 (s1 − 1)3

)
,

Set

δ1 = 1 + s3,

δ2 = s2(s1 − 1)(s3 − 1) − s1s3(s2 − 1),

δ3 = s2s3(1 − s1) + s1(s2 − 1)(s3 − 1),

δ4 = s1s3(1 − s2) + s2(s1 − 1)(s3 − 1)

and

δ5 = 2s1s2s2
3(s1 − 1)(s2 − 1) − s2

1s3(s2 − 1)2(s3 − 1)

+ s1s2(s1 − 1)(s2 − 1)(s3 − 1)2 − s2
2s3(s1 − 1)2(s3 − 1).
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