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Abstract

Let E, F be sequence spaces and A an infinite matrix that maps E to F. Sufficient conditions are
given so that the transposed matrix maps F' to Ef.

1980 Mathematics subject classification (Amer. Math. Soc): primary 40 C 05, 40 D 25; secondary
40H05.

1. Introduction

Let A be an infinite matrix of complex numbers and A' its transpose. Vermes
(1957) considered the relationships between A, as a regular sequence to sequence
summability method, and A', as a regular series to series method. Jakimovski and
Russell (1972) obtained some additional results on the relationships between A and
A', when A is a mapping between BK spaces.

In this note we consider A as a mapping between two sequence spaces, E and
F, and determine when A'- maps Ff to Efi. The range of corollaries includes some
of the results of Jakimovski and Russell (1972), a result of Skerry (1974), and a
result related to one announced by Dawson (1976).

2. Preliminaries

A sequence space is a vector subspace of the space co of all complex sequences.
A sequence space E with a locally convex topology, T, is a K space if the linear
functionals

x-*xj, j = 0,1,2,...,
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are continuous. In addition, if (£, T) is complete and metrizable, then E is an FK
space. A normed FK space is a BK space.

If £ is a sequence space, we write

f 00 ^

Ef = < y e (o: £ */ ̂  converges for all x e E \,
( J

)
J] y y < oo for all xe£> ,

J=o J

f » )
Ey =<ye(o: sup £ x ,y , < oo for all xe£> .

(. n ; = 0 J
Let <p be the space of sequences with only finitely many non-zero terms. In this

paper, it will be assumed that all sequence spaces contain (p.
If F is a subspace of Ep, then £ and F form a dual pair under the bilinear form

00

<x,y>= £ Xjyj.
7 = 0

The weak topology on £ by £, a{E, F),isa.K space topology. Topologies for dual
pairings of the type described above have been considered by Garling (1967a).

If xeoi, let i*nx = {xo,xu ...,*,,,0,0,...}. If (£,T) is a K space such that
/*„* -* x for each xe£, then £ is called an AK space.

If y4 = (a,*) is an infinite matrix of complex numbers the sequence Ax = {(Ax)n}
is denned by

J > n =0,1,2,....

EA = {xeto: AxeE}, where £ is a sequence space. Also A' denotes the transpose
f .̂
The following spaces will be used in the sequel:

m = Ixea>: sup |xj < ool;

co = {xee»: limxB = 0J;

l'{l<p<co)=lxea>: | j x n | " < ooj;

bs =<xeco: sup £ xk <oo>;
I n t=o J

bv=\xeoj: £ |xB-xn+11 < ooi;
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bvo = bvnco;

cs—-\xe(o: 2_, xn converges>.
n = 0 J

Each of the above is a BK space when topologized in the usual way. In addition,
all except bs, m and bv are AK spaces.

It is well known that (py> = /«; (l/p)+(l/q) = 1 and p # 1; I* =m; m* =1;
bv*Q = bs; bs* = bv0; bv* = cs; cs* = bv; csy = bv; bvy = bs and c*0 = /.

3. Main results

Let £ be a sequence space containing q> such that {E*, o(E*, E)) is sequentially
complete. Let B = (bnk) be an infinite matrix such that {(Bx)n} is convergent for
every xeE. For each n =0 ,1 ,2 , . . . , let b(n) = {bnk}k=0. Then {bw} is a Cauchy
sequence in (Efi, a(Efi,E)). Thus, there exists b = {bk}eEfi such that

oo

lim(Bx)n= X M*
n-+oo t=O

for every xeE. Since £ contains q> it follows that, for each k =0 ,1 ,2 , . . . ,

lim (Be*), = ftt,

where e* denotes the sequence with a one in the /rth coordinate and zeroes else-
where.

These considerations provide the key to the following theorem. The complete
proof may be found in Swetits (1978), Theorem 2.1.

THEOREM 3.1. Let E and F be sequence spaces, each containing q>, such that
(Efi, a(E*, E)) and (F, a(F, Fp)) are sequentially complete. If A = (ank) is an infinite
matrix then the following are equivalent:

(i) FA contains E;
(ii) EA. contains Ff;

(iii) FA contains (Epy.

If the hypotheses in Theorem 3.1 are omitted, then the conclusions can fail.
Define A = (ank) by

[
« m t = j - l . k =

{ 0, otherwise.

Then lA contains bv. However, cs is not a{cs,bv) sequentially complete and csA,
does not contain m. Thus, (i) -* (ii) fails.
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Let B — A' where A is the matrix defined above. Then csB contains c0, lB

contains bv, but csB does not contain m. Thus, (ii) => (ii) fails.
Examples of spaces, E, that satisfy the conditions of Theorem 3.1 are monotone

spaces (that is, the coordinatewise product xyeE if xeE and y is a sequence of
zeroes and ones (Bennett (1974), p. 55)), FK-AK spaces, and Garling's class of
Bo invariant spaces (Garling (1967b)).

Examples of spaces, F, that satisfy the conditions of Theorem 3.1 are perfect
spaces (F = (F*)"), bs, bv and bv0. Each of the spaces mentioned in Section 2 is in
one of the above categories.

The first corollary to Theorem 3.1 is well known. For each p, I < p < oo, lp is
a perfect space.

COROLLARY 3.2. (lp)A contains lq if and only if (lq')A. contains I"', where

(l/p)+(l/pO = 1 and (W+(W)= 1.

A sequence x is said to be entire if ££L01 xn | p" < oo for all p > 0. x is analytic
if £ " = 0 | xn | p" < oo for some p > 0. Let £ be the space of entire sequences and si
the space of analytic sequences. Then 8* = si and •$/" = 8, and both 8 and si
are perfect spaces. The following result has been obtained by Skerry (1974),
Theorem 4.5.

COROLLARY 3.3. 8A contains 8 if and only if sf'A contains si.

Macphail (1951), Theorem 2, established necessary and sufficient conditions for
a matrix A = (ank) to transform every analytic sequence into /. His result, combined
with Theorem 3.1, yields

COROLLARY 3.4. 8A contains m if and only if, for every r > 0, there is a constant
M(r) such that

£ \ank\<M(r)r», n =0,1 ,2 , ....
*=o

The next two corollaries are stated in Jakimovski and Russell (1972), p. 352.
They are consequences of Theorem 3.1, (i) =*• (ii).

COROLLARY 3.5. If cA contains c0, then lA. contains I.

COROLLARY 3.6. IfcA contains bv0, then bsA> contains I.

The next result enlarges the class of spaces, F, for which the equivalence between
(i) and (iii) of Theorem 3.1 is valid.
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THEOREM 3.7. Let E, F be sequence spaces, each containing <p, such that
(Efi,a(Ef,E)) is sequentially complete and F = (Fr)\ If FA contains E, then FA

contains (Epf.

PROOF. Let {tk}eFy and {xk}eE. Then

sup z<*z
n=0 * = 0

< 00.

This means

sup | (Bx)j | < oo,
j

where B = (bJk) is denned by

Thus mB contains E. Since (w, a(m,l)) is sequentially complete, Theorem 3.1
implies that mB contains ( £ " / . Thus, for any xe(E*y,

sup
n=0 k=0

< 00.

It follows that Axe(Fy) =F. Hence FA contains {E"f.

The following corollary is immediate.

COROLLARY 3.8. Let F be as in Theorem 3.1 or Theorem 3.7. If FA contains c0,
then FA contains m.

The space of convergent quasiconvex sequences of order r, c.q.s.(r) is defined as
follows: xec.q.s.(r) if

(fc+r~1Wx,|<
where

Z
n=0

Jakimovski and Livne (1972), Theorem 4.2, have characterized those matrices,
A, such that cA contains c.q.s.(r). Using their result, it is an easy matter to verify
that ((c.s.q.(r)yy = c.q.s.(r). With F = c.q.s.(r), Corollary 3.8 is closely related to
a result recently announced by Dawson (1976).

For any BK space E, define

= S U p SUp z x * ^ < 00.
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If E, T are BK spaces and A is a matrix, let

I A || (EiF) = sup sup sup sup
j

t yj t a

j=0 k=0

Jakimovski and Livne (1971), Theorem 5.2, have shown that, if E is a BK-AK
space and F = Gy where <? is a -ftST space, then FA contains E if and only if
II A ||(£,F) < °°- This result, combined with Theorem 3.7, yields

COROLLARY 3.9. Let E be a BK-AK space and F = Gy where G is a BK space.
Then FA contains {Eff if and only if \\A\\(EtF)<co.

In Corollary 3.9, {Efif cannot be replaced by {Er)y. Let E = cs and F = l.
Then (csY)y = bs. Let A be the matrix whose first row consists entirely of ones and
all of whose other entries are zero. Then lA = cs.

A special case of Corollary 3.9 is the well-known equivalence of the following:

(i) mA contains c0;
(ii) mA contains m;

00

(iii) sup X I a,* I < °o.
n * = 0

A BK space E has the property FAK if {f(Pnx)} converges for every xeE and
every continuous linear functional, / , on E. E has the property AB if {|| Pnx ||} is
bounded for each xeE (see Zeller (1951); Sargent 1964)). It is known that FAK
implies AB.

Let Eo be the closure in E of <p. If E has AB, then Eo is a BK-AK space with the
norm of E (Sargent (1964), Theorem 2). Sargent (1964), Theorem 3, has shown that
E has FAK if and only if £g = Ep. Combining these results with Corollary 3.9 we
have

COROLLARY 3.10. Let E be a BK-FAK space, Eo the closure in E of q>, and
F = Gy where G is a BK space. Then FA contains E if and only if || A ||(EO,F) < °0-

Corollary 3.10 cannot be extended to BK-AB spaces. Let E = bs, E0=cs,
F = l, and use the example following Corollary 3.9.

Finally, it is noted that Theorem 3.1 proved useful in characterizing dense
barrelled subspaces of an FK-AK space (Swetits (1978)).
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