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A CERTAIN NON-SINGULAR SYSTEM OF LENGTH THREE
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by S. WRETH*

(Received 6th October 1995)

The Kervaire Conjecture is correct if it can be shown to hold for non-singular systems of equations of length
3. In this paper we prove it for the case of equations over a group G where each equation has the form
axbx~'cy = 1 for a,b,ce G.
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1. Introduction

This paper deals with the conjecture of Kervaire that any non-singular system of
equations has a solution over a group G.

Let G be a group, F the free group generated by xu...xn and W,eG*F for
ie {l , . . . ,m}. A system I of m equations Wt = 1 in n unknowns xt determines an
(m x /i)-matrix whose (i,j)-entry is the exponent sum on Xj in the word W,, and we call
the system Z non-singular if its exponent sum matrix has rank m. An infinite system
of equations is called non-singular if every finite subsystem is non-singular.

The Kervaire Conjecture states that a non-singular system of equations over a group
G has a solution in some overgroup of G, i.e., that there exists a group H and a
homomorphism (f> : G* F -*• H such that 4>(G) is an embedding and (j>{W,) = 1 for all i.

It has been shown by Gerstenhaber and Rothaus in [4] and [9] that this conjecture
is true if G is locally residually finite, and by Howie in [5] if G is locally indicable. By
focusing on the system Z rather than the group G it has been shown in [6] and [7] that
£ has a solution for m < 2 provided the length of the equations is at most 3, where
the length of an equation is the number of occurrences of unknowns. On the other
hand it follows from results of Gersten in [3] that to prove the Kervaire Conjecture it
is sufficient to study systems of equations of length 3.

We shall prove the following result:

Theorem 1.1. Let S be a non-singular system of equations in unknowns from a set X
over a group G, where each equation has the form

axbx~lcy=\ (1)

* This work is part of the author's PhD thesis.
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516 S. WRETH

for x, y € X and a,b,ce G. Then E has a solution over G.

In Section 2 we describe our main tool, the weight test, and reduce the problem to
three cases which are studied in Sections 3-5.

Some of the technical details have been omitted, but they can be found in [11].
I am very grateful to Jim Howie for several useful conversations and for reading a

draft version of this paper.

2. Preliminaries

Our main tool is the weight test as given by Bogley and Pride in [1], and to explain
this we first need to define the star graph of E: The star graph of E is the graph with
one vertex for each x, and each x,"1 where ie {1,...,«} and an edge labelled g with
initial vertex xf£ and terminal vertex xj for every cyclic permutation of an equation
that begins with x'gx*.

A weight function co on I is a real valued function defined on the edges of the star
graph such that for each equation of length n the sum of the weights of the n edges
corresponding to the coefficients in the equation is at most n — 2. As indicated by
Howie in [7] the weight test can be modified to state that if there exists a weight
function o ionE such that the weight of every non-empty, cyclically reduced path that
represents the identity element of G in the star graph of E has weight at least 2 and
every closed path has weight at least 0, then E has a solution in an overgroup of G.

The important point about the weight test is that it is not necessary to study all
the relators in G. Instead it is sufficient to look at those relators that correspond to
reduced, closed paths in the star graph. These paths are referred to as admissible
paths.

The next step is to simplify the problem and give the layout (and some definitions)
for the remains of the paper:

A standard argument shows that we may assume E to be finite.
Let F be the graph with one vertex for each element of X and one edge for each

equation in E, where the edge corresponding to Equation 1 has initial vertex x and
terminal vertex y.

We may assume that T is connected: suppose T consists of two components, then
we can divide X into two disjoint subsets Xx and X2, and E into sets E, and E2 of
equations over X{ and X2. If E, and E2 have solutions over G in groups if, and H2

respectively, then E has a solution in H, *G H2.
No vertex of T can be the terminal vertex of more than one edge: if a vertex of r

were the terminal vertex of more than one edge, then E would contain two equations
of the form

axbx~lcy = 1

dzez~xfy = 1
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A CERTAIN NON-SINGULAR SYSTEM 517

where x, y, z e X and a, b, c, d,e,fe G, and this contradicts our assumption that Z is
non-singular.

If a vertex occurs as a terminal but not as an initial vertex in F, then one unknown
occurs only once in Z, and the equation with this one occurrence can be eliminated
from the system, leading to a smaller system Z' which is equivalent to Z. Hence we
may assume that each vertex of F is the initial vertex of precisely one edge and the
terminal vertex of precisely one edge, i.e., F is a directed cycle.

If we number the elements of X in the direction of this cycle, then X = {xu ..., xn}
and Z has the form

axxibxx^cix2 = 1

a2x2b2x2
l c2x3 — 1

anxnbnxn
lcnxx = 1

where a,, b,, c, € G, and the star graph of Z is shown in Figure 2.1.
It is easy to see that we may assume G to be generated by those elements of G that

actually appear in Z: Let G' be the subgroup of G generated by the elements of G that
appear in Z. Then Z has a solution in a group H' if and only if Z has a solution in
H' *„ G.

It was shown in [6] that we may assume that the edges of a maximal tree in the star
graph of Z are labelled by the identity element of G, and since the star graph of Z
contains a maximal tree with edges a, , . . . , an, c2,..., cB we shall assume that
a, = a2 = . . . = an = 1 and c2 = c3 = . . . = cn = 1, so G is generated by c,, bt,..., bn. If
b, = 1 for some i e [1 «} then Z has a solution in G, so we may assume that this is
not the case.

b, k b,

0 0 0 0 0
2

a,

x!

c
a,

c
a,

Figure 2.1: the star graph of £.
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518 S. WRETH

We shall be using different techniques to show that E has a solution over G: Our first
attempt will always be the weight test, i.e., a weight function co for the edges of the star
graph of E such that oi(a^) + (o(bj) + co(Cj) < 1 for all i and every admissible path has
weight at least 2. If this fails (which is often the case when one or several b, have small
order) we shall try to show that by adding the relator corresponding to an admissible
path of weight less than 2 to a presentation of G, the group becomes residually finite.
It then follows from the theorem of Gerstenhaber and Rothaus ([4]) that E has a
solution over G.

In most cases we will do this by showing that G is in fact finite, and for this purpose
we shall be using some well known results, summarised in the following lemma:

Lemma 2.1. The groups with the following presentations are finite:

• (x, y; x", / , (xy)r) for 1/p + l/q+ 1/r > 1

• <x, y; x3, y2, x"'y(xy)m) where m e {2,3,4}

• (x, y, x3, y2, (x-'y)2(xy)m) where m e {2, 3}

• (x, y; x3, y2, (x"'yxy)2(xy)m) where m e {0,1,2}

• <x, y; x3, ym, (xy*1)2) where m e {3,4, 5}

• (x, y; x3, y"1, xyxy~l) where m e {3,4,5}

• (x, y; x3, ym, xyx~ly) where m e {3,4,5}

• (x, y; x3, y"1, xyx"'y"') where m e {3,4, 5}

• {x, y; x4, y2x~ly(xy)m) where m e {1,2}

• (x,y;x5,y2,x-Iy(xy)2)

• (x, y, z; x3, y2, z2, [y, z], (xy)2, (xz)2)

• (x, y, z; x3, y2, z2, [y, z], (xy)2, [x, z])

• (x, y, z; x3, y2, z2, [y, z], [x, y], [x, z])

• (x, y, z; x3, y2, z2, [y, z], [x, y], (xz)2)

Proof. The groups in the first case are finite triangle groups. If - in the 2-generator
cases - x has order 3 and y has order 2, these groups were shown to be finite in [2],
if x and y both have order 3 they were shown to be finite in [8], and in the remaining
cases GAP [10] was used to show finiteness.

We now introduce some notation that we will use throughout this paper: Let K
denote the set of indices i such that
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A CERTAIN NON-SINGULAR SYSTEM 519

The strategy of the proof of the theorem is to split the problem into five cases
depending on the value of \K\. There are two cases which we can eliminate
immediately; the first one deals with \K\ large:

Lemma 2.2 If\K\ > 4 then £ has a solution over G.

Proof. We choose the following weights:

- 1 / 2 for i e K

0 for i $ K

co(bt) = 1 for all i

1/2 for i 6 K
0 for i ^ K

It is easy to convince oneself that if there is an admissible cycle with weight less than
2, then there must be a relation of the form

where i e K , a contradiction. •

The second case is the one where K is the empty set:

Lemma 2.3. If\K\ = 0, then £ has a solution over G.

Proof. Since \K\ = 0 the relations

cr'ijc.fcj"1 = b3bf = ... = bnbfl = b,bf = 1

hold in G, so G is generated by c, and b{ and the relation c^bycfif* holds in G. This
means that G is metacyclic and hence residually finite, and it follows from the theorem
of Gerstenhaber and Rothaus in [4] that Z has a solution over G. •

We shall study the cases where \K\ e {1,2} with the help of the following lemma:

Lemma 2.4. If none of the following is a relator in G, then Z has a solution over G:

(1) b]

(2) atCi... cnc,... c,_,a~'fc !̂, for n = 3 (that is one of a^c^a^b^, a2c2cicla^ifef' and

^ f 1

(3) c,c2...cB.
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Proof. The proof is a straightforward application of the weight test if we choose
weights co(ai) = 0, <o(b,) = 2/3 and co(c,) = 1/3. •

The remaining sections of this paper will be devoted to the cases where |X| is 1, 2
and 3 respectively, but before we begin we introduce some more notation. We shall
refer to reduced cycles with weight less than 2 as critical if their label could be a relator
in G, i.e., if this does not contradict any previous assumptions.

When looking for reduced cycles in the star graph of S that are critical we will
encounter cycles that have weight less than 1. Although these cycles are not critical
themselves, tracing their path twice (or more often) will lead to a critical cycle. If for
instance 1 6 ^ then axc~x a~xbxancna~xb2X is not a critical path but if it has weight less
than 1, then the cycle (a1c~'a~1fc,ancna~1b21)2 may well be critical. In this case the
cycles

and

are also critical. In order to avoid having to write down these critical cycles every time
they occur we shall refer to them as the critical cycles induced by a cycle (in this case
by the cycle aic~la~iblancna~lb2) and list them only in terms of generators of G. So in
this example we would list (btb^)2, b^b^ and b^b^b^.

Suppose there exists a critical cycle that contains bit then there exists another critical
cycle that differs from the first one only in that b, is replaced by b?. If bt has order 2
in G, we shall ignore the second critical cycle, since it gives rise to the same relation in
G as the first one.

3. \K\ = 1

Throughout this section we shall assume that K = [l], which means that
axc~x a~xbiancKa{x jt bf] and OfCJl'ifljl1! &,«,_! c,_| a,"1 = bf+t for all i # 1. Hence all b, will
have the same order in G, and since we may assume that a, = 1 for all i and c, = 1 for
all i ^ 1 this implies that cl~

ib2cl =bf\ b3 = b^\ ..., bn = bf\ so G is generated by b{

and c,.

Lemma 3.1. The system Z has a solution overGif\K\= 1.

Proof. In each of the cases of Lemma 2.4 we shall either give weights that show
that E has a solution over G or show that G is residually finite, in which case it follows
from the theorem of Gerstenhaber and Rothaus in [4] that £ has a solution over G.

We begin by assuming b] = 1 for all i € {1,2,.. . n}. Paths with label of the form 2
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and 3 in Lemma 2.4 will be dealt with below, so we shall assume that these are not
admissible.

First we note that there is no admissible path using each c, exactly once: Since we
have assumed that there are no relators of type 2 or 3, such an admissible path would
have to have at least two letters bt and b}. Let us assume that there are exactly two such
letters. Then

Mi-ic,.,... c^aj^bfa^c^ ... c^a^ = 1. (2)

Since either

or-'i&fVifM • • • Cf-iOi-'i&iai-i = C/-i • • • c>-2

or

ar-i&.ai-ic,-!... Cj_2af^bf aM = cf_,... c,-_2

equation 2 implies that c,c2... cn = 1, a contradiction. If there are more than two such
letters, then there exist at least two letters bt and bj for which such a reduction can be
performed, thus removing a,i!,6ja,_, and ajl1, &,«,_, from the equation and this process
can be continued until we arrive at a relator of type 2 or 3.

If (c, . . . cn)
2 = 1 then G is a dihedral group and contains a cyclic subgroup of finite

index. Therefore G is residually finite and S has a solution over G. If c , . . . cn has
infinite order we choose the following weights:

cu(a,) = 0 = tw(c,) and cu(ftj) = 1.

Then the only reduced cycle that does not have at least two occurrences of bt has the
form ai{ci...cncx...ci_i)kajxbf+i; but such a relator would make G cyclic so we may
invoke the theorem of Gerstenhaber and Rothaus in [4] to show that r(t) has a solution
over G.

All other reduced cycles have weight at least 2, so E has a solution over G. We
may now assume that (c , . . . cn)

m = 1 where 2 < m < oo, and we choose the following
weights:

co(a^) = —2/m, co(ct) = 2/m, a>(a^ = 0 = <a{c^) for i j± 1

and

(ofr) = 1 for all i.

Then axc~x. ..c^a^bH.laici...cna^xb2X is not an admissible path, as this would imply
alc~la~xbxaKcna{x = bf, a contradiction.

Any reduced cycle with only one occurrence of fc, that is an admissible path makes
G cyclic, so we shall assume that any admissible path contains at least two occurrences
of b,. Hence weight less than 2 can only occur in reduced cycles that contain b2 and
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one or no occurrence of c,, which means that the only admissible paths of weight less
than 2 are words of length / • (3 + n) where 1 < / < 6 induced by the cycle
a,c, . . . cnaj"'&2' which has weight 1 — 2/m. It is easy to check that G is residually finite
for each of /e{2,3,4,5}.

We still need to check cases 2 and 3 of Lemma 2.4. Let a,c,c2c3aj'lfe2l = 1- Then
c, = b2

l so G is a cyclic group, and similarly a2c2cJcla^lbf* = 1 and ajCjC^a^'bf1 = 1
also imply that G is cyclic.

Now let c,c2...cB = 1. Then a ^ ' a " ' ^ ^ ^ ^ 1 = b2\ a contradiction. Hence it
follows from Lemma 2.4 that Z has a solution over G. •

4. |ff| = 2

To simplify notation we shall assume that K = {1, j}, and hence G is generated by
c,, b2 and b;+1. Case 1 of Lemma 2.4 is covered by the following four lemmas:

Lemma 4.1. Let bf = 1 for all i. Then T, has a solution over G.

Proof. If c , . . . cn = 1 then G is a dihedral group, so we may assume that
c , . . . cn ^ 1 and choose the following weights:

f=1 0 fori*{l , j}
-1 /2 for i e { l . / >

,) = 1 for all i

f 1/2 for i e {I,;}
[ 0 for i i {1, j}

Since b, = b,"1 for all i, there are only three critical cycles: a,ct.. . cnaj"'b2,
flyCy... cnct... Cy_,ay"'by+1 and atct... c^aj*b^ajC,... cna^b2. In the first case cxb2 = 1, in
the second case c,by+1 = 1 and in the last case c,by+,b2 = 1, so in either case G is
dihedral. •

Lemma 4.2. Let b] = 1 for some i e {1 , . . . n] and c , . . . cn = 1. 77ie/j L Aaj a solution
over G.

Proof. On account of Lemma 4.1 and for reasons of symmetry we may assume that
b\ = 1 and bj+l ^ 1. G is generated by b2 and i^.,, and furthermore b] = 1 if and only
if 1 < i < j and a,c,... cncx... c,_ifl,~'6 !̂i ^ 1 for all j . Also, if flic,... c,_|fl,~l6H.1a,c,...
Cy-ifly"1 bj+lajCj... cBaj"'fc2 is an admissible path then G is cyclic, so we may assume that
there are so such admissible paths. Since n > 3 we know that; ^ 2 or j'• ^ n, and in both
cases we can find a weight function that has no critical paths. •

Lemma 4.3. Let c , . . . cn ^ 1 and a^... cnct... Cj.jaf'&J!, ^ 1 for all i and bf = 1 for
some i. Then Z has a solution over G.
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Proof. We begin by choosing the same weights as in the proof of Lemma 4.1. In
this case there is only one critical cycle:

a,c,.. . Cj^a^b^ajCj... cna;lbs
2, where e, 8 e {±1}.

If this is a relator then Cxb)+lb\ = 1 for e, 5 e {±1}, so G is generated by any two of
cu bj+1 and b2. If two of these have order 2, then G is dihedral. Consequently we may
assume that exactly one of these has order 2, so it must be either b2 or bj+u since we
had assumed that b] — 1 for some i.

Due to symmetry it is sufficient to study the case where b\ = 1, and we choose the
following weights:

1/3 for; <i<n

2/3 else

, . f 1/3 for i = 1
[0 for i ,£ 1

With these weights there are no critical cycles provided c, has order at least 6, since
relators of the form

a,(c,... cncx... Cj.,)*1"^-'^1, and a,c,. . . cncx... c^a^bfiH

make G cyclic.
Let c] = 1. If bj+1 has order at least 6 we choose the following weights:

2/3 f o r ; < i < n
0 for 1 < i < j

1 f o r 2 < i < ;

l/3 else

f
1

2/3 for i = 1
0 for i 7̂  1

and with these weights there are no critical cycles.
Let bj+1 have order m where m e {3,4, 5}. Then (b2, bj+l; b\, b"+l, W) is a presentation

for a homomorphic image of G where W is either (b2bJ+ly or ^fy+i^fy+i)2 (since b2 has
order 2), and all these groups are finite. Let c, have order 4. If by+1 has order at least
4 choose
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1/2 for j<i<n
co(a,) {

f
a,) = {l) 1 0 f o r l < i < ;

1 f o r 2 < z < ;
1/2 else

f 1/2 for i = 1
co(c,) — I

10 for i ± 1

so there are no critical cycles. Let b]+l = 1, then G is the homomorphic image of
a group with a presentation (b2, bJ+1; b\, b]+l, W) where W is one of (b2bj+l)

4,
^y+ifoVi)3 ' (^2^+i)2(^2^j+i)2 a°d (b2b]'+ib2bj+iy, and G is finite in each of these cases.

Let c, have order 5. If bj+l has order at least 4 choose the same weights as in the case
where c, has order 4 to show that Z has a solution over G. If b]+1 = 1 then G is the
homomorphic image of a group with a presentation (b2, bJ+l; b\,bj+x, W) where W is
one of (My+i^.M^'iC^+i)4, fofy+'ift^fy+i)3 and (b2b;^b2bj+l)

2b2bj+u and G is finite in
each of these cases. •

The strategy applied in the proof of Lemma 4.3 is one that we will be using
throughout this paper: first we show that if one of the generators of G has order no less
than a certain (small) number then we can allocate weights in such a way that there
are no critical cycles. Then we study each of the remaining cases where the order of
this generator is small individually by allocating weights and showing that critical
cycles induce relators that make G finite.

Lemma 4.4. Let b2 = 1 for some i and a,c,... cncx... c,_xajlbf^x = 1 for some I. Then
£ has a solution over G.

Proof. We note that c, . . . cR ^ 1 and that G is generated by b2 and bj+i. As in the
proof of Lemma 4.2 we may assume that b\ — 1 and bj+1 ^ 1, but now there are two
cases to be studied, depending on whether b,+l is conjugate to b2 or to bj+l.

In addition we may assume that axcx.. .Cj_xajxbf+xa}C)...cna\xb2^\, because this
would imply bj+i = 1 or b2 = 1, depending on whether bl+l is conjugate to b2 or
bj+1. Let bM be conjugate to b2; then atcf.. .cnct... c,1l,a,~lfcj!1 = 1 if and only if
1 < i < ;. If a,c(... cKcx... c,_,flr'6j^| = 1 or a^... cnct... c,.,)*1"^"1 V i = ! for ; < i < n
o r a,c,...ci_laJ'1b'J'+lajCJ'2i...c1'1a^1bl+l = I f o r \ < i < j t h e n G i s c y c l i c , s o w e m a y
assume that these are not relators. If (0,0,... cncx... c,-^,"1^1,)2 = 1 or

for j <i <n then in G we have (b2bj+i)2 = 1 or b2bj+lb2b^t = 1. In the first case G is
dihedral and in the second metacyclic, so we may assume that these are not relators
either. Similarly relators of the form aici...cj_la]'lb^.lajC^l. ..c^la^lbi+i — I would
make G metacyclic.
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Now let b,+, be conjugate to bj+l; then aici...cncl.. .cj\a^bf^ = 1 if and only if
j <i < n. In addition we may assume that none of

a,ci...cnc]...ci_la71btS

ai(ci...cncl...ci_l)
±ma;lbi+i

(aici...cncl...ci_la;lb£lf

and
a,c,... cncx... c^a^b^afc... cncx... c^rV&i+i

is a relator in G for 1 < j < j .
In each of these two cases we can now use the approach described after the proof

of Lemma 4.3: we allocate weights depending on the order of bJ+i to show that if the
order is at least 6 then there are no critical cycles and that if the order is either 3, 4 or
5 then the relators induced by the critical cycles make G into a finite group. We omit
the details. •

These four lemmas show that £ has a solution over G if b\ = 1 for some
i G {1 , . . . , n] and we now turn to the case where b] / 1 for all i e {1 , . . . , «}:

Lemma 4.5. Let b] j= 1 for all i G {1, . . . ,«}. Then £ has a solution over G.

Proof. On account of Lemma 2.4 it is sufficient to study the cases where one of
fl,c,... cncx... c.-^r'^i+i f° r « = 3 or c, . . . cn is a relator in G. Let a1c,c2c3aj'lb2' = 1. If
7 = 3 then a2c2c3cla^lbfl = 1 and neither a^c^a^1 fef nor c^Cj is a relator in G; if
7 = 2 then a1c2cicxa2Xb^ is not a relator either and we choose:

—1/3 f o r i = ;

0 else

fc,) = 2/3 for all i

for i =j

1/3 else

Again there are no critical cycles. A similar weight function can be used to show that
there are no critical cycles if 0202030,02"'̂ ' = 1 or OjCjC^aJ1 bfl = 1.

Now let c , . . . cn = 1 Then G is generated by b2 and bj+l and there are no relators of
the form atc,... cncx... c,_,aj"'fc5!,. In addition we may assume that neither

O1O1 . . . Oj_iOf Ui. IOI0J_I . . . C\ Oi Dt
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nor

fljCj . . . C.-_|fl.- 0;_|_|fl/C:_| . . . C| £7| C?2

is a relator, since this would make G cyclic.
Applying the same principles as in Lemma 4.3 we can allocate weights depending

on the order of b2 and show that existing critical cycles induce relators that make G
finite. Again we omit the details, and this completes the proof of the lemma. •

In the section we have proved the following lemma:

Lemma 4.6. The system £ has a solution over G if\K\ = 2.

Throughout this section we shall assume that \K\ = 3, and for notational
convenience we choose K — {1, j , k] where 1 < j < k. In this connection the letters j
and k will be meant to be fixed, whereas the letters i and / will stand for variables.

In this section we shall not be using Lemma 2.4, but shall organise our results as
follows: First we show that £ has a solution if no bt has order 2 and in the next two
lemmas we show that £ has a solution if c, . . . cn ̂  1. Then we study the case where all
bj have order 2, and the last two lemmas are devoted to the remaining case when some
but not all bt have order 2 and c , . . . cn = 1.

For \K\ = 3 it is particularly easy to show that £ has a solution over G if bj / 1
for all j , so we begin by doing this:

Lemma 5.1. Let bf ^ 1 for all i e {1, . . . n}. Then £ has a solution over G.

Proof. We choose the following weights:

- 1 / 3 for ie {I, j,k]

>) = 2/3 for all i

2/3 fori€{l,y,*}
1/3 fo r i* l,j,k}'

There are no critical cycles, so this proves the lemma. •

From now on we shall assume that there exists at least one relation of the form
bf = 1. Our next step will be to show that £ has a solution over G if c , . . . cn ^ 1. We
shall prove this with the help of two lemmas, and we begin with a useful observation:
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Reduced cycles of the form

a,c~ ' . . . cj-'af'fy.nfyc,... cna^bfl for k < I < n

k-\ • ••cTiaTibMa,cl...ck_la;ibtli fo r ; < / < k

• cMajlbf^ for 1 < / < j

cannot be admissible, as they would imply the existence of a relator of the form

a,^1, a.̂ -'i ̂ .0,-1 c,_, a,"' ̂ £.'i for i € K,

a contradiction.

Lemma 5.2. Let there be no relation of the form a^... cncl... c^a^bf^ = 1 and let
c , . . . cn ^ 1 in G. Then Z has a solution over G.

Proof. We begin by choosing the following weights:

co(a,) = w(aj) = a)(ak) = - 1 / 3 , aj(a,) = 0 for i! ^ 1, j , k

a>(bj) = 1 for all i

co(c,) = co(cj) = (o(ck) = 1/3, co(Ci) = 0 for i J- 1, ;, k.

Cycles of the form a,Cj... c/_|fl/6(+iarlcjlli.. .q]a~lbf+{ can have weight less than 2 only
if / e K and i + 1 , . . . , /— 1 £ K. But then the cycle cannot be admissible, as this would
imply a|C,1lifl,11ii/a,_1C/_iar1ft^!| = 1, a contradiction.

Hence there are three critical cycles:

. c,_xajxbf*x afy ...cna^b2 (3)

flic,... ck_,a?btltakck... cna\-%

No two of these cycles can be admissible at the same time: assume for example that
the first two are; then

t_, = c,... ck_t

But this implies atcj^,a4l,fc4alk_lct_,ajl6i+1 = 1, a contradiction.
So we may assume (by symmetry) that only the word in (3) is a relator, and we

choose the following weights:
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£o(a,) = -1 /2 = co(ak), w(a) = 0 for i / 1, k

a>(bj) = 1 for all i

0)(c,) = 1/2 = co(ck), (o(c,) = 0 for i ^ 1, /c.

Now the only critical cycle has label

flfcCj-i.. . c f V ' f c ^ c , . . .c^flf'&j^, for 1 < / < j .

If this is an admissible cycle then G is generated by b2 and bj+l and if b2 and fy+i both
have order 2 then G is a dihedral group, so we may assume that this is not the case.

Let b2 have order greater than 2. Since b2 has the same order as bk+l, it follows that
bk+l also has order greater than 2.

We choose the following weights:

1 1/3 for 1 < i < j or k < i < n
-1 /3 f o r i = ;

0 else

1
2/3 else

1
1/3 for i = 1
2/3 for i=j .
0 for i g U , ; }

In either case there are no critical cycles, so we may assume that b2 and bk+] have order
2 and bJ+l has order greater than 2. We choose the following weights:

1
1/3 for; <i< k
0 for 1 < i < j or k < i < n

— 1/3 for i e {j, k}

[\ for 1 < J < ; or k < i < n

1
1/3 for j =j
2/3 fori^fc .
0 for i^j, k

The critical cycles have label

https://doi.org/10.1017/S0013091500023993 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023993


A CERTAIN NON-SINGULAR SYSTEM 529

where k < i <n and

a,c,... cncx... Cj^a^bj^ajCj-^ ... c^c~x... q'a^bf^

where k < i < n. If the first one is an admissible path, then bk+l has the same order as
bJ+t, a contradiction, so we may assume this not to be a relator.

If the second one is an admissible path then bj+l has order 4. We also note that if
c, has order less than 4, then so does bJ+lb2, since the relator in (3) implies c,b^!,b2 = 1
and b2 has order 2, so G is a finite group. Hence we may assume that c, has order at
least 4, and we choose

f 1/2 for/ <i <k
10 else

f 1 for 1 < i < j or k < i < n
I 1/2 for ;<i<fc

1/2 for i = k

with these weights there are no critical cycles. •

Lemma 5.3. Let there be a relation of the form aici...cncl...cl_lajxb^i = 1 in G.
Then £ has a solution over G.

Proof. Let axcx... c^bf1 — 1. Then a^... cncx... ct_xajxbf^ = 1 for 1 < i < j . If
in addition a,c,.. .c nc , . . .c^af'fcj!, = 1 for j<i<n then it follows that
afiJ^aJ^biai^Ci^a^bf^ — 1 for i e K, a contradiction. So we may assume that this is
not the case.

Since c,. ..cn cannot be a relator either, we choose the following weights:

w(aj) = - 1 / 2 = co(ak), <o(a,) = 0 for i ^j, k

co(b,) = 1 for all i

a>(Cj) = 1/2 = co(ck), (o(Cj) = 0 for i ^j, k.

There are two types of critical cycles:

a f i , . . . c n c t . . . C j . i a ^ b ^ ^ * ' ' ^ '

where k < i < n, and

OfC,... cncx... Cj^
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where k < i < n. If either of these is a relator then G is generated by b2 and bJ+l, so
we may assume that b2 and bJ+l do not both have order 2. In both cases a relator of
the form

a,c, . . . cncx... c,_ta^btZ or afc... cncx... c,_,)±marl&,+,

where k <i < n would make G cyclic, so we shall assume that these are not admissible
paths. Similarly we shall assume that paths with label

afiT-\ • • • C7 W i a ; c ; • • • ci-\a7xti?\

or

are not admissible for k <i <n.
We begin with the case where

a,c,... cncx... Cj^a^b

for k < i < n. Let bj+1 have order greater than 2; then bM also has order greater than
2. We choose the following weights:

1
1/3 for ;< i<fc
0 for k < i < n or 1 < i < j

-1 /3 for i =j

l f o r 2 < i < ;
2/3 for; < i <n

f 1/3 for i = 1 or i —j or k < i <n
Q)(Cj) ^ {

I 0 for 1 < j < j or j ' + 1 < i < k

Then there are no critical cycles.
We may now assume that bj+l = 1 and that b2 has order greater than 2. If

(akck.. .cnct.. • ck+la^bfl,)2 is a relator, then we have 1 = (c,fcf̂ ,)2 = {b^bf^'f, so G is
dihedral. Similarly, if

akck...cnc{...ck^ak
lbk+lak(ck... cncx... ck_{)'

1 a;1 bM

is an admissible path then G is the homomorphic image of a group with a presentation
{b2, bHl; bj+u[b2, bj+t]) and therefore G is an abelian group. Hence we may assume that
none of these is an admissible path.

As in the proof of Lemma 4.3 it is now possible to show that depending on the order
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of b2 weights can be allocated in such a way that either there are no critical cycles or
that the critical cycles induce relators that make G finite.

This concludes the first part of the proof and accordingly we assume that

a^... cnct... chxaj

and
afit... cnc, . . . Cj^a^bj+iCijCj... c^a^bf^ = 1

for k < i < n.
If b2 and bk+l both have order 2, we may choose them as generators for G, in which

case G is the homomorphic image of a dihedral group. We begin by assuming that
bk+l has order greater than 2 and for the sake of consistency we shall continue to
assume that G is generated by b2 and b)+l. We can proceed in a similar way as in
Lemma 4.3, by first allocating weights for the case where bj+l has order at least 6 in
such a way that there are no critical cycles. If bj+l has order 4 or 5 and bk+1 has order
less than 4 then G is the homomorphic image of a finite triangle group, so we may
assume that bk+l has order at least 4 and we choose weights that avoid critical cycles.
Next we let bj+l = 1. If bk+l has order less than 6 then G is the homomorphic image of
a finite triangle group, so we shall assume that bl+, has order at least 6 and choose
weights that avoid critical cycles.

Now let bj+l — 1, so we may assume that b2 and bk+l have order greater than 2.
Similar considerations depending on the order of b2 show that Z has a solution over G,
so we shall now assume that bk+l has order 2. As mentioned before we may assume
that neither bl+l nor b2 has order 2.

We can follow the same pattern as previously by studying several cases depending
on the order of bj+l, and noting that we may assume that there are no relators of the
form b2b^l, b2bt?u bj+]bt?u bj+}bfm, bMbf£ and bMbf", since they make G cyclic.

This completes the proof of the lemma. •

The results of the last two lemmas of this section are summarised in the following
corollary:

Corollary 5.4. Ifcx...cK£\ then £ has a solution over G.

We now proceed to study the case where c, . . . cn is a relator in G; in this case G is
generated by b2, bj+l and bk+l, and we start with the simple case where all bt have
order 2:

Lemma 5.5. Let b] = 1 for all i. Then L has a solution over G.

Proof. On account of Corollary 5.4 we may assume that c,... cn = 1. This implies
that there can be no relator of the form a,c,.. .cBc,.. .c^ia,"1^,, and we allocate
weights to the star graph of I as shown below:
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0 foTi${l,j,k)

w(bj) = 1 for all i

J 2 / 3 for ie {I, j , k ]
W{Cl) [0 fo r i*{ l , ; ,*} '

The only critical cycle has label

axcx... Cj^a^bj+iCtjCj... ck_xak *bk+lakck... cnai"'/>2.

If this is an admissible path then bj+ibMb2 = 1, so G is the homomorphic image of a
dihedral group and £ has a solution over G. •

In the next two lemmas we look at the case where some but not all bt have
order 2.

Lemma 5.6. Let

where each of e, 5 and r\ is either 1 or —1. Then T, has a solution over G.

Proof. On account of Lemma 5.5 it is sufficient to study the case where not all fe(

have order 2, and because of Corollary 5.4 we may also assume that c, . . . cn = 1. For
reasons of symmetry it is sufficient to investigate the case where b\ ^ 1. Note that we
may assume that b2̂ S"i» b2bj?u bf"b]+u bj+xb^x, fc^^t+i and bk+ibf£ are not relators,
since in conjunction with the relation b]+lbk+xbl = 1 this would turn G into a cyclic
group.

We may also assume that G is generated by bj+i and bk+l. If these both have order
2 then G is the homomorphic image of a dihedral group, so we shall assume that only
one has order 2.

Let b\+l = 1. If one of bj+l and b2 has order 3 and the other one has order less than
6 then G is the homomorphic image of a finite triangle group, so we shall assume that
this is not the case. In all the remaining cases it is possible to allocate weights that
avoid critical cycles.

The case where bl+i ^ 1 is dealt with in essentially the same way, so we omit the
details. •

Lemma 5.7. Let b] = 1 for some i. Then Z has a solution over G.

Proof. On account of Corollary 5.4, Lemma 5.5 and Lemma 5.6 we may assume
that c , . . . cn = 1, not all bt have order 2 and
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, • • • Cj^a^b^ajCj... ck_xak
xbk+xakck... cnaTx

xb\

533

where r\,e, d e {±1}. As in the proof of Lemma 5.6 it is sufficient to study the case
where b\ ^ 1 and we begin by choosing the following weights:

1/3 for 1 < i < j
-1/3 fo r i e{ l , ; }
- 1 for i = k

0 else

2/3 f o r l < i < 7
1 else

(o(ct) =

1 for i = k
2/3 for i =j
1/3 for j = 1 '
0 else

The critical cycles which will de dealt with individually are:

ajCj... ck_t

lt... cj*ajxb,+x

and the ones induced by

There are in fact more critical cycles than these; for instance

is a relator if and only if

a,c,... ck_xaZxbMakcllx... qxaTxbfJx f o r ; < i < k

(4)

(5)

(6)

(7)

(8)
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is, but we do not list them since they can all be dealt with in one go. Hence there are
five types of cycles to be studied, but since the first four are similar we only give the
details of (4). We then assume that none of (4), (5), (6) and (7) are admissible and show
how to deal with the cycles induced by (8).

Let aft.. .ck_laiibMakCill...cj'1aj~tbfti= 1. Then we may assume that cycles with
label OiCi.. .Cy_|O|'Ifc/+|a/cjll1.. .cj'laj'16fI" are not admissible as they would make G
cyclic. Since bk+lbf?t = 1 it follows that bj+i ^ 1, so b2

k+1 = 1 and hence fc;+, has order 4.
This means that bj+lb2 cannot be a relator since this would imply b\ = 1, a
contradiction.

Let b2 have order at least 4 and choose the following weights:

1 1/2 for 1 < i < j
-1/2 for ie{l,fc}

0 else

f 1/2 f o r l < / < f c
I 1 else

I I for i = k
1/2 for i= 1 or ; < i < k.
0 else

In this case there are no critical cycles.
Now let b2 have order 3. The fact that akck.. .cna\lb2

2a{c~x.. .ck
lak

lbM = 1 if and
only if afix,.. .cnflj"'fc^2a,c~'.. ,cjxajxbw = 1 for k<i<n means that we have to
consider two cases here, one for k = n and one for k < n. If k = n we allocate weights
as shown below:

1/2
1/3

-1/3
-5/6

0

[2/3
= 1/2

ll
[5/6

= | l / 3

l o

for j < i < k
for 1 < i < j
for i = k
for j = 1
else

for 1 < i < j
for j <i < k
else

for ie{l,fc}

f o r i = ;
else

The only critical cycle has label ancnax c^a bx, but if this is an admissible path
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then 1 = b^bk+l, so b2 has order 4, a contradiction.
lfk<n

(o(at) =

1/3 for 1 < i < j

-1/3 for ie{l,fc}

-1/2 for i = k + \

0 else

2/3 for 1 < i < j

bi)= \ 1/2 for ;< i<k

1 else

co(Ci) =

5/6 for i = k

1/2 fori = Jfc+l

1/3 f o r i e { l , ; }

0 else

The cycles with label afi,... cnax
 lbf2a,c~] ...c^a, lbt+l where k < i <n are the critical

ones, and the same argument holds as in the case where k = n.
From now on we shall assume that none of bk+lbf?lt bMbi2, b^b^ and b^b^2 is a

relator in G, and the only cases we need to study to complete the proof of this lemma
are the critical cycles by (8).

We begin with the easier cases where bj+l and bk+l have order greater than 2. If bj+l

has order greater than 2 we choose the following weights:

1 1/3 for 1 < i < j

- 2 / 3 forie{l,fc}

0 else

. . . (2/3 forl<i<fe

[ 1 else

1 for i = k

2/3 for i = 1

1/3 forj<i<k

0 else

and in this case there are no critical cycles, so let us now assume that bj+l has
order 2.

If bk+l has order greater than 2 we choose
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1 °
(o(a,) = I - 2 / 3

I 1/3

for 1 < i < j

for i 6 {;, k]
else

f l for i =

^ ' 12/3 else

1
2/3
1/3
0

for i = j
for i = k
for 1 < i
else

k > j' + 1 we choose

1/3
-2/3
-1/3

0

-[U
l o

1
2/3

for i =j
for 1 <
else

for k < i
for i = ;
for i e {j
else

for; < j
else

' < j and

k

< j

<k

e{j+l,k};

again there are no critical cycles, so we may assume that bk+l has order 2 too. Hence
the only critical relator induced by

is (bk+lbj+l)
2.

Let b2 have order greater than 3. In this case we choose the following weights:
I f f c = j + 1

Oi(at) =

J

1/2 for 1 < i < j

-1/4 for ie{l ,y}
- 1 fori = fc

0 else

1/2 for 1 < i < j
1 else
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if k > j + 1

co(c,) =

1 for i = k
3/4 fori=j
1/4 for i = 1'
0 else

1/2 for 1 < i < j
-1/4 for ie{l . ;}
-1/2 for i s 0 + 1 ,

0 else

1/2 for 1 <i< j
1 else

3/4 f o r i = ;

1/4 for i = 1
0 else

in either case there are no critical cycles.
Now let b\ = 1 and choose weights as shown below:

o(a,) =

-1/3
-1/2
-5/6

1/3

0

»(W = | 2 / 3

I 1
[5/6

<»(c,) = 1 1/3

l o

-1/3
-1/2

1/3

0

for i
for i
for i
for 1
else

for 1 •

else

for i €
for i =
else

for i e
for i e
for 1 <

else

= 1
=i
= k

{;.*}
= l

{!,; +

U, k)
: i < ;
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H2/3 for 1 < i < j

1 else

The critical cycles are induced by a,c,. . .cMaj lbj+lajCj^ .. . c, 'a, lb2, so the correspond-
ing relators are (bJ+ib2)

2 and [b}+u b2]. If either of these is a relator then we choose the
following weights:

-1 /2 for i = l

-1/3 for i=j

-5/6 for i = k

1/3 for 1 < J < j

0 else

2/3 for 1 < i < j

1 else

5/6 for i = k

2/3 f o r i= ;

1/2 for i = l"

0 else

Now the critical cycles are induced by a^c~x...ck
la];*bk+lakck.. .cnajlb2 and these are

the relators (bMb2)
2 and [bk+i, b2]; in all these cases G is a finite group. •

This completes the final section of this paper, and the following lemma summarises
our result:

Lemma 5.8. If \K\ = 3, then E has a solution over G.

Proof. This follows from Lemma 5.1 and Lemma 5.7. •
We have now proved our theorem by showing that £ has a solution for any value

of*.
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