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LATTICE PATHS AND A SERGEEV-PRAGACZ FORMULA 
FOR SKEW SUPERSYMMETRIC FUNCTIONS 

A. M. HAMEL AND I. P. GOULDEN 

ABSTRACT. We obtain a new version of the Sergeev-Pragacz formula for super-
symmetric functions of standard shape—one applicable to arbitrary skew shape. The 
result involves an antisymmetrized sum of determinants that are themselves flagged 
supersymmetric functions. The proof is combinatorial, and follows by means of lattice 
path transformations. 

1. Introduction. The Sergeev-Pragacz formula—a ratio of alternants formula for 
supersymmetric functions—was discovered independently by van der Jeugt et al. ([8]) 
and Sergeev, and has inspired much activity in recent years. It has spawned several 
algebraic proofs, beginning with Pragacz [13], and including Bergeron and Garsia [2], 
Lascoux (see Macdonald [10]), and Pragacz and Thorup [14]. Papers linking this formula 
with characters of polynomial representations of the Lie superalgebra s\(m/n) [8], [1], the 
Littlewood-Richardson Rule [2], [7], and Schubert polynomials [10] have also appeared, 
building a solid base of knowledge and interest. In this paper we use combinatorial 
methods to generalize the Sergeev-Pragacz formula to skew supersymmetric functions 
(Theorem 3). This formula, which reduces for standard shape to give a direct and concise 
combinatorial proof of the Sergeev-Pragacz Formula, has a proof based on lattice path 
representations as introduced in Gessel and Viennot [4] and Bressoud and Wei [3]. 

Let A be a partition of k with (at most) / parts, i.e. A = (Ai , . . . , A/) where Ai > 
^2 > • • • > A/ are nonnegative integers and X\ + A2 + • • • + A/ = k. A partition can be 
represented in the plane by an arrangement of squares that is left and top justified with 
A/ squares in the /-th row. Such an arrangement is called a Ferrers diagram, and since it 
is left and top justified, we say it has standard shape. Given two partitions, A and /i, we 
say /1 Ç A if fit< A/ for all / > 1. Then we say a Ferrers diagram has skew shape A//i 
for // Ç A if it includes a square in row /, columny iff/2/ <j < A/. Geometrically, this is 
the Ferrers diagram of A with the Ferrers diagram of /i removed from its upper left hand 
corner. Note that the standard shape A is just the skew shape A//i with /i = 0. 

Associated with each skew shape is its conjugate. The conjugate of a skew shape 
\/ ji is defined to be the skew shape A7/// whose Ferrers diagram is the transpose of the 
Ferrers diagram of A///. More explicitly, the number of squares in the /-th row of A7/// 
is the number of squares in the /-th column of A//i. 

If we insert positive integers into the squares of a skew shape A/// such that the entries 
strictly increase down each column and weakly increase left to right along each row, 
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SKEW SUPERSYMMETRIC FUNCTIONS 365 

we say we have a tableau of (skew) shape A///. In a tableau we use T(a) to denote the 
positive integer in square a of the Ferrers diagram whose shape is T. 

We assume a finite number of variables and adopt the conventions x = (x\,..., xn) and 
y = (y\,... ,ym). Note also that the product.^1 • -x^n is denoted by xA, while x"~l • • • x°n 

is denoted by x0. The Vandermonde determinant, det(xpy)„x«, will be denoted by V(x). 
Define the complete (homogeneous) and elementary symmetric functions, hk(x) and 

e\Sy\ (k > 0) respectively as 

E **(*)/* = ft(i-¥)"'» 
k>0 y=l 

m 

I2ek(y)tk = Tl(l+yjtl 
k>0 7=1 

and the skew Schur function Sx/^x) as 

•*A//i(*) = E I I *7Xa), 

where the summation is over tableaux 7" of shape A/// and a E A//i means that a ranges 
over all squares in the Ferrers diagram of A//x. 

Further characterizations of the skew Schur function include the Jacobi-Trudi identity: 

(1) sx/fi(x) = det(AA._M,_/+/*))/x/, 

and its dual form, 
(2) 5A/,(y) = det(eA;_,;_,.+y(y))AixA|, 

(assume A has / parts). All of these representations hold for countable sets of variables. 
For the Schur function, sx(x) = SX/Q(X), there is also an expression as a ratio of 

alternants: 

(3) sx(x) = 
det(x^+" J)„x„ 

V(x) 

This expression necessarily involves a finite number of variables, «, and A has n parts. 
A function in two independent sets of variables, x - (x\,... ,x„) and>> = (yi , . . . ,ym) 

is said to be supersymmetric if it is symmetric in x and y separately and if it satisfies 
an additional cancellation property: given the substitution xi = t,y\ = —t, the resulting 
polynomial is independent of t. These functions, then called bisymmetric, were first 
introduced by Metropolis et al. [12]. The name supersymmetric apparently first appeared 
in Scheunert[15]. 

Define the complete (homogeneous) supersymmetric function, hk{x \y)(k > 0) as 

n m 

E h(x \y)t = n(i -xitr1 no +yA 
k>0 i=\ 7=1 

in terms of which the skew supersymmetric Schur function can be defined as 

(4) sx/,(x\y) = det(h 

https://doi.org/10.4153/CJM-1995-020-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1995-020-9


366 A. M. HAMEL AND I. P. GOULDEN 

—a Jacobi-Trudi determinant (assume A has / parts). A further characterization is the 
following: 

// 

Other descriptions, as tableau generating functions, can be found in Berele and Regev [ 1 ], 
Goulden and Greene [6], and Macdonald [11]. All these hold for countable sets of 
variables. 

For the supersymmetric Schur function, s\(x \y) = sxm(x \y), there is an analogous 
form to the ratio of alternants involving two necessarily finite sets of variables (although 
A has an arbitrary number of parts): 

(5) Sx(x\y)=——— J2 E sgnasgnp ap(xôyô U (*,-+#)), 
V[X)V{y) açS„peSm

 V (iV)GA J 

where (ij) G A means the square in row / and columny of the Ferrers diagram of A, and 
where we note the conventions that a acts only onx (homomorphically from a(x/) = xa(/)), 
p acts only on >>, x,- = 0 for / > n, and jty = 0 for y > m. The main thrust of this paper is 
to generalize (5), called the Sergeev-Pragacz formula, to skew shape. 

The second section introduces background information on lattice paths and some 
techniques for manipulating them. The third section extends the ratio of alternants form 
for the Schur function, (3), to skew shape and also independently proves an analogous 
dual result. The proofs are combinatorial and are based on Bressoud and Wei's lattice 
path proof of (3) for standard shape [3]. The fourth section expands upon the results 
of Section 3 to produce a Sergeev-Pragacz formula for skew supersymmetric functions 
(assume A has / parts): 

(6) 

= VMVM E E sgnasgnp*p(^/det(^^ 
y\x)y\y)aes„pesm

 v / 

and also details the specialization of (6) to (5). A final section explores the connections 
between the results of Section 3 and flagged skew Schur functions. This includes a proof 
of the equivalence of Theorems 1 and 2, the definition of flagged supersymmetric skew 
Schur functions, and generalizations of Theorems 1, 2, and 3. 

2. Lattice paths. The foundation of the proofs in this paper rests on the manipulation 
of lattice paths. Fix points P\,..., Pm and Q\,..., Qm in the (x,j^)-plane. A lattice path 
from Pi to Qj has two types of permissible steps: vertical steps, which increase the 
^-coordinate by one, and horizontal steps, which increase the x-coordinate by one. Note 
that if a horizontal step occurs at j-coordinatey, we say the step occurs at height j . If 
a horizontal step occurs at x-coordinate i and j-coordinatey, we say the step occurs at 
diagonal i +j. 
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An m-tuple of lattice paths from P\,..., Pm to Q\,..., Qm has its z'-th path from PT^ 
to Qi, i = 1 , . . . , m, for some permutation r G Sw, called the starting permutation of the 
m-tuple. We adopt the following restrictions on the starting and ending points: both the 
starting points P\,...,Pm and the ending points Q\,...,Qm must be weakly decreasing 
in the ^-coordinate and strictly increasing in the x-coordinate as we move from left to 
right. An m-tuple of lattice paths is said to be intersecting if two or more paths in the 
m-tuple pass through a common point in the plane; otherwise, the m-tuple is said to be 
nonintersecting. Note that our restrictions on the starting and ending points imply that 
all nonintersecting m-tuples of lattice paths from P\,... ,Pm to Q\,..., Qm have the 
identity as the starting permutation. 

The Gessel-Viennot [4] image of an intersecting m-tuple of lattice paths is the inter
secting m-tuple of lattice paths formed as follows: 

Choose the maximum indexed path that intersects other paths, the last inter
section point on this path, and the maximum indexed other path that passes 
through this intersection point. In the chosen paths, interchange the portions 
preceding the chosen intersection point. 

The procedure above guarantees that an m-tuple and its Gessel-Viennot image have the 
same multiset of steps, but starting permutations of opposite sign. Thus this procedure 
defines a fixed-point free involution on the set of intersecting m-tuples of lattice paths. 

Now for each horizontal step beginning at coordinates (ij), choose a weight depending 
only on / andy. For each vertical step, regardless of position, choose a weight of one. 

Consider 
m 

(7) det(g(P„ Q^) = £ s g n r n g ( ^ , o , &), 
TESm i=\ 

where g(Pj, Qi) is the sum over all paths from Pj to Qt of the product of the weights 
on the individual steps. Now if the weight of an m-tuple of lattice paths with starting 
permutation r is sgnr times the product of the weights of the individual steps in the 
m-tuple, then (7) is the generating function with respect to this weight for the set of 
m-tuples of paths from P\,..., Pm to Q\,..., Qm. The above analysis demonstrates that 
the total contribution to this generating function from the set of intersecting m-tuples of 
lattice paths is zero, since each m-tuple cancels with its Gessel-Viennot image. Thus (7) 
simplifies to the generating function for nonintersecting m-tuples of lattice paths from 
P\,... ,Pm to Q\,... ,Qm in which each of these nonintersecting m-tuples necessarily 
has the identity—which has positive sign—as the starting permutation. We call this result 
the Gessel- Viennot Result. 

EXAMPLE 2.1. The well-known Jacobi-Trudi identity, 

S\/»(X) = àet{h\i-Hj-i+j(x))Ixr 

given as ( 1 ) above, is a special case of the Gessel-Viennot Result with starting and ending 
points Pf = (/i/ — / + 1,1) and Qi = (A/ — / + 1, m), / = 1 , . . . , /, and a weight of Xj for 
each horizontal step beginning at coordinates (ij). Then the /-tuples of nonintersecting 
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paths within this framework are in one-to-one correspondence with tableaux of shape 
A//i (i.e. horizontal steps in path / occur at heights specified by the entries in row /' of 
the tableau), andg(P7, Qt) = hXi^^i+j(x). 

EXAMPLE 2.2. The dual Jacobi-Trudi identity, 

s\'/ii'(y)= d e t ( g A l - / i / - /+y(y) ) / x / , 

given as (2) above, also lends itself to interpretation in this manner. The starting and 
ending points are Pt = (\ii — /+1, —/i/ + /) and Q{ = (A/ — /+1, m — \+ /), / = 1 , . . . , /, and 
the weight isyi+j for each horizontal step beginning at coordinates (ij). Then the /-tuples 
of nonintersecting paths within this framework are in one-to-one correspondence with 
tableaux of shape X / fi' (i.e. a horizontal step in pathy occurs at height atj +j — i where 
ccij is the element in row /, columny of the tableau), andg(Py, Qt) = ê -/xy-z+yOO-

3. Extensions of Bressoud and Wei. Translating the directed graphs proof of 
Goulden [5] into a lattice path environment, Bressoud and Wei [3] give a combina
torial proof of the following (A has n parts): 

(8) V(x)det(hXi-i+j(xj)nxn = det(xy
A'+^%xw, 

a result that equates the Jacobi-Trudi determinant form to the ratio of alternants form of 
the Schur function for standard shape A. Here we extend Bressoud and Wei's proof to 
derive an analogous result for skew shape A//i. This result appears below as Theorem 1. 
Before proving Theorem 1, we note an important type of lattice path that figures in 
Bressoud and Wei's proof, a too high lattice path. We say a lattice path is too high if it 
has a horizontal step above height /. An /-tuple of lattice paths is too high if one or more 
of the paths is too high. 

THEOREM 1. Let X be a partition with I parts, and / iÇÀ, then 

V(x)det(hXl-fij-i+j(x))lxl = Y, sgna a(x6dQt(hXi^._i+J(xu ... ,x/)) / x /). 

PROOF. Fix points Pt = (//,- - / + 1,1) and Q( = (A/ - / + 1, m), i = 1 , . . . , /, as in 
Example 2.1. For each G G S„ consider the /-tuples of lattice paths from P i , . . . , P/ to 
g i , . . . , Qi where we weight a horizontal step at heighty by xa(j). Define the weight of 
such an /-tuple as the product of the weights of the individual steps times 

sgna cr(^)sgnr, 
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where r is the starting permutation of the /-tuple. Figure 1 gives an example of an /-tuple 

with A = (8,8,5,4), /x = (4,3,3,0), w = 6, / = 4. 

04 Q, Q2 2 , 

p4 p3 p2 px 

FIGURE 1 : A 4-TUPLE OF LATTICE PATHS 

Then if we sum the weight over all a and all such /-tuples and use (7) as in Example 2.1, 
we obtain 

(9) £ sgn a aU det(/u,_„-,+,(*))/x/) = V{x) tex(hh^i+j{x)) 

Thus we have a lattice path interpretation for the left hand side of the result. 
However, if we sum the weight over all a but over only those /-tuples that are not too 

high, we get 

(10) YJ s ê n c J a(x6 det(AAj._Ai._/+y(j:i,... ,*/)) /x /)-

In this case we have used (7) with g(Py, Qt) = /*A._^._/+y(jci,... ,*/), the generating 
function for paths from Pj to Qt with no horizontal steps above height /. This gives a 
lattice path interpretation of the right hand side of the result. 

We now prove the result by demonstrating that the sum of the weights over all a, but 
over only those /-tuples that are too high, is zero. We do so by finding a sign-reversing 
involution that maps each pair consisting of a permutation and a too high /-tuple of lattice 
paths to another such pair so the weights of the pair and its image sum to zero. 

The involution has the following description. Consider an arbitrary pair consisting of 
a permutation a and a too high /-tuple of lattice paths. Let path y be the too high path of 
smallest subscript in the /-tuple, and let t be the greatest height of a horizontal step in 
path/ 

Modify the /-tuple of lattice paths by leaving one step at height t in path j fixed but 
moving all other steps at height t in all paths down to height t — 1 and moving all 
steps at height t — 1 in all paths up to height t. The image under the involution is the 
pair consisting of the permutation a' = cr(t, t — 1 ) and the modified /-tuple of lattice 
paths. Figure 2 gives the modified 4-tuple of lattice paths corresponding to the 4-tuple 
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Q4 Q3 Q2 Qx 

FIGURE 2: A MODIFIED 4-TUPLE OF LATTICE PATHS 

It is straightforward to verify that this defines an involution. Moreover sgna' = 
— sgn a, the starting permutation is unchanged, and the powers of JC in the weight are the 
same for the /-tuple and the modified /-tuple. Thus the weights of a pair and its image 
cancel, as required. • 

Theorem 1 does indeed specialize to (8) for standard shape. To see this we utilize the 
same set-up as in Theorem 1 and then invoke the Gessel-Viennot procedure, as was done 
by Bressoud and Wei [3]: 

COROLLARY 1. Let A be a partition with I parts. Then 

dQt(hXi-i+j{x\,... , * / ) ) / x / = *A-

PROOF. Consider the starting and ending points of Theorem 1 in the case \i -
0, and G equal to the identity. Then, from the proof of Theorem 1 and the Gcsscl-
Viennot result, the left hand side of the corollary is the generating function for the set of 
nonintersecting /-tuples of not too high paths from P i , . . . , P\ to Q\,..., Qi. But the only 
such nonintersecting /-tuple has starting permutation, T, equal to the identity, and path 
/ consisting of vertical steps from Pt to the line y = /, followed by A/ horizontal steps 
to (A/ — / + 1,/), and finally vertical steps from there to Qi, i = 1 , . . . , /. The product of 
weights of these steps is JC '̂, and taking the product over / gives the right hand side. • 

Note that if/ > n, then, because of our convention Xk = 0 for k > n, the expression 
on the right hand side of Corollary 1—which we substitute into the right hand side of 
Theorem 1 to get (8)—reduces to 0 as required. 

As we saw with Examples 2.1 and 2.2, there is a certain duality where the complete 
and elementary symmetric functions are concerned. It is therefore not surprising that we 
can obtain a dual result for Theorem 1. The combinatorial proof, however, involves a 
new and different mapping. 

370 

in Figure 1. 
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THEOREM 2. Let A be a partition with I parts and let \i Ç A, then 

^(y)det(eA|._/i._/+/(y)) = £ sgnp p(/det(eA /_^_ / + /(yi,. . . , 7A ; ) ) / X / ) . 

PROOF. Fix points Pt = (/x/ — /+1, —/i/+/) and ft = (A/ — z +1, /w — A,-+/), * = 1,. • •, / 
as in Example 2.2. For each p £ Sm consider the /-tuples of lattice paths from P\,..., Pt 

to £?i, . . . , Qi where we weight a horizontal step at coordinates (ij) by y^i+j). Define the 
weight of such an /-tuple as the product of the weights of the individual steps times 

sgnpp(/)sgnT, 

where r is the starting permutation of the /-tuple. Figure 3 gives an example of such an 
/-tuple with A = (5,3,3,2), \i = (2,2,0,0), m = 6, / = 4. 

FIGURE 3: A 4-TUPLE OF LATTICE PATHS WITH DIAGONAL WEIGHTS 

Then if we sum the weight overall p and all such /-tuples and use (7) as in Example 2.2, 
we obtain 

(11) £ sgnp p(y5 det(eAi._^._/+y(y))/x/) = V(y)fet(eXi-n-i+j(yj)lxr 
pesm

 v y 

Thus we have a lattice path interpretation for the left hand side of the result. 
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However, if we sum the weight over all p but over only those /-tuples that are not too 
high, we get 

(12) £ s g n p p ( / d e t ( e A / 

In this case we have used (7) with g(P7-, Qt) = e^-^-i+jiyx,... ,>%), the generating 
function for paths from Pj to Qt with no horizontal steps above height /. This gives a 
lattice path interpretation of the right hand side of the result. 

We now prove the result by demonstrating that the sum of the weights over all p, but 
over only those /-tuples that are too high, is zero. We do so by first partitioning the set 
of pairs consisting of permutations and too high /-tuples of lattice paths into two sets, ft 
and % and then finding two sign-reversing involutions, one on ft and one on #, that map 
each pair consisting of a permutation and a too high /-tuple of lattice paths to another 
such pair so the weights of the pair and its image sum to zero. 

Starting from the left (that is, the highest indexed path), examine the paths from left 
to right until we encounter the first one that is too high. Suppose it is path/ Let ft be the 
set of permutation, /-tuple pairs such that this first too high path intersects other paths. 
Let <B be the set consisting of permutation, /-tuples pairs such that this first too high path 
does not intersect other paths. 

INVOLUTION ON ft. Consider an arbitrary element in ft consisting of a permutation p 
and a too high /-tuple of lattice paths. Recall that pathy is the first too high path and that 
it necessarily intersects other paths. Interpreting the /-tuple as a graph with the integer 
lattice points as vertices and the steps as edges, locate the component of this graph 
containing path/. Modify the /-tuple of lattice paths by finding the Gessel-Viennot image 
of the paths in this component while leaving all other paths unchanged. The image under 
this involution is the pair consisting of p and the modified /-tuple of lattice paths. Figure 4 
gives the modified 4-tuple of lattice paths corresponding to the 4-tuple in Figure 3. 

To ensure that this procedure is an involution, we must verify that the Gessel-Viennot 
image of the component also has a too high path. This is clearly true if path y is still too 
high. Otherwise the Gessel-Viennot intersection point (where pathy switches with path 
k, say) must have occurred after the last horizontal step in pathy, and thus must be above 
heighty. Thus path k ends to the right of pathy, and, in the Gessel-Viennot image, k has 
a step above heighty > k, implying path k is too high, and giving us the contradiction 
we need. 

The only remaining problem would be if path a for some k < a < j is too high, yet 
belongs to a different component. But this is impossible because the ending point of path 
a is separated from all starting points by the terminal portions of paths y and k, and so 
path a for k < a < j must intersect pathy or k or both. 

Finally, the weights of the pair and its image cancel as required since their starting 
permutations are of opposite sign (they differ by the transposition (£,/)), but p and all 
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their horizontal steps remain unchanged. 

FIGURE 4: A MODIFIED 4-TUPLE OF LATTICE PATHS IN A 

INVOLUTION ON
 (B. For the involution <B it is useful to define a jump in a path: a jump 

at diagonal d is a vertical step at diagonal d — 1 followed immediately by a horizontal 
step at diagonal d. Consider an arbitrary element in <3 consisting of a permutation p and 
a too high /-tuple of lattice paths. Recall that y is the first too high path and that pathy 
intersects no other paths. First note that this forcesy to be a fixed point under the starting 
permutation r. Next note that pathy must have a jump, for it starts at height y — pj and, 
being too high, has a horizontal step at height greater than y. Suppose the last jump in 
pathy occurs at diagonal t and height a (necessarily a >y). 

Modify the /-tuple of paths in the following way. Leave pathy unchanged. In all other 
paths interchange the step (vertical or horizontal) at diagonal t — 1 and the step (vertical 
or horizontal) at diagonal t. The image under the involution is the pair consisting of the 
permutation p1 = p(t, t — 1) and the modified /-tuple of lattice paths. Figure 5 gives such 
an /-tuple and its image under this modification in the case À = (5,3,3,2), p = (2,2,0,0), 
m = 6, / = 4. 

To prove that this defines an involution, we examine in more detail the original /-tuple 
of paths. For / >y, path / has no horizontal steps above height /, since from the lefty is 
the first too high path. Thus path / passes through the point (A, — / + 1, /) on diagonal 
A/ + 1 and has only vertical steps thereafter. Recall that pathy intersects no other path 
and, in particular, pathy does not intersect pathy + 1. Thus (Ay+i —jj +1), the point past 
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which pathy + 1 is vertical, must occur strictly to the left of (t — a, a), the point at which 
pathy has a jump (since a >j + 1), so 

Xj+\ —y < t — a — 1 

which implies 

Ay+i < t — a+j — 1 

< t-2. 

But A is a partition, so 

A/< A/_i < • • • < Ay+i <t-2, 

and we conclude that path / is vertical above diagonal / — 1 for all / >j. 

FIGURE 5: A 4-TUPLE IN <B AND ITS IMAGE 

Thus path / is unchanged by the modification above for all / > j . Hence in the modified 
/-tuple, pathy' is still the highest indexed too high path, and pathy still does not intersect 
any path with a higher index. The only difficulty that might arise is if a path of lower 
index that did not originally intersect pathy is modified to intersect pathy. 

However, this cannot happen, for if the modified lower indexed path intersects path 
j at diagonal t, the original lower indexed path must have intersected pathy at diagonal 
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/ — 1, and if the modified lower indexed path intersects pathy at diagonal t — 1, the lower 
indexed path must have intersected pathy at diagonal t. 

Note that sgn p1 = — sgn p, the starting permutation is unchanged, and the powers of 
y in the weight are the same for the /-tuple and the modified /-tuple. Thus the weight of 
a pair and its image cancel, as required. • 

Note that Theorem 2 also specializes for standard shape to the dual of result (8) that 
appeared above, namely 

(13) V(y)det(eXl-i+j(yj)M = d e t ^ ' V A , , 

where À has / parts and X\ <m. 

COROLLARY 2. Let A be a partition with I parts. Then 

det(eXl-i+j(y\,... ,y\,))lxl= yx'. 

PROOF. Consider the starting and ending points of Theorem 2 in the case p = 0, 
and p equal to the identity. Then, from the proof of Theorem 2 and the Gessel-Viennot 
Result, the left hand side of the corollary is the generating function for the set of 
nonintersecting /-tuples of not too high paths from P\,..., Pi to Q\,..., Q\. But the only 
such nonintersecting /-tuple has starting permutation, r, equal to the identity, and path 
/ consisting of vertical steps from Pt to the line y = i, followed by A, horizontal steps 
to (A/ — / + 1, /), and finally vertical steps from there to Qi9 i - 1 , . . . , /. The product of 
the weights of these steps is^i • • -y\., and taking the product over / gives the right hand 
side. • 

If A' has more than m parts, then, because of our convention y^ = 0 if k > m, the 
expression on the right hand side of Corollary 2—which we substitute into the right hand 
side of Theorem 2 to get (13)—reduces to 0 as required. 

4. A Sergeev-Pragacz formula for Skew supersymmetric functions. In combin
ing concepts and techniques from the proofs of Theorems 1 and 2, we can forge the 
proof of Theorem 3 below. This proof is purely combinatorial and pleasingly concise, 
and its appeal is immediately apparent: Theorem 3 simplifies easily to the well-known 
Sergeev-Pragacz formula in the same way that Theorems 1 and 2 reduce to the ratio of 
alternants results for standard shape. Recall that a and p act on JC and y separately, and 
also recall thatx^ = 0 if h > n whi les = 0 if A: > m. 

THEOREM 3. Let A be a partition with I parts and / iÇA, then 

V(x)V(y)det(hXi_n-i+j(x\y))lxl 

= E E s 8 n a s 8 n PPpU/det ( / ! A / _ M . _ / + / (x 1 ,...,Xi\yi,... ,J>A,.)) /X /)• 
a£S„ pESm

 V ^ 
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PROOF. Fix points P, = (/i£ — / + 1, — n — \\ + 2) and Qt = (A,• — i + 1, m — A/ + /), 
/ = 1 , . . . , /. For each a £ Sn and p G Sm consider the /-tuples of lattice paths from 
P i , . . . ,P/ to Q\,..., Qi with only vertical steps in the region bounded by the lines 

y = — Aj + 1 and y = — x + 1 (called the triangular region). For these /-tuples of lattice 
paths we weight a horizontal step at coordinates (ij) by jc^+^-i+y) if (1,7) is in the region 
bounded by the line y = —n — X\ +2 and the line y = — Ai + 1 (called the horizontal 
region), and by yp(i+j) if (ij) is in the region above the line y = — x + 1 (called the 
diagonal region). Define the weight of such an /-tuple as the product of the weights of 
the individual steps times 

sgncr atf) sgnp p(yè) sgnr, 

where r is the starting permutation of the /-tuple. Figure 6 gives such an /-tuple in the 
case A = (8,5,4,2,1), \i = (2,1,1,0,0), n = 4, m = 5, / = 5. 

Then if we sum the weight over all a and p and all such /-tuples and use (7) we obtain 

X] J2 sgnasgnpap(x5yôdet(/zA/_M._/+/(x\j))/x/) = V(x)V(y)det(hXi-^--i+j(x\y)) , 
a<ESn p£Sm

 V J 

since paths from P, to Qt consist of a portion through the horizontal region and a portion 
through the diagonal region. These portions have generating functions hr(x) and es(y) 
respectively, with r + s = Xtf - \i} - i +7, so g(Ph Qt) = T,r+s=xi-^j-i+j hr(x)es(y). Thus we 
have a lattice path interpretation for the left hand side of the result. 

In order to consider the right hand side, we first reconsider our notions of too high 
from Theorems 1 and 2. If a horizontal step in path / of an /-tuple occurs above the line 
y = i in the diagonal region, we say the path is diagonally too high. If a horizontal step in 
path / occurs above the line y = — n — \\ + 1 + / in the horizontal region, we say the path 
is horizontally too high. An /-tuple of lattice paths is horizontally (resp. diagonally) too 
high if it contains a horizontally (resp. diagonally) too high path. Note that in an /-tuple 
that is neither diagonally nor horizontally too high, any path / will have only vertical 
steps above the line y = / and also only vertical steps between the lines y = — x + 1 and 
y = — n — A1 + 1 + /. 

Now if we sum the weight over all o and p but over only those /-tuples that are neither 
diagonally nor horizontally too high, we get 

YJ E sgnasgnp c r p ( x V d e t ^ . ^ . ^ / x i , . . . ,xt \yu... ,J%))/x/V 
aesn pesm

 v y 

In this case we have used (7) with g(P7, Qt) = /zA;_^„/+/(xi,. ..,Xi\y\,. ..yXi), the 
generating function for paths from Pj to Qt with no horizontal steps between the lines 
y = — n — X\ + 1 + / andj^ = — x + 1 and no horizontal steps above the line y = i. This 
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gives a lattice path interpretation of the right hand side of the result. 

FIGURE 6: A 5-TUPLE OF LATTICE PATHS WITH HORIZONTAL AND DIAGONAL WEIGHTS 

We now prove the result by demonstrating that the sum of the weights over all o and 
p, but over only those /-tuples that are either diagonally or horizontally too high, is zero. 
We do so by finding a sign-reversing involution that maps each trio consisting of a, p, 
and a too high (diagonally or horizontally) /-tuple of lattice paths to another such trio so 
the weights of the trio and its image sum to zero. 

The sign-reversing involution proceeds with two stages. First, if the /-tuple is diag
onally too high, apply the mapping of Theorem 2 to the portions of the paths in the 
diagonal region. 

Second, if the /-tuple is not diagonally too high but is horizontally too high, apply the 
mapping of Theorem 1 to the portions of the paths in the horizontal region. 
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It is straightforward to verify that this defines an involution. In the first instance, the 
conclusion of Theorem 2 holds. In the second instance, the conclusion of Theorem 1 
holds. Thus the weights of a trio and its image cancel as required. • 

As alluded to in Section 1, Theorem 3 specializes for standard shape to the famil
iar Sergeev-Pragacz formula by applying Corollary 3 below to the right hand side of 
Theorem 3. Recall the conventions^ = 0ifk>n andj^ = 0 if k > m. 

COROLLARY 3. Let A be a partition with I parts. Then 

det(AA._/+y(xi,... ,xi \yu... ,J%))/X/ = IT (*/ + # ) -
(ij)e\ 

PROOF. Consider the starting and ending points of Theorem 3 in the case \i - 0 
and a, p equal the identity. Then, from the proof of Theorem 3, the left hand side of 
the corollary is the generating function for the set of /-tuples of neither diagonally nor 
horizontally too high paths from P i , . . . , Pi to Q\,..., Qi. 

These neither diagonally nor horizontally too high /-tuples of paths must have the 
following form. The z-th path in the /-tuple must have only vertical steps beyond 7}, 
where 

T = {(Xi ~ l + *' *")' l = 1? * * * 'w' A/ < m 
1 \Qi, otherwise 

and also vertical steps from Rt to the line y = — x + 1, where 

_ f (1 - z + 7 / , 1 - Ai —n + î), i = l , . . . ,w 
Ri~ \ (l - T ( 0 , 1 - A I ) , i>n 

and 7/ > 0, / = 1,...,«. 
Given this set of neither diagonally nor horizontally too high /-tuples, we select the 

subset of those for which the portions between PT^ and /?/ do not intersect. Call this 
set of/-tuples C. For each 7i, • . . , ln there is only one choice for these portions: r must 
equal the identity, and, for / = 1 , . . . , n, path / must consist of vertical steps from Pt to the 
line y = — n — A i + 1 + /' and horizontal steps from there to Rt, while, for / = n + 1 , . . . , /, 
path / must be vertical from Pt to Rt. 

For / = 1,...,«, the weight contribution from the steps from Pt to Rt is x\\ while the 
weight contribution from the steps from Rt to 7/ is ex.^.iyi,... ,̂ A/)- Summing over all 
7/ > 0 gives a total contribution from the i-th path in C, i = 1,...,« of 

(14) E *?'*AI~7I0'I, • • • ,yx,) = l i fe +yj) 
7/>0 j=\ 

(recall the convention^ = 0 for k > ni). For / = n + 1 , . . . , / , the weight contribution 
from the steps from P, to Rt is 1, while the weight contribution from the steps from Rt to 
Tt is e\t(y\,... ,y\() = y\ • • -y\r So we have a total contribution from the i-th path in C, 
i = n+ 1 , . . . , / of 

(15) y\---yxr 
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However, with the convention x* = OifA; > «, expressions (14) and (15) can be combined 
to give 

A, 

for all / = 1 , . . . , /. 
Taking the product over all i we see that the weight sum of the /-tuples in C is 

n (*«•+»), 
0V)GA 

the right hand side of Corollary 3. 
If we can find a weight-cancelling involution that demonstrates that the sum of weights 

over /-tuples not in C is zero, then we will have achieved our purpose. Invoke the Gessel-
Viennot procedure on the complement of C but consider only intersection points that 
occur in the segments from PT^ to Rf. This defines a weight cancelling involution on the 
complement of C, so the result follows. • 

5. Connections to flagged Schur functions. The determinants present in the right 
hand sides of Theorems 1 and 2 are actually special cases of what are known as row-
flaggedand column-flaggedskew Schur functions. The general definitions of these follow 
now. 

We define T(A//x, a, b) to be the set of all skew tableaux of shape A//i with row flags 
a = a\,... ,a„ and b = b\,... ,b„ (i.e. the entries in row / are bounded below by a, and 
above by /?/). The row-flagged skew Schur function, sx/^(a, b;x), is defined as 

sx/^(a,b\x) = Y. I I XT{*), 
T aGA//i 

where the summation is over row-flagged skew tableaux T(A//i,a,Z?) and a G A/^ 
means that a ranges over all squares in the Ferrers diagram of A//i. 

Moreover, if we make the assumption that at < ai+\, and bt < bi+\ for / = 1 , . . . , «, 
there is a Jacobi-Trudi result for these functions ([4], [16]): 

(16) sx/ti(a,b;x) = det(/zA/._M._/+/-(xa7,xa.+1,... ,^ , ) ) / x / -

This result is true also under slightly weaker assumptions (see [16]); however, these 
conditions suffice for our purposes. 

Note now the significance of (16). It means that the determinant on the right hand 
side of Theorem 1 is actually a row-flagged skew Schur function with a = ( l , I , . . . , l ) 

and 6 = (1 ,2 , . . . , / ) . 
Now we define T*(A//x, a,b) to be the set of skew tableaux whose shape is the 

conjugate of A//i and whose column flags are a = # i , . . . ,am and b = b\,... ,bm (i.e. 
the entries in column j are bounded below by q and above by bj,j = 1 , . . . , m). The 
column-flagged skew Schur function, s*x, (a, b\y), is defined as 

s*\/v(aib>y) = Y, I I yna), 
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where the summation is over column-flagged skew tableaux T*(A//i, a, b) and a G A//i 
means that a ranges over all squares in the Ferrers diagram of A///. 

Moreover, if we make the assumption that cij — \ij < aj+\ — /iy+i + 1, and bj — Ay < 

bj+\ — Xj+\ + 1,7 = 1 , . . . , m, then there is a dual Jacobi-Trudi result for these functions 

([4], [16]): 

(17) s\hl(a, b;y) = det(eA|._/i._/+/(ya.,... , ^ ) ) / x / -

This result is true also under slightly weaker assumptions (see [16]); however, these 
conditions suffice for our purposes. 

Note now the significance of (17). It means that the determinant on the right hand side 
of Theorem 2 is actually a column-flagged skew Schur function with a = ( l , l , . . . , l ) 
and6 = (Ai,A2,...,A/). 

It is important to note that row-flagged and column-flagged skew Schur functions are 
not generally equal. A judicious choice of flag conditions, however, can create equality. 
One instance of this appears in Macdonald [11]; another appears below. 

THEOREM 4. Let A be a partition with I parts. Then 

det(hXi-pj-i+j(x\,... ,*/)) /x / = det(eA;_^_ /+/(xi,... ,*A;))A | X A I-

PROOF. Exploiting the identifications provided by ( 16) and ( 17), we prove this theo
rem using the tableau definitions of row and column flagged skew Schur functions. First 
suppose we have a tableau satisfying the column bounds of 1 and Ay. Then certainly all 
entries in row / are > 1. Now consider the entry in (ij). The largest element in column 
7 is Xj and it can occur only in row A'. Then because of column strictness we can count 
backwards to see that the largest element in (z'j) must be < /. So the tableau satisfies the 
row bounds as well. 

Now suppose we have a tableau satisfying the row bounds of 1 and /. Then certainly 
all entries in column j are > 1. Now consider the entry in (ij). The largest possible 
element in row / is /. But / is always < A- since the largest row intersecting column^ is 
at most Xj. SO the tableau satisfies the column bounds as well. 

Hence the same set of tableaux generates both determinants. • 

Because of Theorem 4, we see that Theorems 1 and 2 are actually the same theo
rem. Note however that we derived Theorems 1 and 2 separately, since we needed the 
techniques in the proofs of both Theorems 1 and 2 to prove Theorem 3. 

Building on the models of the row- and column-flagged skew Schur functions we 
can proceed to define a row-flagged super symmetric Schur function. The row-flagged 
supersymmetric skew Schur function, sx/fl(a1 b, c, d\x,y\ is defined as 

sxj[l{a, b, c, d\x,y) = 1 X ^ ( 0 , b\x)s\j}/{c, d\y). 
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Moreover, if we make the assumptions a-t < a/+i, 6/ < bi+\, Cj — pj < cJ+\ — pJ+\ + 1, 
dj — Ay < dj+\ — A/+i + 1, / = 1 , . . . , n,j = 1 , . . . , w, then it follows easily by a Gessel-
Viennot argument on the lattice path set-up of Theorem 3 that 

s\/n(a, bi ci d\x,y) = det(AA._^._/+/(^.,... ,xb. \yCj,... , ^ ) ) / x / . 

Note that, as in the two previous cases, this expression provides an identification of the 
determinant on the right hand side of Theorem 3 as a row-flagged skew supersymmetric 
Schur function. 

Now that the right hand sides of Theorems 1 through 3 have been identified as flagged 
functions, we can ask the question: "For which flag conditions can the right hand side 
be extended so that Theorems 1,2, and 3 are true?" A partial answer is given below 
in Theorems 5 through 7. The proofs are analogous to those for Theorems 1 through 3 
with the only major change being slight alterations to the notion of too high. To extend 
Theorem 1 to Theorem 5, replace "height above /" by "height above 77/." To extend 
Theorem 2 to Theorem 6, replace "height above f by "height above i + v{ — A/." The 
proof of Theorem 7 is obtained from those of Theorems 5 and 6 in the same way that the 
proof of Theorem 3 was obtained from those of Theorems 1 and 2. 

THEOREM 5. Let A be a partition with I parts, and p Ç A, then 

sgncr a(x5 det(h\i-nJ-i+j(x\,... ?-%))/x/h 
a£S„ V J 

where 0 < r\\ < rj2 < • • • < r\k < n, r]k+\ = • • • = 77/ = n, and where k > 0. 

THEOREM 6. Let A be a partition with I parts, and / iÇA, then 

V(y)det(eA._^._I-+/(y)) = £ sgnp p(yb det(eAj._/i._I-+y(yi,... ^ , ) ) / x / ) , 
pesm

 v ' 
under the following conditions: I) z// — A/ < v\-\ — A/_i < • • • < vt — Xt, v\ < v\-\ < 
• • • <vt<m, andvt-\ = • • • = v\ = m, and 2) t < /+ 1. 

THEOREM 7. Let A be a partition with I parts, and p Ç A, then 

V(x)V(y)det(hXi_^i+j(x\y))lxl 

= E E sgn a sgn p ap(x5y6 det(hXi_^i+J(xu . . . ,xm \yu . . . , ^ ) ) / x / ) , 
aes„ pesm

 v y 

under the following conditions: 1) 0 < r\\ < 7/2 < • • • < rfk < n, 77̂+1 = • • • = T// = «; 
2) k > 0; 3) v\ — A/ < i//_i — A/_j < • • • < vt — \t, v\ < z//_i < • • • < vt < m, and 
vt-\ = - - • = v\ = m; and4) t <l+\. 

Note that the right hand sides of Theorems 5 through 7 involve restricted classes 
of flagging conditions. Indeed the analogous results are not true if an arbitrary Jacobi-
Trudi determinantal form of flagged Schur function appears on the right hand side. For 
example, for Theorem 5, let n = 2, A = (2,1), p = (1,0), and 771 = 7/2 = 1. Then 
Eaesn sgna a\y? det(AAi._^._/+y(*i))2x2J = V{x)s2{xXlx2\ not V(x)s{2A)/{h0)(xux2), even 
though detf/̂ A,—^—/+/(̂ i))2 2 = *i is a row-flagged Schur function. 
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