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What is a Pomeron? 

Before the advent of the field theoretic approach (QeD), a good 
deal of progress had already been made in developing an under­
standing of the scattering of strongly interacting particles. This 
progress was founded on some very general properties of the scat­
tering matrix. Regge theory provided a natural framework in 
which to discuss the scattering of particles at high centre-of-mass 
energies. 

With the arrival of QeD much attention was diverted away 
from the 'old fashioned' approach to the strong interactions. Inter­
est was re-ignited within the particle physics community with the 
arrival of colliders capable of delivering very large centre-of-mass 
energies (e.g. the HERA collider at DESY and the Tevatron col­
lider at FNAL). For the first time physicists started to investigate 
in earnest the properties of QeD at high energies and compare 
them with the predictions of the Regge theory. 

The high energy limit provides the arena in which the Regge 
properties of QeD can be studied. It is the meeting place of the 
'old' particle physics with the 'new'. Since by 'old' we mean over 
30 years ago it is necessary to commence our study of high energy 
scattering in QeD with an introduction to (or recap of) Regge the­
ory. This chapter will contain a 'whistle-stop tour' of Regge theory 
and Pomeron phenomenology. We keep this to the minimum which 
will be required in order to follow the subsequent chapters and re­
fer the interested reader to the literature (e.g. Collins (1977)) for 
further details. 

1.1 Life before QeD 

Before the development of QeD nobody dared to apply quantum 
field theory to the strong interactions. Instead, physicists tried 
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2 What is a Pomeron? 

to extract as much as possible by studying the consequences of 
a (reasonable) set of postulates about the S-matrix, whose abth 
element is the overlap between the in-state (free particles state as 
t - -()(»), I a), and the out-state (free particles state as t ----+ +00), 
I b), 

Postulate 1: 
The S-matrix is Lorentz invariant. 

This means that it can be expressed as a function of the 
(Lorentz invariant) scalar products of the incoming and outgoing 
momenta. For two-particle to two-particle scattering, 

a + b --+ C + d, 

these are most effectively described in terms of the Mandelstam 
variables, s, t, and u defined by 

s (Pa + Pb)2 

t (Pa - Pe)2 

u (Pa-Pd)2, 

as well as the four masses, ma, mb, me, md. The total energy of 
the system in the centre-of-mass frame is IS and t is the square 
of the four-momentum exchanged between particles a and c and 
is related to the scattering angle. u is not an independent variable 
since by conservation of momentum we can show that t 

s + t + u = m~ + m~ + m~ + m~. 
We therefore write a two-particle to two-particle scattering am­

pli tude as A ( s, t), a function of sand t only (the amplitude also 
depends on the masses of the external particles). 

For two-particle to n particle scattering processes there are 3n-
4 independent invariants. 

Postulate 2: 
The S-matrix is unitary: 

sst = st S = 11. 

t Throughout this book we work in the system of units h = c = 1. 
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1.1 Life before QeD 
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Fig. 1.1. The Cutkosky rules for a two-particle to two-particle am­
plitude. The shaded cut line denotes that the intermediate particles 
are on mass-shell whilst the + and - signs denote the amplitude 
and its hermitian conjugate respectively. 
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This is a statement of conservation of probability, i.e. the prob­
ability for an in-state to end up in a particular out-state, summed 
over all possible out-states, must be unity. 

The scattering amplitude, Aab, for scattering from an in-state 
I a) to an out-state I b) is related to the S -matrix element by 

Sab = 5ab + i(27r)454 (~Pa - ~Pb) Aab 

(( 27r )454 (L:a Pa - L:b Pb) Aab is often called the T -matrix element 
Tab where S = 11 + iT) and the unitarity of the S-matrix leads to 
the relation 

2'SmAab = (27r)454 (LPa - LPb) L A acA1b' (1.1) 
abc 

This gives us the Cutkosky (1960) rules, which allow us to de­
termine the imaginary part of an amplitude by considering the 
scattering amplitudes of the incoming and outgoing states into 
all possible 'intermediate' states. These rules will be used exten­
sively in later chapters. For the case of two-particle to two-particle 
scattering the Cutkosky rules are shown schematically in Fig. 1.1. 
Here the shaded 'cut' line means that the intermediate particles 
are taken to be on their mass-shell and an integral is performed 
over the phase space of the intermediate particles. The minus signs 
in the amplitudes on the right of the cuts mean that the hermi-
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tian conjugate is taken, i.e. the in- and out-states are interchanged 
and the complex conjugate is taken (in perturbation theory this 
implies that the sign of the iE for each internal propagator is re­
versed). 

An important special case of the Cutkosky rules is the optical 
theorem, which relates the imaginary part of the forward elastic 
amplitude, A aa , to the total cross-section for the scattering of the 
(two-particle) state, la), 

2'SmAaa(s, 0) = (27r)4L84 (LPi - LPa) IAa_m1 2 = FO"tot, 
n i a 

(1.2) 
where F is the flux factor (for v's much larger than the masses of 
the incoming particles F ~ 2s). 

Postulate 3: 
The S-matrix is an analytic function of Lorentz invariants (re­
garded as complex variables), with only those singularities re­
quired by unitarity. 

It can be shown that this 'analyticity' property is a consequence 
of causality, i.e. that two regions with a space-like separation do 
not influence each other. 

Analyticity has a number of important and useful consequences. 
Combined with unitarity we are able to establish the existence of 
the s-plane singularity structure of the amplitude A( s, t) shown 
in Fig. 1.2, i.e. there are s-plane cuts with branch points corre­
sponding to physical thresholds. These arise because the n-particle 
states must contribute to the imaginary part of the amplitude if s 
is greater than the n-particle threshold (see Eq.(1.1)). The imag­
inary part of the amplitude is 

~ A( ) A(s, t) - A(s, tt 
'Jm s, t = 2i 

Below threshold there are no contributions to the imaginary part 
and so there exists a region on the real s-axis (around the origin) 
where the amplitude is purely real. This means that we can use 
the Schwarz reflection principle, which states that a function (of 
s) which is real on some part of the real s-axis satisfies 

A(s,t)* = A(s*,t) 
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Fig. 1.2. The cuts on the positive real axis in the complex s-plane. 

5 

throughout its domain of analyticity. So, in order to have an imag­
inary part for real s above threshold, we need a cut along the real 
axis with branch point at the threshold energy.t Using the Schwarz 
reflection principle we can write 

o ( . ) A(s+iE,t)-A(s-iE,t) 
:;smA s + 'tE, t = 2i 

in the region where the amplitude is analytic, e.g. for real s and 
Eo This is non-zero for real s above threshold and allows us to 
define the imaginary part of the physical scattering amplitude 
above threshold as 

'Sm A( s, t) = ~lim [A( s + iE, t) - A( s - iE, t)]. (1.3) 
2't E--+O 

The right hand side is called the s-channel discontinuity and is 
often denoted by ~sA(s, t)'+ Analyticity also implies, as we shall 
shortly show, that there are cuts along the negative real axis. 

A further consequence of analyticity is crossing symmetry. Con­
sider the scattering process 

a + b -+ C + d, (1.4) 

and write its amplitude as Aa+b--+c+d(S, t, u) (we have reinstated 
the variable u for the sake of symmetry but understand that this 
is not an independent variable). Now in the physical kinematic 
regime for the process (1.4) we have s > 0 and t, u < O. Since the 
amplitude is an analytic function it may be analytically continued 

t This is true for ~ 2 particles in the intermediate state. For single particle 
production, i.e. a bound state of mass m, we have a pole at s = m 2 • 

This corresponds to the definition of the physical scattering amplitude as 
the limit lim.~o A( s + i~, t). 
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to the region t > 0 and s, u < O. This gives the amplitude for the 
t-channel process, 

a + c -7 h + d, (1.5) 

where h, c mean the antiparticles of particles b and c respectively. 
Thus we have 

A a+c-+b+d( s, t, u) = Aa+b-+c+d( t, s, u) (1.6) 

and similarly for the u-channel process, 

a + J -7 h + c, (1.7) 

we have 

Since the amplitude for the t-channel and u-channel processes 
also have imaginary parts and consequently physical thresholds, 
there must be cuts along the real positive t and u axes with branch 
points at these thresholds. Now u = L:i mJ - s - t, so that the 
existence of a threshold at u = Uth for positive u (at fixed t) means 
that as well as a branch point at positive s = sth corresponding 
to the physical threshold for the s-channel process, the amplitude, 
A( s, t) must have a cut along the negative real s-axis with a branch 
point at s = s;:h = L:i mJ - t - Uth. 

The next important consequence of analyticity which we shall 
make use of is that it enables us to reconstruct the real part of an 
amplitude from its imaginary part using dispersion relations. We 
refer to the standard texts on mathematical physics for those read­
ers unfamiliar with dispersion relations (e.g. Mathews & Walker 
(1970)). 

The Cauchy integral formula allows us to write 

A(s t) = _1 i A(s',t) d' 
, 2. (' )s, 7rZ c S - S 

where C is a contour that does not enclose any of the singularities 
of A. Such a contour is shown in Fig. 1.3. It goes around the cuts 
along the positive and negative real axes and around the semi­
circles at infinity. The contributions to the contour integral from 
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the parts that surround the cuts are 

1'::V d ,A(s' + iE, t) l sih d ,A(s' - iE, t) 
s / + S --';---/---,----'--sih (s - s) co (s - s) 

j S;h d ,A(s' + iE, t) I-co d ,A(s' - iE, t) + s + s . -00 (s/-s) s;h (s/-s) 

Provided A( s, t) falls to zero as I s I --'> 00, the contribution to the 
contour integration from the semi-circles at infinity may be ne­
glected and using Eq.(1.3) we end up with the dispersion relationt 

A(s,t) = ~IOO ~mA(s',t) ds' + ~ rs;h ~mA(s',t) ds'. (1.9) 
7r sih (s/-s) 7rLoo (s/-s) 

In the second of these integrals the imaginary part of the ampli­
tude for s < s;h is obtained from the Cutkosky rules applied to 
the u-channel process (1.7), i.e. 

~mA(s < s;",t) = -LluA(s,t). 

t We have assumed no contribution from bound state poles which generally 
add extra contributions. 
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8 What is a Pomeron'? 

If the amplitude does not vanish as lsi ---+ 00, then we have to 
make subtractions, i.e. we divide the amplitude by as many factors 
of s - Si as are necessary to produce a vanishing contribution from 
the semi-circles at infinity (the Si are arbitrary and define the 
points at which the subtractions take place). For example, making 
one subtraction at s = So we obtain the subtracted dispersion 
relation 

A(s,t) A( ) (s - so) 100 SmA(s',t) d' 
so, t + s 

7l" 8th (s'-s)(s'-so) 

(S-SO)jS;h S'mA(s',t) d' + s. 
7l" -00 (s' - s)(s' - so) 

(1.10) 

For our purposes we shall require the subtracted dispersion rela­
tion which allows us to reconstruct a function of s whose imaginary 
part is given by 

A (lnst. 

Equation (1.10) allows us to establish that, to leading order in 
In s, this function is purely real and equal to 

A ( )n+l 
( ) Ins , 
n+17l" 

where we have used Eq.(1.3) to write 

In(-s) = In(s) - i7l". 

Thus we see how, from three rather general postulates cou­
pled with the spectrum of elementary particles, we can develop at 
least a set of self-consistency conditions for amplitudes and their 
relation to each other. Unitarity relates the imaginary parts of 
amplitudes to sums of products of other amplitudes, and disper­
sion relations then allow us to determine the corresponding real 
parts. The application of this process is called a bootstrap and 
it does not make any assumption about any underlying quantum 
field theory which may describe the dynamics of the strong inter­
actions. 

A further ingredient needed for the bootstrap is the asymptotic 
behaviour of amplitudes. Once we know these and their analytic 
structure then analyticity can be used to reconstruct the ampli­
tudes. Determination of the asymptotic behaviour of amplitudes 
is the goal of Regge theory (Regge (1959, 1960)). 
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1.2 Sommerfeld- Watson transform 9 

1.2 Sommerfeld-Watson transform 

Let us consider a two-particle to two-particle scattering process in 
the t-channel (Eq.(1.5)) at a centre-of-mass energy, Js, which is 
much larger than the masses of the external particles. The am­
plitude can be expanded as a series in Legendre polynomials, 
Pz( cos 0), where 0 is the (centre-of-mass frame) scattering angle 
and is related to s, t by 

2t 
cosO = 1 + -. 

8 

This expansion is called the partial wave expansion, namely, 
<Xl 

(1.11) 
z=o 

Pz (z) is a polynomial in z of degree 1, and the functions az ( s) are 
called the partial wave amplitudes. 

From the property of crossing symmetry (Eq.(1.6)) this may be 
continued into the 8-channel by interchanging 8 and t to give 

<Xl 

(1.12) 
z=o 

Sommerfeld (1949), following Watson (1918), rewrote this par­
tial wave expansion in terms of a contour integral in the complex 
angular momentum (1) plane as 

1 Ie a(l t) A(8, t) = -; dl(21 + l)-.-'-lP(l, 1 + 28ft), 
2z C Slll7r 

(1.13) 

where the contour C surrounds the positive real axis as shown in 
Fig. 1.4. The Legendre polynomials can be expressed in terms of 
hypergeometric functions and analytically continued in I, giving 
the analytic function P(l, z). The function a(l, t) is an analytic 
continuation of the partial wave amplitudes az(t). The denomi­
nator sin trl vanishes for integer I giving rise to poles which then 
reproduce Eq.(1.12). 

1.3 Signature 

It is now natural to ask if the function a(l, t) is unique. At first 
sight it appears that it is not. For example we could add to 
a(l, t) any analytic function which vanishes at integer values of 
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Fig. 1.4. Sommerfeld-Watson transform. 

l without affecting the above result. However, using a theorem by 
Carlson (1914), it can be shown that a(l, t) is unique provided 
a(l, t) < exp( ?rIll) as III ---io 00. Unfortunately there are contribu­
tions to the partial wave amplitudes which alternate in sign, i.e. 
are proportional to ( _1)1 and so the required inequality is violated 
along the imaginary axis. It is therefore necessary to introduce two 
analytic functions a(+l)(l, t) and a(-l)(l, t) which are the analytic 
continuations of the even and odd partial wave amplitudes. Thus 
we have 

A(s, t) = ~ i dl(2~ + ~) L (1] + e- i7r1
) a(ry)(l, t) P(l, 1 + 2sft), 

2z c sm?r ry=±l 2 
(1.14) 

where 1], which takes the values ±1, is called the signature 
of the partial wave and a(+l)(l, t) and a(-l)(l, t) are called the 
even- and odd-signature partial wave functions. The prefactors 
~ (1] + exp( -i?rl)) are called the signature factors. 
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1.4 Regge poles 

The next step is to deform the contour G of Fig. 1.4 to the contour 
G', which runs parallel to the imaginary axis with Re l = - ~. 
In order to do this we must encircle any poles or cuts that the 
functions a(1))(l, t) may have at 1 = Qn-,/(t) and pick up 27ri X the 
residue of that pole. For the particular case of simple poles only 
we arrive at 

A(s,t) = ~!-t+iCO dl [(2!+1) L (1]+e- i7rl )a(1))(l,t) 
2z -t-ico sm 7rl 1)=±1 2 

X P(l,1 + 2S ft)] 
+ L L (1] + e-i7rC>n,,(t)) . i3n,,(t) P(Qn,,(t), 1 + 2sft). (1.15) 

1)=±1 n" 2 SIn 7rQn " (t) 

The simple poles Q n " (t) are called even- (1] = + 1) and odd­

(1] = -1) signature Regge poles and i3n" (t) are the residues of 
the poles multiplied by 7r(2Qn ,,(t) + 1). 

Throughout this book we shall be concerned with the Regge 
region, i.e. s ~ Itl. In this limit the Legendre polynomialis dom­
inated by its leading term and we have 

P(1 2sft) s~ltl r(21 + 1) (~)l 
l + f2(l + 1) 2t ' 

where r( x) is the Euler gamma function. In this limit the contri­
bution to the right hand side of Eq.(1.15) from the integral along 
the contour G' vanishes as s ----+ 00, so that it may be neglected. It 
should now be clear why we exploited the crossing symmetry to 
write Eq.(1.12) and why we deformed the contour as in Fig. 1.4 
- we wanted to exploit the asymptotic behaviour of the Legen­
dre polynomial so as to isolate the high energy behaviour of the 
scattering amplitude in the Regge region. In fact we need only 
consider the contribution from the Regge pole with the largest 
value of the real part of Qn,,(t) (the leading Regge pole). Thus we 
have 

( + -i7rc>(t)) 
A(s, t) s~c:, 1] e j3(t)sc>(t), 

2 
(1.16) 
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Fig. 1.5. A Regge exchange diagram. 

where a(t) is the position of the leading Regge pole (at some value 
of t) and." is its signature. Some factors depending on t (but not 
on s) have been absorbed into the function f3( t). 

Although we have assumed only simple poles in arriving at 
Eq.(1.16) it is possible that there are also non-simple poles and 
cuts which would lead to additional contributions to the ampli­
tudes. We shall show that whereas the simple pole model works 
well for certain hadronic processes, leading logarithm perturbation 
theory can in general give rise to cuts. 

1.5 Factorization 

We can view the amplitude given by Eq.(1.16) as the exchange in 
the t-channel of an object with 'angular momentum' equal to a(t). 
This is of course not a particle since the 'angular momentum' is 
not integer (or half-integer) and it is a function of t. It is called 
a Reggeon. We can view a Reggeon exchange amplitude as the 
superposition of amplitudes for the exchanges of all possible par­
ticles in the t-channel. The amplitude can be factorized as shown 
in Fig. 1.5 into a coupling lac( t) of the Reggeon between particles 
a and c, a similar coupling Ibd(t) between particles band d and a 
universal contribution from the Reggeon exchange. The couplings 
1 are functions of t only. Thus we obtain 

A( t) S~CXl (." + e- i1fa (t)) lac(thbd(t) aCt) 
s, . S • 

2sin7ra(t) r(a(t)) 
(1.17) 

We have explicitly extracted a factor of r (a( t)) in defining the 
couplings I. The reason for this is that if a( t) takes an inte-
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ger value for some value of t then the amplitude has a pole. For 
positive integers this can be understood as the exchange (in the 
t-channel) of a resonance particle with integer spin, but we would 
not expect such resonances with negative values of 'spin' . Such 
poles are called nonsense poles, and are cancelled by the factor 
Ijf (a(t)), which has zeroes at a(t) = 0, -1, -2···. 

One immediate consequence ofEq.(1.17) is the relation between 
the p-parameter, defined to be 

~eA 
p= 0; A' (1.18) 

:sm 

and the signature and position of the (leading) Regge pole. The 
couplings iac(t) and ibd(t) are expected to be real functions of t 
and so from Eqs.(1.17) and (1.18) we have 

TJ + cos7ra(t) 
P - - (1.19) 

- sin 7ra(t) . 

1.6 Regge trajectories 

If we consider the t-channel process, (1.5), with t positive we ex­
pect the amplitude to have poles corresponding to the exchange 
of physical particles of spin, Ji, and mass mi, where a( m;) = Ji. 

Chew & Frautschi (1961, 1962) plotted the spins of low lying 
mesons against square mass and noticed that they lie in a straight 
line as shown in Fig. 1.6. In other words a(t) is a linear function 
of t, 

a(t) = a(O) + a't 

(at least for positive t). From Fig. 1.6 we obtain the values 

a(O) 0.55 
a ' 0.86 GeV- 2 • (1.20) 

We shall see that this linearity continues for negative values of t. 
From the s-dependence of the amplitude given in Eq.(1.17) we 

can deduce that the asymptotic s-dependence of the differential 
cross-section is given (for a linear trajectory) by 

dcr rX s(20(0)-20't-2). (1.21) 
dt 
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Fig. 1.6. The Chew-Frautschi plot. 

If we consider a process in which isospin, I = 1, is exchanged in 
the t-channel, such as 

(1.22) 

then we expect the Regge trajectory which determines the asymp­
totic s-dependence to be the one containing the I = 1 even 
parity mesons (the p-trajectory). Inserting the values Eq.(1.20) 
into Eq.(1.21) gives a very good fit to data over a wide range 
(20-200 GeY) of pion energies, as can be seen in Fig. 1.7. 

The Regge trajectory has a further interesting feature. At 
t = -0.64 Gey2 the trajectory passes through zero. This is an 
example of a nonsense pole (there cannot be a resonance with 
negative square mass) and, as explained above, it must decouple 
from the amplitude. The distinct dip observed in the differential 
cross-section for the process (1.22) plotted in Fig. 1.8 could well 
be evidence for the decoupling of this nonsense pole. 
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Fig. 1.7. a(t) obtained from 1r-P ...... 1r°n data in the pion energy 
range 20.8-199.3 GeV by Barnes et al. (1976). The straight line is 
obtained by extrapolating the trajectory of Fig. 1.6 (see Eq.(1.20)). 
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From the intercept of the Regge trajectory which dominates a 
particular scattering process and the optical theorem (Eq.(1.2)) 
we can obtain the asymptotic behaviour of the total cross-section 
for that process, namely, 

(J' ex S(a(O)-l) 
tot . (1.23) 

For the p-trajectory considered in the last section a(O) < 1, which 
means that the cross-section for a process with I = 1 exchange 
falls as S increases. 

Pomeranchuk (1956) and Okun & Pomeranchuk (1956) proved 
from general assumptions that in any scattering process in which 
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Fig. 1.8. Data on dO' / dt for the process 11'- p -+ 1I'°n at a beam 
energy of20.8 GeV from Barnes et al. (1976). The differential cross­
section has a dip at t ~ -0.6 GeV2 • 

there is charge exchange the cross-section vanishes asymptotically 
(the Pomeranchuk theorem). Foldy & Peierls (1963) noticed the 
converse, namely, that if for a particular scattering process the 
cross-section does not fall as s increases then that process must 
be dominated by the exchange of vacuum quantum numbers (i.e. 
isospin zero and even under the operation of charge conjugation). 

It is observed experimentally that total cross-sections do not 
vanish asymptotically. In fact they rise slowly as s increases. If 
we are to attribute this rise to the exchange of a single Regge 
pole then it follows that the exchange is that of a Reggeon whose 
intercept, ap(O), is greater than 1, and which carries the quantum 
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Fig. 1.9. Data for ;rp and ;rfi total cross-sections and the fit of 
Eq.(1.24). 

17 

numbers of the vacuum. t This trajectory is called the Pomeron 
and is named after its inventor Pomeranchuk (1958). 

Unlike the Regge trajectory of Fig. 1.6 the physical particles 
which would provide the resonances for integer values of ap( t) for 
positive t have not been conclusively identified. Particles with the 
quantum numbers of the vacuum are difficult to detect, but such 
particles can exist in QeD as bound states of gluons (glueballs). 

1.8 Total cross-sections 

Fig. 1.9 shows a compilation of data for the total cross-sections 

t The particles with I = 0 shown on the trajectory in Fig. 1.6 do not have 
the quantum numbers of the vacuum since they are odd under charge 
conjugation. 
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for proton-proton (p-p) and proton-antiproton (p-p) scattering, 
together with a fit due to Donnachie & Landshoff (1992): 

(Tpp 21.78°.08 + 56.18-0 .45 mb 

(Tpp = 21. 7 8°.08 + 98.4 8 -0.45 mb (1.24) 

(with s in GeV2). These parameters were determined before 
the measurement of the p-p cross-section at the Fermilab Teva­
tron accelerator (from fitting to a wide range of data below 
Vs =100 GeV). 

The first term on the right hand side ofEq.(1.24) is the Pomeron 
contribution and it is common to both p-p and p-p cross-sections, 
coupling with the same strength to the proton and antiproton be­
cause the Pomeron carries the quantum numbers of the vacuum 
and therefore cannot distinguish between particles and antiparti­
cles. The second term, on the other hand, is a sub-leading term 
which is due to the exchange of a Regge trajectory with intercept 
0.55 (the intercept of the Regge trajectory shown in Fig. 1.6) and 
this trajectory can (and does) have different couplings to parti­
cles and antiparticles. This accounts for the difference between the 
p-p and p-p cross-sections at low 8 (this difference vanishes as 8 
increases by the Pomeranchuk theorem). 

This fit tells us that the Pomeron has intercept o:p(O) = 1.08. 
This is slightly above 1 and will eventually lead to a violation of 
the bound derived by Froissart (1961) and Martin (1963) which is 
derived using unitarity and the partial wave expansion (we present 
a physical argument for the Froissart-Martin bound in Chapter 8). 
They showed that, as 8 tends to infinity, total hadronic cross­
sections must satisfy the inequality 

(Ttot < Aln 28, (1.25) 

where the constant A is determined by the pion mass and is ex­
pected to be rv 60 mb. However, since the intercept is only very 
slightly above 1, this violation does not occur for momenta lower 
than the Planck scale! It is not unreasonable that physics be­
yond the exchange of the single Pomeron pole enters to ensure 
the ultimate preservation of unitarity (in fact it is known that 
multiple Pomeron exchanges are able to tame the asymptotic rise 
of the cross-section). Another point of view is to argue that the 
intercept of 1.08 is only an effective intercept and that the under­
lying mechanism which gives rise to it is not the result of single 
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Fig. 1.10. Total cross-sections for 11"+ -p and 11"- -p scattering. 

Pomeron exchange but has contributions from the exchange of two 
or more Pomerons (so-called Regge cuts). 

If the high energy behaviour of the total cross-section is indeed 
a result of the superposition of the two Regge exchanges, with 
intercepts as quantified in Eq.(1.24), then since the intercepts are 
universal we expect them to be able to describe other total cross­
sections. This is indeed the case, as can be seen from Fig. 1.10 
for the case of pion-proton scattering and Fig. 1.11 for (on-shell) 
photon-proton scattering. 

1.9 Differential elastic cross-sections 

In order to determine the slope, up, ofthe Pomeron trajectory it is 
necessary to consider the differential cross-section, e.g. for elastic 
p-p or p-p scattering, over a range of s and at different 'values of 
t. A collection of data ranging from ISR at CERN to the Tevatron 
at Fermilab give a good fit to a linear Pomeron trajectory with 
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Fig. 1.11. The cross-section for ,-p scattering. 

slope 

a.~ = 0.25 GeV- 2 • 

From this slope we can determine that a.p(t) reaches the value 2 
at t = 3.7 Ge V2 and we should expect a spin two particle with 
mass J3.7 = 1.9 Ge V and the quantum numbers of the vacuum. 
The WA91 collaboration at CERN (Abatzis et al. (1994)) has 
announced evidence for a candidate glueball state with this mass. 
This could well be the first observed particle to lie on the Pomeron 
trajectory. 

The couplings, 1'(t), of the Pomeron can also be obtained from 
the t-dependence of differential elastic cross-sections (at fixed s). 
It turns out that the data are well fitted by taking the Pomeron 
coupling l' (t) to be proportional to the electromagnetic form factor 
of the hadron to which the Pomeron couples. In other words the 
Pomeron couples to hadrons in the same way as the photon. Thus 
when the Pomeron couples to hadrons it appears to behave like a 
point particle. One immediate consequence of this, as was noted 

https://doi.org/10.1017/9781009290111.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290111.003


1.10 Diffractive dissociation 21 

by Landshoff & Polkinghorne (1971), is the quark-counting rule 
which tells us that the Pomeron couples to one constituent quark 
at a time inside a hadron, so that the coupling to that hadron 
is expected to be proportional to the number of valence quarks. 
This quark-counting rule is well supported by the fact that the 
coefficients of the Pomeron term in the fits to p-p and 1i-P scat­
tering are in the ratio 1.6:1, which is just slightly higher than the 
ratio 3:2 that would be expected from the fact that the proton has 
three valence quarks whereas the pion has only two. 

The p-parameter (Eq.(1.18)) can also be obtained from the dif­
ferential elastic cross-section at zero momentum transfer and the 
total cross-section. The former is proportional to the sum of the 
squares of the real and imaginary parts of the scattering ampli­
tude, whereas the latter is related by the optical theorem to the 
imaginary part of the amplitude. Thus we have 

dO"el(s,O) _ (1 + P2)1 12 
dt - 161i O"tot· 

(1.26 ) 

Experimental values such as those of Augier et al. (1993) from 
the UA4 collaboration at CERN give a value of p of about 0.1 
at Vs ~ 100 GeV. In other words the amplitude for Pomeron 
exchange is dominated by its imaginary part. From the fact that 
the intercept of the Pomeron is close to 1 and Eq.(1.19) we can 
deduce that the Pomeron must have even signature (", = 1). 

1.10 Difi"ractive dissociation 

At sufficiently high energies elastic-scattering events are rather 
difficult to detect since the particles scatter through small angles. 
However, the Pomeron enters into several other processes. One of 
these is the process of diffractive dissociation in which one of the 
incident particles remains unchanged and just scatters through a 
small angle, but the other incident particle receives enough en­
ergy for it to break up into its constituent partons, which then 
hadronize to produce clusters of hadrons. 

It is convenient to view such a process from the point of view 
suggested by Fig. 1.12, where a Pomeron is 'emitted' from the 
'parent' hadron (with momentum P2 and which remains intact 
after the scattering) with some fraction ~ of its momentum. The 
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Fig. 1.12. A diffractive dissociation process in which the exchanged 
Pomeron carries a fraction e of the momentum P2 of one of the 
incoming hadrons. 

upper vertex can be thought of as 'hadron-Pomeron' scattering 
producing some final hadronic state, X. 

Such events have a large rapidity gap between the 'parent' 
hadron and the hadrons in the hadronic system, X. The rapidity, 
Yi, of particle i is defined as 

Yi = ~ln (Ei + PZi) , 
2 Ei - Pzi 

where the z-axis is taken along the incident beam direction. Since 
the scattering angle is small (It I is much smaller than s) the 'par­
ent' hadron emerges almost along the positive z-axis and therefore 
has large positive rapidity, whereas the particles in the hadronic 
system X are moving almost parallel to the negative z-axis (the 
momentum transfer between the target hadron and the particles 
in X is small) and they therefore have large negative rapidities. 

Events of this kind have been observed by the DA8 collabora­
tion at CERN (Schlein (1993)) and by the HI (Ahmed et al. (1994, 
1995a)) and Zeus (Derrick et al. (1993, 1995a)) collaborations at 
DESY. DA8 have measured the energy flow of the particles in the 
hadronic system X in its rest frame (Le. the centre-of-mass frame 
of the hadron-Pomeron system) and observed a substantial peak 
in the forward direction. This once again suggests that the Pom­
eron can behave like a point particle, knocking the constituents of 
the target hadron into the forward direction. 

Although the Pomeron seems to behave as though it were a 
point-like particle, we must remember that it is not a particle 
at all. It is a Regge trajectory. N~vertheless Ing"elman & Schlein 
(1985) suggested that one can define the structure function of a 
Pomeron and use diffractive dissociation events to determine the 
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quark and gluon content of the Pomeron. Furthermore, the sub­
structure of the Pomeron has been investigated by the H1 (Ahmed 
et al. (1995b)) and Zeus (Derrick et al. (1995b, 1996a)) collabo­
rations. 

We shall return to discuss the theory of diffraction dissociation 
in much more detail in Chapter 7. 

1.11 Deep inelastic scattering 

The measurement of structure functions (Fl(X, Q2) and F2( x, Q2)) 
in deep inelastic scattering can be thought of as the measurement 
of the total cross-section for the scattering of an off-shell photon, 
with square momentum, _Q2, and a proton. The square of the 
centre-of-mass energy of the photon-proton system is given by 

Q2(1- x) 
s=----'----------'--

x 

and so in the Regge limit of s ~ Q2 it follows that x ~ 1 (x 
is the Bjorken-x of the process). At sufficiently low x the off­
shellness of the photon is negligible compared with the centre­
of-mass energy and so we might expect the total cross-section to 
have a 1/x dependence (at fixed Q2) similar to the s-dependence of 
hadronic total cross-sections, i.e. governed by Pomeron exchange. 
Adding the lower lying meson trajectory, we would then have 

F2(X,Q 2):.::::1 Ax-o.o8 + B x°.45. 

This fits well for 0.01 ~ x ~ 0.1. However, the H1 (Ahmed et al. 
(1995c)) and Zeus (Derrick et al. (1995c)) collaborations at HERA 
have been able to reach values as low as x '" 10-4 • The data they 
obtain show a much steeper x-dependence, e.g. typically", x-O.3 . 

These data provide, for the first time, evidence of deviations from 
the Pomeron behaviour described previously. 

As we shall see, such deviations are expected within QCD 
perturbation theory. The large virtuality Q2 renders a perturb­
ative calculation possible. In Chapter 6 we shall show that 
perturbative QCD leads to the conclusion that, at sufficiently large 
Q2 and sufficiently low x, the structure functions ought to behave 
like 
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where 

What is a Pomeron? 

12ln2 
Wo = ---as, 

7r 

and as is the strong coupling. 
On the other hand, total hadronic cross-sections or low t elastic 

differential cross-sections cannot be described in terms of perturb­
ative QeD. We expect these processes to be heavily influenced by 
the non-perturbative properties of QeD, i.e. the Pomeron dis­
cussed in this chapter is of non-perturbative origin. We call this 
the 'soft' Pomeron since in later chapters we shall introduce the 
concept of the perturbative or 'hard' Pomeron. These are dis­
tinct objects. In keeping with modern parlance we use the word 
'Pomeron' (soft or hard) in the context of those processes which 
are characterized by the kinematic condition that the momentum 
transfer is much smaller than the centre-of-mass energy and in 
which the vacuum quantum numbers are exchanged. 

In future we shall end each chapter with a summary. However, 
this chapter has been a summary in itself. It has been designed to 
give the reader sufficient understanding of what we mean when we 
speak of the Pomeron and why it is an important object. This will 
be necessary in order to progress through the subsequent chapters, 
in which we will discuss in detail the question of the reconcilia­
tion of Pomeron physics with the 'modern' approach to strong 
interaction dynamics - namely QeD. 
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