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Abstract. We give a short proof of the inner product conjecture for the symmetric Macdonald
polynomials of typeAn�1. As a special case, the corresponding constant term conjecture is also
proved.
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1. Introduction

Macdonald’s inner product formula, conjectured in [4], was recently proved for
arbitrary root systems by Cherednik [1], using the double affine Hecke algebras.
In addition to Cherednik’s proof, a combinatorial proof by Macdonald [4] and
representation-theoretic proof by Etingof and Kirillov Jr. [2] have been given
for theAn�1 case. The aim of the present note is to give a short proof for the
An�1 case by means of asymptotic analysis withq-Selberg type integrals. One
of our motivations is in the argument on the integral representation of solutions
of eigenvalue problems of the Macdonald type [7]. In that case, choice of cycles
associated with the integral corresponds to the choice of different solutions. Such
study on the cycles leads to the present argument, another proof of the inner product
conjecture for the Macdonald symmetric polynomials of typeAn�1. Our argument
includes a new proof of the corresponding constant term conjecture as a special
case (see also [5]).

Throughout this note, we considerq as a real number satisfying 0< q < 1 and
t = qk, wherek 2 N.

2. Inner product formula

We begin recalling some fundamental facts. For a basic reference, we refer the
reader to [6].
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A partition � is a sequence� = (�1; �2; : : : ; �n) of non-negative integers in
decreasing order;�1 > �2 > � � � > �n > 0. The number of nonzero elements�i is
called the length of�, denoted byl(�): The sum of the�i is the weight of� denoted
by j�j. Given a partition�; we define the conjugate partition�0 = (�01; �

0
2; : : : ; �

0
n)

by �0i = Cardfj;�j > ig:
On partitions, the dominance (or natural) ordering is defined by

� > �, j�j = j�j and �1 + � � � + �i > �1 + � � �+ �i for all i > 1:

We consider the ringC [x] = C [x1; : : : ; xn] of polynomials inn variables
x = (x1; : : : ; xn): The subring of all symmetric polynomials is denoted byC [x]Sn :

Forf = ��f�x
� 2 C [x]; we define

�f =
X
�

f�x
��

and let[f ]1 denote the constant term off:
The inner product is defined by

hf; gi = 1
n!
[f�g�]1;

for f; g 2 C [x]; with

� = �(x) =
Y

16i6=j6n

(xi=xj ; q)1
(txi=xj ; q)1

=
Y

16i6=j6n

(xi=xj ; q)k;

where(a; q)1 =
Q

i>0(1� aqi) and(a; q)n = (a; q)1=(qna; q)1:
Then there is a unique family of symmetric polynomialsP�(x) = P�(x; q; t) 2

C [x]Sn indexed by the partition� = (�1; : : : ; �n) such that

(1) P� = m� +��<�c��m�;

(2) hP�; P�i = 0 if � 6= �;

where eachm� expresses the monomial symmetric polynomial indexed by�: The
polynomialsP� are calledMacdonald symmetric polynomials(associated with the
root system of typeAn�1):

Our aim is to prove the following.

THEOREM.We have

hP�; P�i =
Y

16i<j6n

k�1Y
r=1

1� q�i��j+rtj�i

1� q�i��j�rtj�i
:

When� = 0 (so thatP� = 1), the formula gives the constant term of�(x).
This is the constant term conjecture of typeAn�1 (see [3]).
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3. Proof of theorem

LEMMA. If m > n; for a polynomial (x) =  (x1; : : : ; xn), we have�
1

2�
p
�1

�n Z
Tn

Y
16i6m
16j6n

1
(yi=xj ; q)k

�(x) (x)
dx1 : : : dxn
x1 : : : xn

=
X

fi1;:::;ing

�f1;:::;ng

X
06l1;:::;ln6k�1

� Resx=(yi1ql1;:::;yinqln )

8>>>>>><
>>>>>>:

Y
16i6m

16j6n

1
(yi=xj ; q)k

�(x) (x)
dx1 : : : dxn
x1 : : : xn

9>>>>>>=
>>>>>>;
;

wherei1; : : : ; in are distinct, andT n = f(t1; : : : ; tn) 2 C
n ; jtij = 1(1 6 i 6 n)g

with the standard orientation.
Proof. For a polynomial (x1; x2) and 06 l 6 k � 1; we have the equality

Resx1=yq
l

(x1=x2; q)k(x2=x1; q)k
(y=x1; q)k(y=x2; q)k

 (x1; x2)
dx1

x1

dx2

x2

=
(yql=x2; q)k(x2q

�l=y; q)k
(q�l; q)l(q; q)k�1�l(y=x2; q)k

 (yql; x2)
dx2

x2
: (3.1)

Because(y=x2; q)k divides (yql=x2; q)k(x2q
�l=y; q)k; the 1-form (3.1) has no

poles on thex2-plane. This shows that the set of poles of

Y
16i6m

16j62

1
(yi=xj ; q)k

�(x1; x2) (x1; x2)
dx1 dx2

x1x2
;

is the union of(x1; x2) = (yi1q
l; yi2q

l) for 1 6 i1 6= i2 6 m and 06 l 6 k � 1;
which implies the assertion of the above Lemma in then = 2 case. Repeating this
procedure, we have the desired result in case of generaln: 2

It is known ((3.11) in [4]) thatX
�

b�P�(y)P�(x) =
Y

16i6m

16j6n

(tyixj ; q)1
(yixj; q)1

=
Y

16i6m

16j6n

1
(yixj ; q)k

(3.2)
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with

b� = b�(q; t) =
Y
s2�

1� qa(s)tl(s)+1

1� qa(s)+1tl(s)
:

Here the sum is taken over all partitions� such thatl(�) 6 minfm;ng; and the
arm-lengtha(s) (resp. the leg-lengthl(s)) is defined bya(s) = �i � j (resp.
l(s) = �0j � i) for a squares = (i; j) in the diagram�:

The formula (3.2) in them = n case with the orthogonality relation gives

b�P�(y)hP�; P�i

=
1
n!

�
1

2�
p
�1

�n Z
Tn

Y
16i;j6n

1
(yi=xj ; q)k

P�(x)�(x)
dx1 : : : dxn
x1 : : : xn

=
1
n!

X
�2Sn

X
06l1;:::;ln6k�1

Resx=(y�(1)q
l1;:::;y�(n)q

ln)

�
8<
:

Y
16i;j6n

1
(yi=xj ; q)k

P�(x)�(x)
dx1 : : : dxn
x1 : : : xn

9=
;

=
X

06l1;:::;ln6k�1

Resx=(y1q
l1;:::;ynqln )

�
8<
:

Y
16i;j6n

1
(yi=xj ; q)k

P�(x)�(x)
dx1 : : : dxn
x1 : : : xn

9=
; : (3.3)

Here the second equality is given by Lemma above and the third equality by the
symmetry of the summand with respect to the variablesx = (x1; : : : ; xn):

Next, by changing the integration variables on the right-hand side according to
xi ! yixi; we have

X
06l1;:::;ln6k�1

Resx=(ql1 ;:::;qln)

8<
:

Y
16i;j6n

1�
yi

yjxj
; q
�
k

Y
16i6=j6n

 
yixi

yjxj
; q

!
k

�P�(y1x1; : : : ; ynxn)
dx1 : : : dxn
x1 : : : xn

9=
;;

which tends to
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X
06l1;:::;ln6k�1

Resx=(ql1 ;:::;qln)

(
xk1(x1x2)

k : : : (x1 : : : xn�1)
kQn

i=1(1=xi)k

� f(y1x1)
�1 : : : (ynxn)

�n + lower order termsgdx1 : : : dxn
x1 : : : xn

)

= y�
X

06l1;:::;ln6k�1

Resx=(ql1;:::;qln )

(
nY
i=1

(xi)
�i+(n�i)k

(1=xi; q)k

dx1 : : : dxn
x1 : : : xn

)

+ lower order terms

= y�
nY
i=1

(q�i+(n�i)k+1; q)k�1

(q; q)k�1
+ lower order terms;

if

1> jy1j � jy2j � � � � � jynj: (3.4)

Here we used theq-binomial theorem

X
l>0

(a; q)l
(q; q)l

zl =
(az; q)1
(z; q)1

(jzj < 1); (3.5)

to derive the last equality above.
Comparing the coefficients ofy� of (3.3) in the region (3.4) leads to

b�hP�; P�i =
nY
i=1

(q�i+(n�i)k+1; q)k�1

(q; q)k�1
;

which is equivalent to

hP�; P�i =
Y

16i<j6n

(q�i��j+1+(j�i)k; q)k�1

(q�i��j+1+(j�i�1)k; q)k�1
:

Here we used the equality

b� =
Y

16i<j6n

(q�i��j+1+(j�i�1)k; q)k�1

(q�i��j+1+(j�i)k; q)k�1

nY
i=1

(q�i+1+k(n�i); q)k�1

(q; q)k�1
:

This completes the proof of our Theorem.
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Remark. When we would like to consider theq = 1 case directly, we need only
modify the proof of Lemma and the calculation of the residue at the final step.
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