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Abstract

Geoffrey Robinson conjectured in 1996 that the p-part of character degrees in a p-block
of a finite group can be bounded in terms of the center of a defect group of the block.
We prove this conjecture for all primes p 6= 2 for all finite groups. Our argument relies
on a reduction by Murai to the case of quasi-simple groups which are then studied using
deep results on blocks of finite reductive groups.

1. Introduction

Which prime powers can occur as divisors of irreducible character degrees of finite groups? This
question has a long history with many important results and famous open problems. In 1996
Geoffrey Robinson put forward a conjecture on the maximal power of a prime that may divide
a character degree. To formulate it, we need to introduce the notion of the defect of a character.
Let G be a finite group and p be a prime. Then the p-defect of an irreducible character χ ∈ Irr(G)
is the integer def(χ) such that |G|p = pdef(χ)χ(1)p; here np denotes the p-part of an integer n.
The answer proposed by Robinson [Rob96] is as follows.

Conjecture (Robinson). Let G be a finite group, p a prime and χ ∈ Irr(G) lying in a p-block
of G with defect group D. Then

pdef(χ) > |Z(D)|, (RC)

with equality if and only if D is abelian.

The height of a character χ in a block with defect group D is defined to be the integer ht(χ)
such that χ(1)p|D| = pht(χ)|G|p. So the conjecture claims that

pht(χ) 6 |D : Z(D)|

with equality if and only if D is abelian. For abelian defect groups D, this is the assertion of
the direction of Brauer’s famous height-zero conjecture, the proof of which has recently been
completed by Kessar and Malle [KM13]. Thus Robinson’s conjecture generalises this direction of
Brauer’s height-zero conjecture. For G a p-group it reduces to the classical assertion that χ(1)
always divides |G : Z(G)|.

In 1941, Brauer [Bra41] proved that pht(χ) 6 |D|/p2 for blocks with non-abelian defect group
D, and in 1968 he showed [Bra68] that pht(χ) 6 |D|/exp(Z(D)). In 1961, Fong [Fon61] proved
Robinson’s conjecture for the class of p-solvable groups, long before its formulation, and in 1979,
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Watanabe [Wat78/79] showed that in Fong’s result the inequality is always strict when D is
non-abelian.

Our main result is the following theorem.

Theorem 1. Robinson’s conjecture holds for all finite groups for all odd primes.

Our proof crucially relies on the reduction given by Murai [Mur98, Theorem 4.6] of Robinson’s
conjecture to quasi-simple groups. We improve this reduction in Theorem 2.3 to show that in fact
any minimal counterexample has to occur for a block of a quasi-simple group. We then appeal
to the classification of finite simple groups and the deep results on the block theory of these
groups, as well as to the proven direction of Brauer’s height-zero conjecture, to verify that their
blocks do not provide minimal counterexamples. While we handle many quasi-simple groups for
all primes, our restriction that p 6= 2 comes from the fact that not enough seems yet to be known
on quasi-isolated blocks of exceptional groups of Lie type in bad characteristic. This case seems
out of reach at present.

According to Robinson [Rob96, Theorem 5.1], his conjecture would follow from a
strengthened form of Dade’s ordinary conjecture (see also Eaton [Eat04]). In this sense our
result can be seen as further evidence towards Dade’s (as yet unproven) conjecture.

Remark 1. It is always the case that the degree of an irreducible character divides the index
of any (maximal) abelian normal subgroup. The corresponding sharpening of (RC) where Z(D)
is replaced by a maximal abelian normal subgroup of D fails to hold, though. The smallest
counterexample is G = GL2(3) with p = 2.

The paper is organised as follows. In § 2 we show that minimal counterexamples occur for
quasi-simple groups. We then deal with the sporadic and the exceptional covering groups in § 3,
and the alternating groups in § 4. The groups of Lie type for their defining prime are considered
in § 5. The non-defining good primes are then dealt with in § 6, while the case of odd bad primes
is considered in § 7. In that final section we also give the proof of Theorem 1.

2. General results

Throughout this paper, we fix a prime p. Let ν be the exponential valuation associated to p,
normalised so that ν(p) = 1. For a finite group G and a subgroup H of G, we write ν(G) and
ν(G : H) for ν(|G|) and ν(|G : H|), respectively.

We start out by showing, based on the reduction of Murai [Mur98]. that a minimal
counterexample to Robinson’s conjecture (RC) necessarily has to occur for a block of a quasi-
simple group. Let G be a finite group and B a p-block of G. We say that (G,B) is a minimal
counterexample to (RC) if (RC) fails for B but does hold for all p-blocks B1 of groups G1 with
|G1/Z(G1)| < |G/Z(G)|. The following result [KM13, Theorem 1.1] allows us to focus on p-blocks
of finite groups with non-abelian defect groups.

Theorem 2.1 (Kessar and Malle). If B is a p-block of a finite group with abelian defect groups
then all ordinary irreducible characters in B have height zero. In particular, they satisfy (RC).

Murai showed that if (RC) fails, then there is already a block of a quasi-simple group for which
the conjecture does not hold. In our proofs, we will show that blocks of quasi-simple groups are
not minimal counterexamples to (RC). Thus we need to make the connection between Murai’s
reduction and our results.
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Lemma 2.2. Let G be a finite group. Assume that (RC) holds for all quasi-simple groups L such
that |L/Z(L)| 6 |G/Z(G)|. Then no p-block of G is a minimal counterexample to (RC).

Proof. Assume that some p-block of G is a minimal counterexample, so that G is non-abelian.
Let N be a subgroup of G such that Z(G) 6 N and N/Z(G) is a maximal normal subgroup of
G/Z(G).

We claim that the condition of [Mur98, Theorem 4.3] holds for N , that is, that (RC) holds
for every p-block of every central extension of H/N for every subgroup H with N 6 H 6 G.
Let L1 be a central extension of H/N . If H < G, then |L1/Z(L1)| 6 |H/N | < |G/Z(G)|, hence
the claim holds for L1 since G was chosen minimal. Thus we have that H = G, and L1 is a
central extension of the simple group G/N . If G/N is of prime order, then L1 is abelian, and
(RC) is trivially true. If G/N is non-abelian simple, then L = [L1, L1] is quasi-simple. Since
|L/Z(L)| = |G/N | 6 |G/Z(G)|, it follows by assumption that (RC) holds for every p-block of L.
Then (RC) holds for every p-block of L1 by the proof of [Mur98, Theorem 4.4], and the claim
follows.

Now the result follows from the same argument as for [Mur98, Theorem 4.6]. 2

Theorem 2.3. Let p be a prime. If no p-block of a quasi-simple group is a minimal
counterexample to (RC), then (RC) is true for every p-block of any finite group.

Proof. If (RC) is true for all quasi-simple groups, then we are done by [Mur98, Theorem 4.6].
Otherwise, assume that G is a quasi-simple group which is a counterexample to (RC) with
|G/Z(G)| minimal among quasi-simple groups. By assumption there exists a finite group H such
that (RC) does not hold for some p-block of H and |H/Z(H)| < |G/Z(G)|. By Lemma 2.2,
there is a quasi-simple group L such that |L/Z(L)| 6 |H/Z(H)| and (RC) does not hold for
some p-block of L. However, we have |L/Z(L)| < |G/Z(G)|, contradicting the choice of G. This
completes the proof. 2

Corollary 2.4. If no block of a quasi-simple group with cyclic center is a minimal
counterexample to (RC), then (RC) is true for all finite groups.

Proof. By Theorem 2.3 we may assume that a minimal counterexample to (RC) is a p-block B
of a quasi-simple group G. Let D be a defect group of B. Let χ ∈ Irr(B) and K := ker(χ)∩Z(G).
Then N := Op(K) 6 D and D̄ = D/N is a defect group of the p-block B̄ of G/K dominated
by B. Let χ̄ ∈ Irr(B̄) such that χ is the inflation of χ̄. Now clearly def(χ) = |N |def(χ̄), while
|Z(D)| 6 |N | · |Z(D̄)|, so B̄ is a counterexample as well. As χ is irreducible, Z(G/K) is cyclic
by Schur’s lemma. The claim follows. 2

3. Sporadic groups

In this section we verify Robinson’s conjecture for p-blocks of covering groups of the sporadic
simple groups, as well as for those of exceptional covering groups of groups of Lie type. We start
by recording some general observations.

Lemma 3.1. Let B be a p-block with defect group D such that |Z(D)| = p. Then Robinson’s
conjecture holds for B.

Proof. If B contains characters of defect at most 1, then by a well-known result of Brauer
(see [Bra41]) the block has defect 1, and the defect group D is cyclic, hence abelian. 2
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Corollary 3.2. Robinson’s conjecture holds for all p-blocks with a non-abelian defect group
of order p3.

For convenience we will also use the following result [Sam14, Theorem 13.6].

Theorem 3.3 (Sambale). Robinson’s conjecture holds for all 2-blocks with defect group of order
16.

Lemma 3.4. Let N be a normal subgroup of G of p′-order. Write G = G/N . Let B be a p-block
of G, and B a p-block of G dominating B. If B satisfies Robinson’s conjecture then so does B.

Proof. This is a direct consequence of [Nav98, Theorem 9.9(c)]. In fact, the sets Irr(B) and
Irr(B) are identified under inflation, and the defect groups of B and B are isomorphic. 2

Theorem 3.5. Let G be quasi-simple such that S = G/Z(G) is one of the 26 sporadic simple
groups or 2F4(2)′. Then for all p, Robinson’s conjecture holds for all p-blocks of G.

Proof. By Theorem 2.1, we need only consider p-blocks of G with non-abelian defect groups. It
turns out that there are at most two kinds of such p-blocks in each case. The blocks of defect 3
are not counterexamples by Lemma 3.2, nor are those of defect 4 when p = 2 by Theorem 3.3.
The remaining blocks are listed in Table 1, where B is a p-block of G with defect d, m is the
maximal height of the irreducible characters in B and νZ = ν(P : Z(P )) for some defect group

P of B. We denote by B0 the principal p-block of G, and the notation B
(j)
0 means that there are

j p-blocks of G with the same invariants d,m and νZ as the p-block B0.
Here are some details of how to construct the table. The heights and defects of blocks of

G are obtained from the GAP character table library [GAP18]. The structure of defect groups
of many non-principal 2-blocks of sporadic simple groups and their covering groups is given by
Landrock [Lan78]. (See also the proof of [KM13, Proposition 8.1].)

In some cases, the center of a Sylow p-subgroup of G is available using GAP [GAP18] or
is shown in [Sys80]. For the remaining cases, we apply one of the following straightforward
observations.

(1) If Q 6 P , then ν(P : Z(P )) > ν(Q : Z(Q)).

(2) If Q� P , then ν(P : Z(P )) > ν(P/Q : Z(P/Q)) + ν(Q : Z(Q)).

Also, we analyse the structure of the centraliser of some element in G of order p given in [Sys80]
and the references therein.

If G = J4 and P is a Sylow 2-subgroup of G, then |P | = 221 and according to [Sys80]
the centraliser CG(z) of a 2-central involution z in G has the structure EM , where E is an
extra-special group 21+12

− and the derived subgroup M ′ has index 2 in M and is isomorphic to
the 6-fold cover of M22. So νZ > 12 + 6 = 18.

If G = Co1 and P is a Sylow 2-subgroup of G, then |P | = 221 and G has a 2-central
involution z such that O2(C) is an extra-special group 21+8

− and C/O2(C) is isomorphic to
O+

8 (2), where C = CG(z). Since the Sylow 2-subgroups of O+
8 (2) have center of order 2, it

follows that νZ > 8 + 11 = 19.
If G = Fi′24 then Sylow 2-subgroups of G have order 221 and G has a central involution z

such that O2(C) is an extra-special group 21+12
− and C/O2(C) has a subgroup isomorphic to

3.U4(3).2, where C = CG(z). Since a Sylow 2-subgroup of U4(3) has center of order 2, it follows
that νZ > 12 + 6 = 18.
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Table 2. Non-generic Schur multipliers.

S M(S) S M(S) S M(S)

L2(4) C2 U4(3) C12 × C3 G2(3) C3

L3(2) C2 U6(2) C6 × C2 G2(4) C2

L2(9) C6 Sp6(2) C2 F4(2) C2

L3(4) C12 × C4 O7(3) C6
2E6(2) C6 × C2

L4(2) C2 O+
8 (2) C2 × C2 A7 C6

U4(2) C2
2B2(8) C2 × C2

The Sylow 3-subgroups of 3.O′N are extra-special groups of order 31+8 and exponent 3.
Suppose G = HN . If P is a Sylow 2-subgroup of G, then |P | = 214 and the centraliser of

a 2-central involution of G is the extension of 21+8
− by the wreath product of A5 by C2. This

implies that νZ > 9. If P is a Sylow 3-subgroup of G, then |P | = 36 and the centraliser of a
3-central element of order 3 in G is a 3-constrained extension of the extra-special group of order
35 by SL2(5). Therefore, we have νZ > 5 in this case. This also holds if P is a Sylow 5-subgroup
of G.

If G = Ly then G has a Sylow 2-subgroup isomorphic to that of 2.A11, hence νZ = 7 for the
principal 2-block of G. Note that G has another 2-block with non-abelian defect groups which
are actually isomorphic to the Sylow 2-subgroups of 2.A8. So νZ = 6 in this case. For p = 3, G
has an element of order 3 whose centraliser in G is a faithful split extension of a special group
of order 36 and exponent 3 by SL2(5), which implies νZ > 5 for B0. Finally, if P is a Sylow
5-subgroup of G, then we consider the centraliser of an element of order 3 in G which has a
subgroup isomorphic to a faithful split extension of a special group of order 55 and exponent 5
by a cyclic group of order 5. It then follows that νZ = 5 for B0.

Suppose G = Th. A Sylow 2-subgroup of G has order 215 and the centraliser of any involution
of G is a 2-constrained extension of 21+8

− by A9, which implies νZ > 13 in this case. If P is a
Sylow 3-subgroup of G, then by [Sys80], we have |Z(P )| = 3, and so νZ = 9.

Suppose G = B, the Baby Monster. If P is a Sylow p-subgroup of G, then we investigate the
maximal subgroups 2.2E6(2).2, Fi23 and HN.2 of G from [CCNPW84] or [Wil09, Table 5.7] to
get the desired estimate of νZ for the cases p = 2, 3 and 5, respectively.

Finally, suppose G = M , the Monster. For p = 2 we use the maximal subgroup 2.B of G
to obtain νZ > 35. For p = 3 we look at the maximal subgroup 3.F i24 of G to obtain νZ > 15.
According to [GLS98, Table 5.3z], a Sylow 5-subgroup of G has an extra-special subgroup 51+6

of exponent 5, hence νZ > 6, and a Sylow 7-subgroup of G has an extra-special subgroup 71+4

of exponent 7, hence νZ > 4. Now the table is established, finishing the proof. 2

Theorem 3.6. Let G be an exceptional covering group of a simple group of Lie type or of
the alternating groups A6 or A7. Then Robinson’s conjecture holds for all p-blocks of G for all
primes p.

Proof. The Schur multipliers of the groups mentioned in the theorem can be found
in [CCNPW84] and [MT11, Table 24.3]. For convenience, we list them in Table 2. The character
tables of all these groups can be found in GAP [GAP18], as well as the defects of p-blocks and
the heights of irreducible characters of G.

As we only list exceptional coverings, we do not consider the simple groups themselves, nor
2.L2(4) = 2.A5, 2.L2(9) = 2.A6, 2.L3(2) = 2.L2(7), 3.L3(4), 2.L4(2) = 2.A8, 2.U4(2) = 2.S4(3),
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4.U4(3), 3.U6(2), 2.O7(3) or 3.2E6(2). Also, by Corollary 2.4 we only need to look at coverings

with cyclic center. Observe that when the universal covering group has non-cyclic center, then

often all cyclic p-subgroups of the center of a given order are conjugate under the outer

automorphism group [CCNPW84], and then just one such extension has to be considered in

each case.

By Theorem 2.1 and Lemma 3.2 we may focus on p-blocks B of G with non-abelian defect

groups P of defect d > 4. In particular, we have p = 2 or 3 and by Theorem 3.3 we may assume

d > 5 when p = 2. We list them in Table 3, where d,m, νZ , B0 and B
(j)
0 have the same meaning

as in Table 1. (Notice that in some cases we need to study the centraliser of some p-element of

G. Again, we do not try to get the exact number, so sometimes the numbers in Table 3 are just

lower bounds on νZ big enough for our purpose.) 2

4. Alternating groups

We next discuss alternating groups. For odd primes these have essentially been dealt with by

Bessenrodt and Olsson [BO97].

Theorem 4.1. Let H be quasi-simple such that H/Z(H) = An with n > 5. Then for all primes

p, Robinson’s conjecture holds for all p-blocks of H.

Proof. By Theorem 3.6 we may assume that H = An or the 2-fold cover 2.An of An. Bessenrodt

and Olsson showed that Robinson’s conjecture holds for all p-blocks of 2.Sn, for all primes p

(see [BO97, Theorem 4.9]). Therefore, for p odd, the result follows by Lemma 3.4 and the Clifford

theory with respect to p-blocks.

So now let p = 2. Let b be a 2-block of H. We first assume H = An. Let G be the symmetric

group Sn, B a 2-block of G covering b, and P a defect group of B. By the proven Nakayama

conjecture [Ols93, Theorem 11.1], the 2-blocks of G are parameterised by the 2-cores of partitions

of n. If B corresponds to a 2-core κ, then by [Ols93, Proposition 11.3], P is isomorphic to a Sylow

2-subgroup of S2w, where w := (n− |κ|)/2 is the so-called weight of B. Let Q = P ∩An, a defect

group of b, isomorphic to a Sylow 2-subgroup of A2w.

If w 6 2 then Q is abelian, and if w = 3 then Q is non-abelian of order p3. For these two

cases, the result follows by Theorem 2.1 and by Corollary 3.2, respectively. So we may assume

w > 3 in the following. Write w = 2a1 + · · · + 2at , where a1 > · · · > at > 0. Then, if we denote

by Xi = C2 o · · · o C2 the iterated wreath product of ai copies of the group C2 of order 2, then

by [Ols93, Proposition 11.3], P is isomorphic to Xa1+1×· · ·×Xat+1. Hence ν(P : Z(P )) = 2w−2t.

By [Ols93, Proposition 11.9], the heights of characters in B are bounded by w− t. So the heights

of characters in b are also bounded by w − t, and thus the result follows.

Now we assume H = 2.An and let G be a 2-fold cover 2.Sn of Sn. By [Nav98, Theorem 9.10],

there is a bijection between the set of 2-blocks of G and those of Sn. If B corresponds to a 2-block

of Sn with weight w, then a defect group P is a Sylow 2-subgroup of 2.S2w, hence a defect group

Q of b is a Sylow 2-subgroup of 2.A2w. Note that we may assume that w > 2, and that the Sylow

2-subgroups of 2.A4 and 2.A6 are the quaternion groups Q8, Q16 respectively. In addition, if

w > 3 then by [Wag77, Lemma 3.2] we have |Z(Q)| = 2. Thus we always have |Z(Q)| = 2 for

w > 2. Now the result follows by Lemma 3.1. 2
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5. Groups of Lie type in their defining characteristic

In this section let G be a simple algebraic group of simply connected type over an algebraically
closed field of characteristic p and F : G → G a Steinberg endomorphism such that G = GF is
quasi-simple.

Theorem 5.1. Let B be a p-block of G = GF , where G is as above. Then B is not a minimal
counterexample to Robinson’s conjecture.

Proof. First note that we need not consider G of type A1 since Sylow p-subgroups of these groups
are abelian. Let q be the absolute value of the eigenvalues of F in its action on the character
group of an F -stable maximal torus of G. Let N be the number of positive roots of the root
system of G. First assume that G is not a Suzuki or Ree group. By the results of Lusztig [Lus84],
for any χ ∈ Irr(G) there are integers aχ > 0, nχ > 1 and a product of cyclotomic polynomials
f ∈ Z[X] (in particular, f is not divisible by X) such that

χ(1) =
1

nχ
qaχf(q). (∗)

Let Aχ := aχ + deg(f) be the degree of the degree polynomial of χ. Then the Alvis–Curtis–
Kawanaka–Lusztig dual ψ := DG(χ) has the property that

ψ(1) = ± 1

nχ
qN−Aχf(q)

(see, for example, [Lus84, (8.5.12)]). Now duality is an involution, so D2
G(χ) = DG(ψ) = χ, that

is, aχ = N −Aψ. Hence the precise power of p dividing χ(1) is qN−Aψ , with ψ = DG(χ).
We now claim that for all χ ∈ Irr(G) we have χ(1)p < qN−1 unless χ is the Steinberg character

of G (see, for example, [Car85, § 6]). By what we said before, it is sufficient for this to see that
Aψ > 1 unless χ = DG(ψ) is the Steinberg character, that is, unless ψ = 1G. Clearly, Aχ = 0
means ψ = 1G. The explicit formulas for Aψ given, for example, in [Car85, § 13] show that Aψ > 1
in all other cases.

Now the Steinberg character is of p-defect 0, so certainly does not provide a counterexample.
All other blocks have full defect, that is, any U ∈ Sylp(G) is a defect group (see [CE04,

Theorem 6.18]). Note that |U | = qN . Then |Z(U)| = q unless G is of type Bn(2f ) (n > 2),
F4(2f ) or G2(3f ), while in the latter cases |Z(U)| = q2; see [GLS98, Theorem 3.3.1]. Hence we
are done in the case when |Z(U)| = q, as then

|G|p
χ(1)p

=
qN

χ(1)p
>

qN

qN−Aψ
= qAψ > q = |Z(U)|.

In the cases when |Z(U)| = q2 it is again easy to check from the values of Aψ in [Car85, § 13] that
here in fact χ(1)p < qN−2 unless χ is the Steinberg character, which again allows us to conclude.

For the Suzuki and Ree groups, the above arguments do go through mutatis mutandis,
replacing, for example, cyclotomic polynomials over Z by cyclotomic polynomials over Z[

√
p].

Here we always have |Z(U)| = q2 (see [Ree61b, (5.6)], [Ree61a, Theorem 4.14]; note that in this
case q is not an integer), but again all aχ for χ not the Steinberg character are at most N−2. 2

For primes p that are good for G, this result also follows from [Gec03, Theorem 1].
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6. Good primes

To conform with the usual notation in block theory of finite reductive groups, from now on we
change our notation and consider `-blocks, for a prime `, and let p denote the characteristic of
the underlying field of a linear algebraic group. Let us start out with the following completely
elementary observation, which can be thought of as an analogue of (RC) for conjugacy class
lengths.

Lemma 6.1. Let D be a non-abelian `-group. Then |CD(t)| > |Z(D)| for all t ∈ D.

Proof. If t ∈ Z(D) the claim holds. Else 〈Z(D), t〉 centralises t and has order larger than |Z(D)|.
2

Roughly speaking, Robinson’s conjecture for groups of Lie type in cross characteristic should
be a consequence of this observation. In order to explain this, let us look at the principal `-block
B0 of a finite reductive group G in characteristic different from `. Then Irr(B) ⊆ E`(G, 1) =⊔
t E(G, t), where t runs over the `-elements of the dual group G∗. Moreover, by the Jordan

decomposition of characters, there are bijections Jt : E(G, t) → E(CG∗(t), 1) with χ(1) = |G∗ :
CG∗(t)|p′Jt(χ)(1). In particular, this means that χ and Jt(χ) have the same defect in their ambient
groups. Fix a Sylow `-subgroup D of G∗; then any `-element t ∈ G∗ has a conjugate in D, and
obviously |G∗ : CG∗(t)|` 6 |D : CD(t)| 6 |D : Z(D)| by Lemma 6.1, with strict inequality when D
is non-abelian. Thus, for example, when all elements of Jt(Irr(B)∩E(G, t)) have degree prime to
`, the desired conclusion follows (assuming that G and G∗ have isomorphic Sylow `-subgroups,
or at least that their centers are of the same order).

6.1 Unipotent blocks
We now make this heuristic precise. For a prime ` not dividing q we denote by d`(q) the order
of q modulo ` when ` is odd, respectively the order of q modulo 4 when ` = 2. We employ
freely the notions from d-Harish-Chandra theory, such as d-split Levi subgroups, d-cuspidal
pairs and d-Harish-Chandra series, as laid out in [BMM93], as well as the language of Lusztig
series explained, for example, in [CE04, § 8]. The following estimate will prove useful.

Proposition 6.2. Let H be connected reductive with Frobenius map F with respect to an
Fq-rational structure. Let ` be a prime and d = d`(q). Let χ ∈ E(HF , 1) be a unipotent character
in the d-Harish-Chandra series of the d-cuspidal pair (L, λ) of H. Then

|HF |`
χ(1)`

> |Z(L)F` |.

Proof. This follows directly from the character formula for unipotent characters in d-Harish-
Chandra series; see [Mal07, Theorem 4.2]. 2

For a prime ` we consider the following property of a connected reductive group G with
Frobenius map F with respect to an Fq-rational structure; here, d = d`(q).

(‡) For any d-split Levi subgroup L 6 G, an F -stable reductive subgroup H 6 G is the
centraliser of an `-element in C◦G([L,L])F if and only if its dual H∗ 6 G∗ is the centraliser
of an `-element in C◦G∗([L

∗,L∗])F .

Lemma 6.3. Let G be simple, ` a good prime for G not dividing q. Then (‡) holds for G unless
when G is of type An−1 and either F is untwisted and `|(n, q−1), or F is twisted and `|(n, q+1).
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Proof. There is an isogeny π : G → Gad with F -stable kernel, which on the level of finite groups
restricts to a homomorphism GF

→ GF
ad. This induces a bijection between the sets of F -stable

Levi subgroups of G and of Gad, preserving the property of being d-split. By our assumptions on
`, centralisers of `-elements in G are Levi subgroups. Also, by our assumptions Z(G) has order
prime to `, so the order of the kernel of π and the index |GF

ad : π(GF )| are prime to `. Thus, π
induces a bijection between centralisers of `-elements in GF and GF

ad as required for (‡).
If G is not of type Bn or Cn, then Gad and (G∗)ad are isomorphic, and our claim follows. For

G = Sp2n all d-split Levi subgroups have the form L = Sp2m

∏
i GLni with e

∑
ni+m = n, where

e = d/(d, 2) (see [BMM93, p. 49]) and C◦G([L,L]) = Sp2(n−k) for some k > m. Thus the claim
for Sp2n follows by induction, and hence also for its dual SO2n+1, and then by the preceding
argument for all groups isogenous to these. 2

Theorem 6.4. Let G be simple, ` > 2 a good prime for G different from the defining
characteristic of G, ` 6= 3 if GF = 3D4(q), ` 6 |(n, q − 1) if G is of type An−1 and F is untwisted,
and 6̀ |(n, q + 1) if G is of type An−1 and F is twisted. Then the unipotent `-blocks of GF

satisfy (RC).

Proof. Under our assumptions on `, by [CE94, Theorem] the unipotent `-blocks of G are in
bijection with the GF -conjugacy classes of d-cuspidal unipotent pairs (L, λ) of G, where d =
d`(q). We write b(L, λ) for the corresponding unipotent `-block of GF .

Let B = b(L, λ) be an `-block, and assume that χ ∈ Irr(B). Then by [CE94, Theorem (iii)]
there is an `-element t ∈ G∗F such that χ ∈ E(GF , t), and χ is a constituent of RG

H(t̂χt) where
H 6 G is dual to H∗ := CG∗(t) and χt ∈ E(HF , 1). Moreover, χt lies in the d-Harish-Chandra
series of a d-cuspidal pair (Lt, λt) of H such that [L,L] = [Lt,Lt].

By Lemma 6.3, G satisfies (‡), so there is an `-element t′ ∈ C◦G([L,L])F = C◦G([Lt,Lt])
F with

centraliser H. According to [CE94, Theorem (ii)], any Sylow `-subgroup D of C◦G([L,L])F is a
defect group of b(L, λ). Since Z◦(Lt) 6 C◦H([Lt,Lt]) 6 C◦G([Lt,Lt]) we may assume Z◦(Lt)

F
` 6D.

Then

Z(D) 6 CD(Z◦(Lt)
F
` ) ∩H = D ∩ CH(Z◦(Lt)

F
` )F = D ∩ LFt

6 C◦G([Lt,Lt])
F ∩ LFt = C◦Lt([Lt,Lt])

F = Z◦(Lt)
F

using that CH(Z◦(Lt)
F
` ) = Lt since Lt is d-split in H (see [CE94, Proposition 3.3(ii)]). As D is

an `-group, this shows that Z(D) 6 Z◦(Lt)
F
` . With Proposition 6.2 this yields

`def(χ) =
|GF |`
χ(1)`

=
|HF |`
χt(1)`

> |Z(Lt)
F
` | > |Z(D)|.

Moreover, this inequality is strict unless Z(D) = Z◦(Lt)
F
` . But in the latter case all elements of

D centralise Z◦(Lt)
F
` , so lie in CH(Z◦(Lt)

F
` ) = Lt, whence

D 6 LFt ∩ C◦G([Lt,Lt])
F = C◦Lt([Lt,Lt])

F 6 Z(Lt)

is abelian. 2

6.2 Linear and unitary groups for odd primes
We now turn to groups of type An−1. We may and will assume that `|n, as otherwise we are in
the situation of Theorem 6.4. As customary, we let GLn(−q) denote GUn(q), and similarly for
SLn(−q).

We will need the following inequalities between coefficients of `-adic expansions.
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Lemma 6.5. Let ` > 2 be a prime and a > 1 an integer. Let n be a positive integer with
`-adic expansion n =

∑
i ai`

i, where a0 = 0. Suppose n =
∑

j nj`
bj with nj > 0, bj > 0. Set

si :=
∑

j|bj=i nj . Then

a
∑
i

(si − ai) +
∑
j

njbj > k + 1,

where k = min{a, bj}, unless ai = si for all i and either n = `k, or n = 2` and k = 1.

Proof. Note that n =
∑

j nj`
bj =

∑
i si`

i. Clearly we can get from the `-adic expansion of n to the

representation n =
∑

i si`
i by repeatedly replacing a summand `i by ` summands `i−1, and each

such step does increase the coefficient sum by `−1. Thus if (ai)i 6= (si)i then
∑

i(si−ai) > `−1 > 2
and hence

a
∑
i

(si − ai) +
∑
j

njbj > 2a+
∑
j

njbj > k + 1

as claimed (since k = 0 if all bj = 0).
So now assume that ai = si for all i, that is, the nj with bj = i sum to ai. As a0 = 0 this

means that bj > 0 for all j. Then ∑
j

njbj > k + 1

unless there is exactly one non-zero bj = k, and nj 6 2, with bj = 1 when nj = 2. 2

Lemma 6.6. Let ` > 2, ε ∈ {±1}, G̃ = GLn(εq) and G = SLn(εq), with (q − ε)` = `a. Let D̃,
D = D̃ ∩G be Sylow `-subgroups of G̃, G respectively.

(a) Then |Z(D̃)| = `a
∑
ai and |Z(D)| = |Z(D̃)|/`a−k where n =

∑
ai`

i is the `-adic expansion
of n and k = min{a, i | ai 6= 0}.

(b) Let 1 6= Z 6 O`(Z(G)) and assume that (n, `a) 6= (3, 3). Then |Z(D/Z)| 6 `|Z(D)/Z| with
strict inequality if n 6= `k.

Proof. We assume ε = 1, the case ε = −1 being entirely similar. A Sylow `-subgroup P of GL`i(q)

is an iterated wreath product C`a o C` o · · · o C` (with i factors C`). Let B = C`
i

`a denote its base
group. There is a complement R to B in P consisting of permutation matrices, hence lying in
SL`i(q) as ` is odd. Then Z(P ) is contained inside B, as R acts faithfully by permutations on
the set of cyclic factors of B. It is clear that Z(P ) is just the central diagonal subgroup Z0

∼= C`a

of B. Then R still acts faithfully on the quotient B/Z0. Direct computation shows that the
elements of B whose image is central in P/Z0 are of the form (a, a, . . . , az, az, . . . , az2, az2, . . .)
with blocks of length `i−1 and z of order dividing `. Thus |Z(P/Z0)| = `.

Now for n arbitrary, D̃ is contained in a block diagonal subgroup
∏
i GL`i(q)

ai of G̃. From
the above description we see that Z(D̃) is the product of the central `-subgroups of the factors
and that Z(D) = Z(D̃) ∩G. Then the determinant condition gives (a).

Part (b) also follows from the above observations when n = `i. When the `-adic expansion of
n has at least two summands, again a direct computation shows that Z(P/Z) = Z(P )/Z = Z0/Z
for any Z 6 Z0, as claimed. 2

Lemma 6.7. Assume that 2 < `|(n, q − ε). Let χ be a unipotent character of GLm(εq). Then
def(χ) > ma where `a = (q − ε)`.
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Proof. The degree polynomial of χ is not divisible by x−ε, while x−ε divides the order polynomial
of GLm(εq) exactly m times. Thus `def(χ) > (q − ε)m` = `ma. 2

Theorem 6.8. Let G = SLn(εq), let ` > 2 and assume that `|(n, q− ε). Then for any Z 6 Z(G)
the unipotent `-blocks of G/Z do not provide counterexamples to (RC).

Proof. First assume that ε = 1, so G = SLn(q). As `|(q− 1), the principal block B is the unique
unipotent `-block of G [CE04, Theorem 22.9]. Let B̃ denote the principal `-block of GLn(q). Then
the characters in Irr(B) are constituents of the restriction to G of the characters in Irr(B̃). Let
χ̃ ∈ Irr(B̃). Then there is an `-element t ∈ GLn(q) with χ̃ ∈ E(G̃, t). The centraliser H := CGLn(t)

of t has the rational form HF =
∏
j GLnj (q

`bj ) for suitable integers nj , bj with
∑

j nj`
bj = n.

The unipotent characters of HF are just the outer tensor products of the unipotent characters

of the various factors. Using that `a+bj is the precise power of ` dividing q`
bj − 1, we thus get,

with Lemma 6.7,

def(χ̃) >
∑
j

nj(a+ bj) = a
∑
i

si +
∑
j

njbj ,

where si is the sum over all nj with bj = i. By Lemma 6.6 the center of a Sylow `-subgroup D̃
of GLn(q) has order `a

∑
ai , where n =

∑
i ai`

i is the `-adic expansion of n. Thus we are in the
situation of Lemma 6.5. First assume that we are not in one of the exceptions mentioned there.
Then `def(χ̃) > `k+1|Z(D̃)| with k = min{a, bj}. Let χ be a constituent of χ̃|G and D = D̃ ∩ G
a Sylow `-subgroup of G. Then `def(χ) > `|Z(D)| by Lemma 6.6(a). Now let Z 6 Z(G) be a
central `-subgroup in the kernel of χ. Then for a Sylow `-subgroup D̄ = D/Z of G/Z we have
|Z(D̄)|6 `|Z(D)|/|Z| when n 6= `k by Lemma 6.6(b), whence `def(χ) > |Z(D̄)| for G/Z as claimed.

Now assume that n = 2` and k = 1. Then we still get `def(χ̃) > `k|Z(D̃)|. Since in this case
|Z(D̄)| = |Z(D)|/|Z| we may conclude as before. Finally, assume that n = `k, with k 6 a. Here
HF = GL1(qn), and χ̃ decomposes into n = `k characters upon restriction to G, so def(χ) = 2k.
Furthermore, |Z(D̄)| = |Z(D)|/`k−1. If k > 1 this implies that `def(χ̄) > `k > |Z(D̄)|, for χ̄ ∈
Irr(G/Z) a character with inflation χ. When k = 1, χ is faithful and so does not descend to any
proper quotient of G. In the excluded case that n = `a = 3 and Z 6= 1 the Sylow 3-subgroups of
G/Z are abelian.

The proof for SUn(q) is completely analogous, with q − 1 replaced by q + 1 throughout. 2

7. Exceptional groups

In this section we consider blocks of exceptional groups for non-defining primes. We first get the
Suzuki and Ree groups out of the way.

Proposition 7.1. Let G be quasi-simple such that S := G/Z(G) is one of the following groups:
2B2(q2) with q2 = 22m+1 > 2, 2G2(q2) with q2 = 32m+1 > 3, or 2F4(q2) with q2 = 22m+1 > 2.
Then Robinson’s conjecture holds for all p-blocks of G.

Proof. If p is the defining characteristic of G, we conclude by Theorem 5.1.
If S = 2B2(q2) with q2 = 22m+1 > 2, then by Theorem 3.6 we may assume that Z(G) = 1. Here,

all Sylow subgroups for odd primes are cyclic. Similarly, if G = 2G2(q2) with q2 = 32m+1 > 3,
then Z(G) = 1 and again all Sylow p-subgroups for primes p 6= 3 are abelian.

Finally, suppose G = 2F4(q2) with q2 = 22m+1 > 2. For p = 3, the 3-blocks of G have
been determined in [Mal90]. In particular, we only need to consider the principal 3-block B0.
By [Mal91, Proposition 1.2(1)], we have |Z(P )|= 3 for P ∈ Syl3(P ), hence (RC) holds for 3-blocks
of G by Lemma 3.1. Thus (RC) holds for all p-blocks of G = 2F4(q2) for all primes p. 2
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Table 4. Centers of Sylow `-subgroups P ∈ Syl`(G). Here ε, δ, η ∈ {±1} with q ≡ ε (mod 3) and
q ≡ η (mod 5).

G ` CG(t) |Z(P )|

G2(q) 3 A2(εq) 3

3D4(q) 3 A2(εq)(q2 + εq + 1) 3

F4(q) 3 A2(εq)2 3

E6(δq) 3 E6(δq) (ε = δ) 3

3 A2(q2).A2(εq) (ε = −δ) 3

E6(δq)/Z 3 A2(δq)3 (ε = δ) 3

E7(q) 3 E6(εq).(q − ε) (q − ε)3
E8(q) 3 E6(εq).A2(εq) 3

5 A4(ηq)2 (q2 ≡ 1 (5)) 5

5 2A4(q2) (q2 ≡ 4 (5)) 5

7.1 Unipotent blocks
Let G be a simple algebraic group with a Frobenius endomorphism F : G → G such that
G := GF is a finite quasi-simple exceptional group of Lie type. We investigate `-blocks of GF

for primes ` > 2 different from the defining characteristic of G, and we assume, moreover, that
` is a bad prime for G, or ` = 3 for G = 3D4(q).

We first discuss unipotent blocks. Again, we only need to consider those of non-abelian defect.
For the principal block, one needs to determine |Z(P )| for P ∈ Syl`(G). For all groups except for
type E6 and ` = 3, and for type E7 and ` = 2, Sylow `-subgroups of G and G∗ are isomorphic
as G ∼= G∗.

Proposition 7.2. Let G be quasi-simple of exceptional Lie type. The structure of centralisers
of `-central semisimple `-elements t ∈ G, where ` > 2 is a bad prime for G, and the size of Z(P )
for P ∈ Syl`(G) are as given in Table 4.

Proof. The centralisers of semisimple elements in G can be classified with the algorithm of Borel
and de Siebenthal. It turns out that the only centralisers CG(t) of `-elements t /∈ Z(G) of `′-index
in G are as listed in Table 4. (In fact, these can also be found on the website of Frank Lübeck.)

Now if P ∈ Syl`(G) and t ∈ Z(P ) then CG(t) has `′-index in G. Thus t occurs in the table,
and P 6 CG(t). Then |Z(P )| can be read off from the structure of CG(t). 2

Lemma 7.3. Let G be quasi-simple of exceptional Lie type. If G has a non-principal unipotent
`-block of non-abelian defect for a bad prime ` > 2, then ` = 3 and the block and its defect
groups are as given in Table 5.

Proof. The non-principal unipotent `-blocks of exceptional groups were determined by
Enguehard [Eng00]. In Table 5 we label these blocks by the smallest Harish-Chandra vertex
(L, λ) above which (some of) their unipotent characters lie, in the notation of [Eng00]. The
defect groups are described in [Eng00]. From this, the information on the center can readily be
derived. For example, for G = E8(q) and ` = 3, [Eng00, p. 364] states that a defect group D is
isomorphic to a Sylow 3-subgroup of F4(q), whence |Z(D)| = 3 by Table 4. 2
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Table 5. Non-principal unipotent 3-blocks of non-abelian defect. Here ε ∈ {±1} with q ≡
ε (mod 3).

G (L, λ) D |Z(D)|

E6(εq) (D4, ζε) C2
(q−ε)3 .3 3

E7(q) (D4, ζε) C3
(q−ε)3 .3 (q − ε)3

E8(q) (D4, ζε) C4
(q−ε)3 .3

2 3

Proposition 7.4. The unipotent `-blocks of quasi-simple groups of exceptional Lie type for bad
primes ` 6= 2 do not provide counterexamples to Robinson’s conjecture.

Proof. Let G be quasi-simple of exceptional Lie type, ` > 2 be a bad prime for G and B a
unipotent `-block.

If B is the principal `-block of G, then by Lemma 3.1 we may assume that Z(P ) is of order
at least `2, where P is a Sylow `-subgroup of G. Thus, by Table 4 we may assume that G is in
fact simple, and of type E7 with ` = 3.

Assume first that q ≡ 1 (mod 3). Here, according to Enguehard’s description in [Eng00,
Theorem B], a character χ ∈ E(G, t) lies in the principal 3-block if t is a 3-element, and, moreover,
the Jordan correspondent of χ in E(CG∗(t), 1) lies in a Harish-Chandra series with Harish-
Chandra vertex either a torus or a Levi subgroup of type E6. First assume that χ has Harish-
Chandra vertex E6. Then H = CG∗(t) has a Levi subgroup of type E6 and thus is of type E6

or E7. Then the formula for Jordan decomposition shows that Φ1Φ3
3Φ9 divides |G|/χ(1) and so

|G|3/χ(1)3 > 34(q − 1)3. If χ has trivial Harish-Chandra vertex then by the same argument we
are done when H has Fq-rank at least 2. Note that H has Fq-rank at least 1 as by Table 4 every
3-element centralises a split torus of rank 1. Now if H has Fq-rank equal to 1, then all of its
unipotent characters have degree prime to 3, and it is easy to see that |G : χ(1)|3 > 3(q − 1)3 >
|Z(P )|.

Let us now consider the non-principal unipotent blocks listed in Table 5. Here only G = E7(q)
with ` = 3 is relevant, with B the block whose characters have Harish-Chandra vertex D4. As
before, by [Eng00, Theorem B] the characters in B lie in E(G, t) for 3-elements t whose centraliser
H = CG∗(t) either has a split Levi subgroup of type D4, or HF = Φ1Φ3.

3D4(q) (see [Eng00,
Proposition 17]). In either case |G|/χ(1) is divisible by 3(q − 1)3, sufficient for our claim.

The same line of argument applies when q ≡ −1 (mod 3). 2

7.2 Isolated 5-blocks in E8(q)
We now consider certain 5-blocks. Recall that an element t ∈ G∗F is called quasi-isolated if
CG∗(t) is not contained in any proper F -stable Levi subgroup of G∗. It is isolated if C◦G∗(t) is
not contained in a proper F -stable Levi subgroup.

Proposition 7.5. Let B be an isolated 5-block of G = E8(q). Then B is not a minimal
counterexample to (RC).

Proof. Let d = d5(q) be the order of q modulo 5. The isolated non-unipotent 5-blocks of G were
determined in [KM13, Proposition 6.10]. The ones of non-abelian defect are listed in Table 6 for
d = 1. For d = 2 one obtains their Ennola duals, while there are none when d = 4. Let s ∈ G be
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Table 6. Isolated 5-blocks in E8(q), q ≡ 1 (mod 5).

No. CG∗(s)
F L WGF (L, λ) |Z(D)|

1 D8(q) Φ8
1 D8 (q − 1)45

3 E7(q)A1(q) Φ8
1 E7 ×A1 (q − 1)45

7 D5(q)A3(q) Φ8
1 D5 ×A3 (q − 1)45

10 A7(q)A1(q) Φ8
1 A7 ×A1 (q − 1)45

13 A8(q) Φ8
1 A8 (q − 1)45

16 E6(q)A2(q) Φ8
1 E6 ×A2 (q − 1)45

25 A5(q)A2(q)A1(q) Φ8
1 A5 ×A2 ×A1 (q − 1)45

an isolated 5′-element. One of the results in [KM13] is that the intersections of the 5-blocks with
E(G, s) are exactly the d-Harish-Chandra series. Unfortunately, the subdivision of the whole of
E5(G, s) into 5-blocks was not determined in [KM13]. We claim that the analogue of [CE94,
Theorem (iii)] and [Eng00, Theorem B] continues to hold. That is, for any 5-element t ∈ CG(s)
the intersections of the 5-blocks in E5(G, s) with the Lusztig series E(G, st) coincide with the
d-Harish-Chandra series.

Let H = CG∗(s) as in Table 6. Then 5 is a good prime for H and does not divide |Z(H)F |,
so the centralisers of all 5-elements in HF are Levi subgroups of H and hence of G∗, and in
fact d-split Levi subgroups of H. According to the argument given in [Eng00, p. 368], to show
our claim it suffices to verify the validity of the analogues of [Eng00, Propositions 20 and 22] in
our situation. For Proposition 20 this holds by part (a) of the argument given there. Indeed, by
inspection the centraliser of any 5-element in H is either d-split, or classical of rank at most 3
and with just one unipotent 5-block. Proposition 22 continues to hold here by part (c) of its
proof, as we had just seen above that the centralisers of 5-elements t ∈ HF are Levi subgroups.
This proves the claim.

Thus, the 5-blocks listed in Table 6 only contain characters χ ∈ E(G, st) that lie in the
principal d-series, and their defect groups are Sylow 5-subgroups of HF . We can then argue
exactly as in the proof of Theorem 6.4 to prove our assertion. 2

7.3 Quasi-isolated 3-blocks
Theorem 7.6. Let B be a quasi-isolated 3-block of a quasi-simple exceptional group of Lie type.
Then B is not a minimal counterexample to (RC).

Proof. Let G be a quasi-simple exceptional group of Lie type and d = d3(q). The isolated non-
unipotent 3-blocks of G were determined in [KM13]. For most of those blocks we can apply
exactly the same argument as in the proof of Proposition 7.5. Let s ∈ G∗F be a quasi-isolated
3′-element and H = CG∗(s). If H has only classical factors, then 3 is a good prime for H and
we may conclude by noticing that the analogues of [Eng00, Propositions 20 and 22] are satisfied.
The only cases for which this approach fails are when H has a factor of type E6 (in G of type E7),
or of type E7 (in G of type E8).

Let us consider these cases, listed from [KM13, Tables 4 and 6] in Table 7 for d = 1 (for d = 2
again we have the Ennola dual situations). Blocks 8 and 9 for E7(q) have defect groups with
centers of the same size (q − 1)3, so for our question we do not need to know the precise block
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Table 7. Harish-Chandra series in some quasi-isolated 3-blocks, q ≡ 1 (mod 3).

G No. CG∗(s)
F LF λ WGF (L, λ)

E7 8 Φ1.E6(q).2 Φ7
1 1 E6.2

9 Φ3
1.D4 D4[1] A2.2

Φ1.E6 E6[θ±1] 2

10 Φ2.
2E6(q).2 Φ4

1.(A
3
1)′ 1 F4

E7
2E6[θ±1], 2E6[1] 1

11 Φ1.D6 φ321 A1

E8 3 E7(q)A1(q) Φ8
1 1 E7 ×A1

4 Φ4
1.D4 D4[1] C3 ×A1

Φ2
1.E6 E6[θ±1] A1 ×A1

5 Φ1.E7 E7[±ξ] A1

distribution. Block 10 has defect groups with center of order 3, while defect groups for block 11
are abelian, so (RC) holds for these blocks independent of the block distribution.

Finally assume that G = E8(q) and s ∈ G∗F is an isolated involution with H = CG∗(s) of
rational type E7(q)A1(q). Here block 5 has abelian defect groups, and the size of the centers of
the defect groups of blocks 3 and 4 is not smaller than for block 5, so we need to be more careful.
Now note with Proposition 6.2 that the only characters in E3(G, s) with potentially too small
defect are those lying in the Harish-Chandra series of a cuspidal character of type E7[±ξ]. Such
characters occur in E(G, st) only for 3-elements t ∈ HF with CG∗(st) of rational type E7(q).Φ1.
But this is a proper 1-split Levi subgroup of H, and thus [Eng00, Proposition 20] continues to
hold by (b) of its proof, and Proposition 22 by (c) of its proof. Hence all characters in E3(G, s)
lying in Harish-Chandra series above E7[±ξ] fall into block 5, and we may conclude as in the
previous cases. 2

We are now ready to prove our main result.

Proof of Theorem 1. According to Theorem 2.3, we have to show that no p-block of a
quasi-simple group G is a minimal counterexample to Robinson’s conjecture. We invoke the
classification of finite simple groups. If G is a covering group of a sporadic simple group or of
2F4(2)′, the claim holds by Theorem 3.5. For G a covering group of an alternating group An,
n > 5, we showed the assertion in Theorem 4.1. Thus, G is such that S = G/Z(G) is simple of
Lie type. If G is an exceptional covering group, then we are done by Theorem 3.6.

It remains to consider the case when G is a non-exceptional covering of a simple group
of Lie type S = G/Z(G), and G 6= 2F4(2)′. The Suzuki and Ree groups have been handled in
Proposition 7.1. Thus, without loss we may assume that G = GF for G a simple algebraic group
of simply connected type with a Frobenius endomorphism F . If p is the defining characteristic
of G, then the claim is in Theorem 5.1. So now assume that ` is not the defining characteristic,
and B is an `-block of G. By Corollary 2.4 we may assume that G has cyclic center. Then by
the reduction theorem of Bonnafé, Dat and Rouquier [BDR17, Theorem 7.7] we may assume
that B is in fact an isolated block of G, as otherwise it is Morita equivalent to an `-block of a
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strictly smaller group with the same defect group and thus cannot be a minimal counterexample.
Observe that the Bonnafé–Dat–Rouquier Morita equivalence is compatible with Lusztig series
and thus with central characters. Hence it carries over to blocks of central quotients of G.

By the result of Enguehard [Eng13, Theorem 1.4], if B is isolated but not unipotent, and `
is good for G, not equal to 3 when G = 3D4(q), then there exists a height-preserving bijection
between Irr(B) and the characters in an `-block with isomorphic defect group of a strictly smaller
group, if the Mackey formula does hold for G. The only simple groups for which the Mackey
formula is not known to hold are 2E6(2), E7(2) and E8(2), but for these, all Sylow `-subgroups
for good primes ` are abelian. We are hence left to consider unipotent blocks, as well as isolated
blocks for primes ` > 2 which are bad for G.

If ` is good for G, then the unipotent blocks are treated in Theorem 6.4 (respectively, in
Theorem 6.8 for groups of type A). The only groups for which 5 is a bad prime are those of
type E8, and their isolated 5-blocks have been handled in Propositions 7.4 and 7.5. Finally,
the isolated 3-blocks of exceptional groups do not provide minimal counterexamples to (RC) by
Theorem 7.6. 2
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