A LOWER BOUND FOR THE SCHOLZ-BRAUER PROBLEM

KENNETH B. STOLARSKY

1. Introduction. In (6) Scholz asked if the inequality

$$
\begin{equation*}
l\left(2^{q}-1\right) \leqq q+l(q)-1 \tag{1.1}
\end{equation*}
$$

held for all positive integers q, where $l(n)$ is the number of multiplications required to raise x to the nth power (a precise definition of $l(n)$ in terms of addition chains is given in § 2). Soon afterwards, Brauer (2) showed, among other things, that $l(n) \sim(\log n) /(\log 2)$. This suggests the problem of calculating

$$
\begin{equation*}
\theta=\lim \inf \left(l\left(2^{q}-1\right)-q\right) \cdot \frac{\log 2}{\log q} \tag{1.2}
\end{equation*}
$$

It can be deduced from (2) that $\theta \leqq 1$. If $\theta<1$, (1.1) follows immediately for infinitely many q. My main result, Theorem 5 of $\S 4$, merely shows that θ is slightly larger than $\frac{1}{3}$. Actually, I know of no case where (1.1) is not in fact an equality; a tedious calculation verifies this for $1 \leqq q \leqq 8$.

The usual approach to (1.1) is to look first for a formula giving $l(q)$ in terms of the binary representation of q. Write $q=2^{n_{1}}+2^{n_{2}}+\ldots+2^{n_{s}}$, $n_{1}>n_{2}>\ldots>n_{s} \geqq 0$, and $B(q)=s$. Clearly, if $B(q)=1, l(q)=n_{1}$, while if $B(q)=2$, Utz (8) has shown that $l(q)=n_{1}+1$. If $B(q)=3$, Gioia, Subbarao, and Sugunamma (3) have shown that $l(q)=n_{1}+2$, while if $B(q)=4$ they have shown that $l(q)=n_{1}+2$ or $n_{1}+3$, and that both cases occur. In fact, they show that if $n_{1}-n_{2}=n_{3}-n_{4}$, or $n_{1}-n_{2}=$ $n_{3}-n_{4}+1$, or $n_{1}-n_{2}=3$ and $n_{3}-n_{4}=1$, then the former case occurs; however, there is still another case here, namely $n_{1}-n_{2}=5, n_{2}-n_{3}=1$, and $n_{3}-n_{4}=1$. I conjecture that aside from these cases, $B(q)=4$ implies $l(q)=n_{1}+3$.

By means of such formulae, (1.1) was shown to hold for $B(q)=1,2$ in (8), and for $B(q)=3$ in (3). A very short proof of (1.1) for $B(q) \leqq 3$, based on (2), was given by Whyburn (9). If my above conjecture were true, his method would also prove (1.1) for $B(q)=4$. However, Hansen (4, Satz 1) shows that Whyburn's method fails to decide (1.1) for infinitely many q.

In § 2 the necessary definitions are developed, particularly the notion of a component of an addition chain. In § 3 the structure of such components is analyzed, and lower bounds for θ are given in § 4 .

[^0]
2. Definitions.

Definition 1. A sequence $\left\{a_{i}\right\}_{i=0}^{\tau}$ is called an addition chain (AC) for n of length r if $1=a_{0}<a_{1}<\ldots<a_{r}=n$ and $a_{i}=a_{j}+a_{k}$ for $1 \leqq i \leqq r$, with $0 \leqq j, k<i$. For fixed $n, l(n)$ is the smallest possible value of r. $\left\{a_{i}\right\}_{i=0}^{\infty}$ is said to be an (infinite) AC if $\left\{a_{i}\right\}_{i=0}^{r}$ is an AC for a_{r} of length $r, r \geqq 1$.

Definition 2. A sequence of positive integers $\left\{b_{i}\right\}_{i=0}^{r}$ is said to be of type I if for $1 \leqq i \leqq j \leqq r-1$,

$$
\begin{equation*}
2^{j-i} b_{i}<b_{j+1} \leqq 2 b_{j} \tag{2.1}
\end{equation*}
$$

It is said to be of type II if for $j \geqq 0, b_{j+1}>b_{j}$ and for $j \geqq 1$ either $b_{j+1}=2 b_{j}$ or $b_{j+1} \leqq b_{j}+b_{j-1}$.

Definition 3. For $x>0$ let $L(x)=[(\log x) /(\log 2)]$, where $[y]$ denotes the greatest integer less than or equal to y. For integers q, let $B(q)$ be the number of 1's in the binary representation of q. Let $\sigma(M, N)=\sigma(M, N ; 1,0)$ and $\sigma(M)=\sigma(M, 0)$, where

$$
\sigma\left(M, N ; c_{1}, c_{2}\right)=\sum_{j=N}^{M} 2^{c_{1} j+c_{2}} .
$$

Clearly, for positive integers a and b,

$$
\begin{gather*}
B(a+b) \leqq B(a)+B(b) \text { and } B(a b) \leqq B(a) B(b) \tag{2.2}\\
B(a) \leqq L(a)+1 \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
B\left(\sigma\left(M, N ; c_{1}, c_{2}\right)\right)=M-N+1 \tag{2.4}
\end{equation*}
$$

Definition 4. Given a sequence of positive numbers $\left\{b_{i}\right\}$, let $e_{i}=i-L\left(b_{i}\right)$. Clearly, $e_{i} \geqq 0$ for sequences of types I and II. Let

$$
\begin{equation*}
\mathscr{C}_{j}=\mathscr{C}_{j}\left(\left\{b_{i}\right\}\right)=\left\{b_{i} \mid e_{i}=j\right\} \tag{2.5}
\end{equation*}
$$

The \mathscr{C}_{j} are said to be the components of the sequence. Conversely, any sequence for which $L\left(b_{i+1}\right)-L\left(b_{i}\right)=1$ is said to be a component.

One easily sees that every AC is of type II, and that the components of a sequence of type II are sequences of type I. Conversely, it can be shown that a sequence of type I is almost a component in the sense that for infinitely many relatively prime integers $m, L\left(b_{j+1} m\right)-L\left(b_{j} m\right)=1, j=1, \ldots, r-1$. It is important to note that if $n \in \mathscr{C}_{j}(\mathscr{A}), \mathscr{A}$ an AC, then $l(n) \leqq L(n)+j$. Conversely, if $l(n)=L(n)+j$, then $n \in \mathscr{C}_{j}(\mathscr{A})$ for some AC \mathscr{A}.

Definition 5. The word $A=\prod_{j=1}^{\tau} S_{j}$ is said to correspond to the AC

$$
\mathscr{A}=\left\{a_{i}\right\}_{i=0}^{r}
$$

if the letter S_{j} is given by:
(1) $S_{j}=H_{k, l}$ if $a_{j}=a_{j-k}+a_{j-l}, l>k \geqq 2$;
(2) $S_{j}=D_{k}$ if $a_{j}=2 a_{j-k}, k \geqq 2$;
(3) $S_{j}=F_{k}$ if $a_{j}=a_{j-1}+a_{j-1-k}, k \geqq 1$;
(4) $S_{j}=D$ if $a_{j}=2 a_{j-1}$.

Write $A \leftrightarrow \mathscr{A}, S_{j} \leftrightarrow a_{j}, S_{j} S_{j+1} \leftrightarrow a_{j}, a_{j+1}, \ldots$, etc. A and \mathscr{A} shall be used interchangeably, since either denotes the addition chain unambiguously. Furthermore, it will be convenient to let B be a variable letter which never equals D.
For example, every AC A begins with D^{2} or $D F_{1}$. If $A=D F_{1} F_{2}\left(F_{3} F_{2}\right)^{n}$, then $\mathscr{C}_{0} \leftrightarrow D, \mathscr{C}_{1} \leftrightarrow F_{1} F_{2}$, and $\mathscr{C}_{i} \leftrightarrow F_{3} F_{2}, 2 \leqq i \leqq n+1$. Words are always assumed to be in reduced form; e.g., $D D^{2} F_{1} F_{1}$ is always written $D^{3} F_{1}{ }^{2}$. Also, since an AC is strictly monotonic, certain combinations of letters such as $D D_{k}, F_{1} H_{k, l}$, and $D H_{k, l}, k \geqq 2$, can never occur.
Definition 6 . Given words W and W^{\prime}, W^{\prime} is said to be an internal segment of W if there are words W_{1} and W_{2} (possibly empty) such that $W=W_{1} W^{\prime} W_{2}$. If

$$
\begin{equation*}
W=\prod_{j=1}^{N} S_{j} \quad \text { and } \quad V=\prod_{j=1}^{i} S_{j} D^{m}, \quad i \leqq N, m \geqq 0 \tag{2.6}
\end{equation*}
$$

V is said to be a truncation of W; if the number of letters B in W exceeds the number in V, the truncation is said to be proper.
3. The structure of components. The main result of this section, Theorem 1, classifies all possible combinations of letters which can occur in a component. Roughly, it states that long components consist mainly of D 's. A different result of this sort is used in (4): if q is the last integer of an AC A, then there are at most $4 B(q)-4$ letters in A other than D.
Lemma 1. If $\left\{b_{i}\right\}_{i=0}^{4}$ is of type II, and a component, then $b_{j+1}=2 b_{j}$ for some $j, 0 \leqq j \leqq 3$.
Proof. Otherwise, $b_{1} \leqq 2 b_{0}-1, b_{2} \leqq 3 b_{0}-1, b_{3} \leqq 5 b_{0}-2, b_{4} \leqq 8 b_{0}-3$, and $L\left(b_{4}\right)-L\left(b_{0}\right) \leqq 3$, a contradiction.

Lemma 2. If $\left\{b_{i}\right\}_{i=0}^{\infty}$ is of type II, and a component, and $b_{1}=2 b_{0}$, then $b_{j+1} \neq 2 b_{j}$ can occur at most twice for $j \geqq 1$.
Proof. If $b_{j+1} \neq 2 b_{j}$ has three solutions for $j \geqq 1$, then $b_{j} b_{1}{ }^{-1}$ is bounded by one of the following four sequences, where $P \geqq 1, Q \geqq 1, R \geqq 2$:

$$
\begin{gather*}
1,2, \ldots, 2^{Q}, 2^{Q}+2^{Q-1}, 2^{Q+1}+2^{Q-1}, 2^{Q+2} ; \tag{3.1}\\
1,2, \ldots, 2^{P}, 2^{P}+2^{P-1}, 2^{P+1}+2^{P-1}, \ldots, 2^{Q+1}+2^{Q-1} \tag{3.2}\\
2^{Q+1}+2^{Q}+2^{Q-1}+2^{Q-2} \leqq 2^{Q+2} ;
\end{gather*}
$$

$$
\begin{gather*}
1,2, \ldots, 2^{P}, 2^{P}+2^{P-1}, \ldots, 2^{Q}+2^{Q-1}, 2^{Q+1}+2^{Q-2} \tag{3.3}\\
2^{Q+1}+2^{Q}+2^{Q-1}+2^{Q-2} \leqq 2^{Q+2} \\
1,2, \ldots, 2^{P}, 2^{P}+2^{P-1}, \ldots, 2^{R}+2^{R-1}, 2^{R+1}+2^{R-2}, \ldots \tag{3.4}\\
2^{Q+1}+2^{Q-2}, 2^{Q+1}+2^{Q}+2^{Q-2}+2^{Q-3} \leqq 2^{Q+2}
\end{gather*}
$$

In each case, $L\left(b_{Q+3}\right)-L\left(b_{0}\right) \leqq Q+2$, a contradiction.
Henceforth, given an AC A, let $W=W_{i}(A) \leftrightarrow \mathscr{C}_{i}=\mathscr{C}_{i}(\mathscr{A})$. Clearly, $W=D^{m}, m \geqq 1$, for $i=0$ while W cannot begin with D if $i>0$.

Lemma $3 . \mathscr{C}_{i}$ contains at most three internal segments of the form $D^{m}, m \geqq 1$; if three occur, \mathscr{C}_{i} is terminated by the last.

Proof. Say that the word $W \leftrightarrow \mathscr{C}_{i}$ has an internal segment

$$
\begin{equation*}
W^{\prime}=D^{m_{1}} B_{11} \ldots B_{1 r_{1}} D^{m_{2}} B_{21} \ldots B_{2 r_{2}} D^{m_{3}} B_{3} \tag{3.5}
\end{equation*}
$$

where $m_{1}, m_{2}, m_{3}, r_{1}, r_{2} \geqq 1$ and $B_{i j} \neq D$. Let c_{0} be the number corresponding to the last letter of the AC before W^{\prime}, and $c_{1}=2 c_{0}, c_{2}, \ldots, c_{f}$ the numbers corresponding to the letters of W^{\prime}. If W^{\prime} is replaced by

$$
\begin{equation*}
W^{\prime \prime}=D^{m_{1}} F_{1} D^{m_{2}+r_{1}-1} F_{1} D^{m_{3}+r_{2}-1} F_{1}, \tag{3.6}
\end{equation*}
$$

let the corresponding numbers be $d_{1}=c_{1}=2 c_{0}, d_{2}, \ldots, d_{f}$. Here, $f=$ $m_{1}+m_{2}+m_{3}+r_{1}+r_{2}+1$. Clearly, $d_{f} \geqq c_{f}$, and the d_{i} form the sequence

$$
\begin{array}{r}
2 c_{0}, \ldots, 2^{m_{1}} c_{0}, 2^{m_{1}-1} \cdot 3 c_{0}, \ldots, 2^{m_{1}+m_{2}+r_{1}-2} \cdot 3 c_{0}, 2^{m_{1}+m_{2}+r_{1}-3} \cdot 9 c_{3}, \ldots, \tag{3.7}\\
2^{f-5} \cdot 9 c_{0}, 2^{f-6} \cdot 27 c_{0} .
\end{array}
$$

However, by (2.1), $2^{f-1} c_{0}<c_{f} \leqq d_{f}=2^{f-6} \cdot 27 c_{0}$, a contradiction.
Next, denote the numbers of \mathscr{C}_{i} by $b_{1}, b_{2}, b_{3}, \ldots$.
Lemma 4. A letter of \mathscr{C}_{i} can be D_{k} or $H_{k, l}, k \geqq 2$, only if it corresponds to b_{1} or b_{2}.

Proof. Otherwise, \mathscr{C}_{i} would not be of type I.
It now follows from the above lemmas that $W \leftrightarrow \mathscr{C}_{i}, i>0$, has one of the two forms ($g_{i} \geqq 0$)

$$
\begin{equation*}
B^{g_{1}}, B^{g_{1}} D^{g_{2}} \prod_{j=1}^{g_{3}} F_{k_{j}} D^{g_{4}} \prod_{j=1}^{g_{5}} F_{h_{j}} D^{g_{6}} \tag{3.8}
\end{equation*}
$$

where $1 \leqq g_{1} \leqq 4,1 \leqq g_{2}$, and $g_{3}+g_{5} \leqq 2$.
Lemma 5. If $\left\{a_{i}\right\}_{i=0}^{\infty}$ is an $A C, L\left(a_{j+1}\right)-L\left(a_{j}\right)=1$ for $j \geqq i, 2^{P} \leqq a_{i} \leqq$ $2^{P}+2^{P-2}+2^{P-4}$, and $a_{i}+a_{i-1}<2^{P+1}$, then $a_{j+1}=2 a_{j}$ for $j \geqq i$.

Proof. Clearly, $2^{P+1} \leqq a_{i+1}=2 a_{i} \leqq 2^{P+1}+2^{P-1}+2^{P-3}$, and hence $a_{i}+$ $a_{i+1}<2^{P+2}$, thus, $a_{i+2}=2 a_{i+1}$, and so forth.

Theorem 1 can now be stated for $W \leftrightarrow \mathscr{C}_{i}, i>0$, using the notation of Definitions 5 and 6.

Theorem 1. W is a truncation of an element of one of the following seven mutually exclusive classes of words, where $k \geqq 1$ and $m_{i} \geqq 0$:
(1) $B B F_{k} F_{1} D^{m_{1}}$;
(2) $B B F_{k} D^{m_{1}} F_{1} D^{m_{2}}, m_{1} \geqq 1$;
(3) $B B D^{m_{1}} F_{k} F_{1} D^{m_{2}}, m_{1} \geqq 1$;
(4) $B B D^{m_{1}} F_{1} D^{m_{2}} F_{1} D^{m_{3}}, m_{1}, m_{2} \geqq 1$;
(5) $B D F_{k} D^{m_{1}} F_{1} D^{m_{2}}, m_{1} \geqq 1, k \geqq 2$;
(6) $B D^{m_{1}} F_{k} F_{1} D^{m_{2}}, m_{1} \geqq 1$;
(7) $B D^{m_{1}} F_{1} D^{m_{2}} F_{1} D^{m_{3}}, m_{1}, m_{2} \geqq 1$.

The proof requires four more lemmas. First, set $\alpha=L\left(b_{1}\right)$; then (recall Definition 3)

$$
\begin{equation*}
b_{1} \leqq \sigma(\alpha) \quad \text { and } \quad b_{2}<\sigma(\alpha+1) \tag{3.9}
\end{equation*}
$$

Lemma 6. (a) If $g_{1}=4$, then W belongs to class (1). (b) If $g_{1}=3$ and $g_{3} \geqq 1$, then W belongs to class (2).

Proof. In each case, $b_{3} \leqq b_{1}+b_{2} \leqq 2^{\alpha+2}+\sigma(\alpha)$ by (3.9). In (a), $b_{4} \leqq$ $b_{3}+b_{2} \leqq 2^{\alpha+3}+\sigma(\alpha)<2^{\alpha+3}+2^{\alpha+1}$; therefore, W has the form $B B F_{k} F_{k^{\prime}} D^{m}$, $m \geqq 0$, by Lemmas 4 and 5 . If $k^{\prime} \geqq 2, b_{4} \leqq b_{3}+b_{1} \leqq \sigma(\alpha+2)<2^{\alpha+3}$, a contradiction; hence, W belongs to class (1). In (b), $b_{3+g_{2}}=2^{g_{2} b_{3}} \leqq 2^{g_{2}+\alpha+2}+$ $\sigma\left(\alpha+g_{2}\right)$. Now $F_{k}, k \geqq 2$, cannot follow $D^{g_{2}}$ since then $b_{4+g_{2}} \leqq \sigma\left(g_{2}+\alpha+2\right)$, a contradiction. Hence, F_{1} follows $D^{g_{2}}, b_{4+g_{2}} \leqq 2^{g_{2}+\alpha+3}+\sigma\left(g_{2}+\alpha-1\right)$, and by Lemma 5 only D 's can follow. Thus, W belongs to class (2), and the proof is completed.

If $g_{1}=3$ and $g_{3}=0$, the reasoning of the proof of Lemma 6 (b) shows that either W belongs to (2), or else is a truncation of a word of (2). Thus, we need only consider the cases where $g_{1} \leqq 2$.

Lemma 7. $W^{\prime}=D F_{k} D^{m} F_{k^{\prime}}, m \geqq 0, k^{\prime} \geqq 2$, is not an internal segment of W.
Proof. This is clear if $i=0$. Otherwise, let c_{0} be the number corresponding to the last letter of the AC before W^{\prime}, and $c_{1}=2 c_{0}, c_{2}, \ldots, c_{m+3}$ the numbers corresponding to the letters of W^{\prime}. If W^{\prime} is replaced by $W^{\prime \prime}=D F_{1} D^{m} F_{2}$ let the corresponding numbers be $d_{1}=c_{1}=2 c_{0}, d_{2}, \ldots, d_{m+3}$. Clearly, $d_{m+3} \geqq$ c_{m+3} and the d_{i} form one of the sequences $2 c_{0}, 3 c_{0}, 4 c_{0} ; 2 c_{0}, 3 c_{0}, 2 \cdot 3 c_{0}, 8 c_{0}$; $2 c_{0}, 3 c_{0}, 2 \cdot 3 c_{0}, \ldots, 2^{m} \cdot 3 c_{0}, 2^{m-2} \cdot 15 c_{0}$ depending upon whether $m=0$, $m=1$, or $m \geqq 2$, respectively. However, for each of these, by (2.1), $2^{m+2} c_{0}<c_{m+3} \leqq d_{m+3}$, a contradiction.

Lemma 8. If $g_{1}=2, g_{3}=1, g_{5}=1$, and $g_{4} \geqq 1$, then $F_{k_{1}}=F_{1}$.
Proof. Say $k_{1} \geqq 2$. If $g_{2}=1$, (3.9) yields $b_{3} \leqq \sigma(\alpha+2), b_{4} \leqq b_{3}+b_{1} \leqq$ $2^{\alpha+3}+\sigma(\alpha)$, and $b_{5} \leqq 2^{\alpha+4}+\sigma(\alpha+1)<2^{\alpha+4}+2^{\alpha+2}$. Now $b_{5}+b_{4}<2^{\alpha+5} ;$
thus, by Lemma 5 only D 's can follow b_{5}, a contradiction since $g_{5}=1$. If $g_{2} \geqq 2$, then $W^{\prime}=D^{2} F_{k_{1}} D^{g_{4}} F_{h_{1}}$ is an internal segment of W; by Lemma 7 , $W^{\prime}=D^{2} F_{k_{1}} D^{g_{4}} F_{1}$. The argument used in Lemmas 3 and 7 (take $W^{\prime \prime}=$ $D^{2} F_{2} D^{g_{4}} F_{1}$) yields the contradiction $2^{g_{4}+3} c_{0}<c_{g_{4}+4} \leqq d_{g_{4}+4}=2^{g_{4}-1} \cdot 15 c_{0}$.

From Lemmas 7 and 8, and the fact that $g_{3}+g_{5} \leqq 2$, it follows that if $g_{1}=2, W$ either belongs to (3) or (4), or is a truncation of a word of (3). Thus, it is now only necessary to consider the case $g_{1}=1$. If one of g_{3}, g_{4} or g_{5} is $0, W$ belongs to (6) or is a truncation of a word of (6); this follows from Lemma 7.

Lemma 9. If $g_{1}=1, g_{3}=1, g_{4} \geqq 1, g_{5}=1$, and $k_{1} \geqq 2$, then $g_{2}=1$.
Proof. If $g_{2}=2$, (3.9) yields $b_{3} \leqq \sigma(\alpha+2), b_{4} \leqq b_{3}+b_{1} \leqq 2^{\alpha+3}+\sigma(\alpha)$, $b_{5} \leqq 2^{\alpha+4}+\sigma(\alpha+1)<2^{\alpha+4}+2^{\alpha+2}$, and $b_{4}+b_{5}<2^{\alpha+5}$. Thus, by Lemma 5 , only D 's can follow b_{5}, a contradiction, since $g_{5}=1$. For $g_{2} \geqq 3$ the proof is essentially the same.

Now by Lemma 7, if W satisfies the hypothesis of Lemma 9 , it belongs to (5). The only remaining case is $g_{1}=1, g_{3}=1, g_{4} \geqq 1, g_{5}=1, k_{1}=1$; such a W clearly belongs to (7).

This completes the proof of Theorem 1.
The structure of \mathscr{C}_{0} and \mathscr{C}_{1} is particularly simple; as mentioned before, $\mathscr{C}_{0} \leftrightarrow D^{m}, m \geqq 1$, while \mathscr{C}_{1} corresponds to a truncation of a word of class (1) or (6). In fact, the possibilities in the former case are ($m_{1}, m_{2} \geqq 0, k \geqq 1$) $F_{k} D^{m_{1}}$, $F_{k} F_{1} D^{m_{1}}, F_{k} D_{2} D^{m_{1}}, F_{1} F_{2} D^{m_{1}}, F_{1}^{3} D^{m_{1}}$, while in the latter they are $F_{1} D F_{2} D^{m_{1}}$, $m_{1} \geqq 0$, and $F_{1} D^{m_{1}} F_{1} D^{m_{2}}, m_{1} \geqq 1$. (3, Lemma 3) follows from this and the discussion after Definition 4.

Theorem 2. There exist words W belonging to each of the seven classes of Theorem 1.
Proof. Let $m \geqq 0$. The \mathscr{C}_{2} of the AC $D^{2} F_{1} F_{3} F_{1}{ }^{3} D^{m}$ belongs to (1). The proof is completed by listing the remaining classes together with an AC whose \mathscr{C}_{3} belongs to that class.
(2) $D^{2} F_{1} F_{3} D F_{5} F_{1}{ }^{2} D F_{1} D^{m}$;
(3) $D^{2} F_{1} F_{3} D F_{5} F_{1} D F_{2} F_{1} D^{m}$;
(4) $D^{2} F_{1} F_{3} D F_{5} F_{1} D^{2} F_{1} D F_{1} D^{m}$;
(5) $D^{2} F_{1} F_{3} D F_{5} D F_{2} D F_{1} D^{m}$;
(6) $D^{2} F_{1} F_{3} D F_{5} D F_{2} F_{1} D^{m}$;
(7) $D^{2} F_{1} F_{3} D F_{5} D F_{1} D F_{1} D^{m}$.
4. Lower bounds. From the remarks after Definition 4, one easily deduces the following result.

Lemma 10. If $B\left(c_{i}\right) \leqq C \cdot R^{i}, C>0, R>1$, for all $c_{i} \in \mathscr{C}_{i} \leqq A$, where A varies over all addition chains, then

$$
\begin{equation*}
l(n)>L(n)+\frac{\log B(n)}{\log R}-\frac{\log C R}{\log R} \tag{4.1}
\end{equation*}
$$

This suggests the following problem: if $c_{i} \in \mathscr{C}_{i} \leqq A$, where A is an infinite addition chain, how rapidly can $B\left(c_{i}\right)$ grow with i ? The example

$$
\begin{equation*}
A=D \prod_{n=0}^{\infty} F_{2^{n}} D^{2^{n+1}} \tag{4.2}
\end{equation*}
$$

shows that $B\left(c_{i}\right)=2^{i}$ is possible; I know of no case where $B\left(c_{i}\right)$ grows more rapidly. If the hypothesis of Lemma 10 held with $C=1, R=2$, it would follow that $\theta=1$.

Theorem 3. $\theta \geqq \frac{1}{4}$.
Proof. In any AC $\left\{a_{j}\right\}, B\left(a_{j}\right)=B\left(a_{j-1}\right)$ if $a_{j} \leftrightarrow D$. By Theorem $1, \mathscr{C}_{i}$ contains at most four non- D 's; thus, the hypothesis of Lemma 10 holds with $C=1, R=2^{4}$.

Theorem $4 . \theta \geqq \frac{1}{3}$.
A preliminary result of independent interest will be obtained first. As in § 3, let $b_{1}, b_{2}, b_{3}, \ldots$ denote the elements of $\mathscr{C}_{i}, b_{\omega}$ being the last of these. Let $M=\max B\left(a_{j}\right)$, where a_{j} varies over the elements of the AC which precede b_{1}. Let (1), .., (7) denote the word classes of Theorem 1, and let α be as in (3.9). If $B\left(b_{\omega}\right) \leqq R M$, we say that R is attained if for every $\epsilon>0$ there exist ACs such that $B\left(b_{\omega}\right) / M>R-\epsilon$.

Lemma 11. Abbreviate the statement "If $\mathscr{C}_{i} \leftrightarrow W \in(s)$, then $b_{j} \leqq u_{1}$, $b_{j+1} \leqq u_{2}, B\left(b_{\omega}\right) \leqq R M$, and R is attained" by $(s) ; j ; u_{1}, u_{2} ; R$. Then
(1) $; 3 ; 2^{\alpha+2}+\sigma(\alpha), 2^{\alpha+3}+\sigma(\alpha) ; 5$;
(2) $; m_{1}+3 ; 2^{\alpha+m_{1}+2}+\sigma\left(\alpha+m_{1}\right), 2^{\alpha+m_{1}+3}+\sigma\left(\alpha+m_{1}-1\right) ; 8$;
(3); $m_{1}+3 ; 2^{\alpha+m_{1}+2}+\sigma\left(\alpha+m_{1}\right), 2^{\alpha+m_{1}+3}+\sigma\left(\alpha+m_{1}\right) ; 6$;
(4); $m_{1}+m_{2}+3 ; 2^{\alpha+m_{1}+m_{2}+2}+\sigma\left(\alpha+m_{1}+m_{2}\right), 2^{\alpha+m_{1}+m_{2}+3}$

$$
+\sigma\left(\alpha+m_{1}+m_{2}-1\right) ; 6
$$

(5) ; $m_{1}+3 ; 2^{\alpha+m_{1}+2}+\sigma\left(\alpha+m_{1}\right), 2^{\alpha+m_{1}+3}+\sigma\left(\alpha+m_{1}-1\right) ; 6 ;$
(6) $; m_{1}+2 ; 2^{\alpha+m_{1}+1}+\sigma\left(\alpha+m_{1}-1\right), 2^{\alpha+m_{1}+2}+\sigma\left(\alpha+m_{1}-1\right) ; 4 ;$
(7) $; m_{1}+m_{2}+2 ; 2^{\alpha+m_{1}+m_{2}+1}+\sigma\left(\alpha+m_{1}+m_{2}-1\right), 2^{\alpha+m_{1}+m_{2}+2}$

$$
+\sigma\left(\alpha+m_{1}+m_{2}-2\right) ; 4
$$

Lemma 12. If $W \leftrightarrow \mathscr{C}_{i}$ is a proper truncation of a word belonging to one of the seven classes, then $B\left(b_{\omega}\right) \leqq 6 M$, and for $W=B B D^{m_{1}} F_{1} D^{m_{2}}$, the bound 6 is attained.

Only part of the first two statements of Lemma 11 will be proved; the remainder of Lemmas 11 and 12 is of the same nature, and in fact easier. The bounds on b_{j}, b_{j+1} are almost immediate from (3.9).

Given numbers $a_{1}{ }^{\prime}<\ldots<a_{s}{ }^{\prime}, B\left(a_{i}{ }^{\prime}\right) \leqq M, 1 \leqq i \leqq s$, it is quite easy to see that there exists an AC $A=\left\{a_{i}\right\}$ containing the $a_{i}{ }^{\prime}$ such that $B\left(a_{i}\right) \leqq M$.

For the first statement of Lemma 11 let $s=3$, and for $\alpha_{3}>\alpha_{2} \gg \alpha_{1}$ let $a_{1}{ }^{\prime}=\sigma\left(\alpha_{1}, 0 ; 6,0\right), a_{2}{ }^{\prime}=\sigma\left(\alpha_{3}, \alpha_{2}\right)+\sigma\left(\alpha_{1}, 0 ; 6,2\right), a_{3}{ }^{\prime}=\sigma\left(\alpha_{3}, \alpha_{2}\right)+$ $\sigma\left(\alpha_{1}, 0 ; 6,4\right)$. Define i by

$$
A=\bigcup_{j=0}^{i-1} \mathscr{C}_{j}
$$

and form \mathscr{C}_{i} by taking $b_{1}=a_{3}{ }^{\prime}+a_{1}{ }^{\prime}, b_{2}=b_{1}+a_{2}{ }^{\prime}, b_{3}=b_{1}+b_{2}$, and $b_{4}=b_{3}+b_{2}=2^{\alpha_{3}+3}+\sigma\left(\alpha_{3}-1, \alpha_{2}+3\right)+2^{\alpha 2+1}+2^{\alpha 2}+\sigma\left(6 \alpha_{1}+5,0\right)-$ $\sigma\left(\alpha_{1}, 0 ; 6,2\right)$. By letting $\alpha_{1}, \alpha_{2}, \alpha_{3} \rightarrow \infty$ under the condition $\alpha_{2} / 6>\alpha_{1} \gg$ $\alpha_{3}-\alpha_{2}>6$ (say), it is easily seen by (2.4) that for any $\epsilon>0$ there is an A such that $B(a) \leqq M$ for $a \in \mathscr{C}_{j}, j<i$, and $B\left(b_{4}\right)>(5-\epsilon) M$; hence, the bound 5 is attained. On the other hand, it is clear that $B\left(b_{1}\right) \leqq 2 M$ and $B\left(b_{2}\right) \leqq 3 M$. Write $b_{3}=b_{2}+x$. If $x \neq b_{1}$, then $B(x) \leqq M$; thus, by (2.2),

$$
B\left(b_{4+m_{1}}\right)=B\left(b_{4}\right)=B\left(b_{3}+b_{2}\right)=B\left(2 b_{2}+x\right) \leqq B\left(b_{2}\right)+B(x) \leqq 4 M
$$

If $x=b_{1}$, there are two cases to consider: $B\left(b_{2}\right) \leqq 2 M$ and $B\left(b_{2}\right)>2 M$. In the first of these, $B\left(b_{4+m_{1}}\right) \leqq B\left(b_{2}\right)+B\left(b_{1}\right) \leqq 4 M$, while in the second, $b_{2}=b_{1}+y$, where $B(y) \leqq M$; therefore, again by (2.2),

$$
\begin{aligned}
B\left(b_{4+m_{1}}\right)=B\left(b_{4}\right)=B\left(b_{3}+b_{2}\right)=B\left(2 b_{2}+b_{1}\right) & =B\left(3 b_{1}+2 y\right) \\
& \leqq B(3) B\left(b_{1}\right)+B(y) \leqq 5 M .
\end{aligned}
$$

Hence $B\left(b_{\omega}\right)=B\left(b_{4+m_{1}}\right) \leqq 5 M$.
For the second statement of Lemma 11 proceed as above with $s=4$, $\alpha_{3}>\alpha_{2} \gg \alpha_{1}, a_{1}{ }^{\prime}=\sigma\left(\alpha_{1}, 0 ; 8,0\right), a_{2}{ }^{\prime}=\sigma\left(\alpha_{3}, \alpha_{2}\right)+\sigma\left(\alpha_{1}, 0 ; 8,2\right), a_{3}{ }^{\prime}=$ $\sigma\left(\alpha_{3}, \alpha_{2}\right)+\sigma\left(\alpha_{1}, 0 ; 8,4\right), a_{4}{ }^{\prime}=\sigma\left(\alpha_{3}, \alpha_{2}\right)+\sigma\left(\alpha_{1}, 0 ; 8,6\right), b_{1}=a_{4}{ }^{\prime}+a_{1}{ }^{\prime}$, $b_{2}=b_{1}+a_{2}{ }^{\prime}, \quad b_{3}=b_{2}+a_{3}{ }^{\prime}, \quad b_{4}=2 b_{3}$, and $b_{5}=b_{4}+b_{3}=2^{\alpha_{3}+4}+$ $\sigma\left(\alpha_{3}, \alpha_{2}+4\right)+2^{\alpha 2+2}+2^{\alpha 2+1}+2^{\alpha 2}+\sigma\left(8 \alpha_{1}+7,0\right)$ to show that the bound 8 is attained. On the other hand, $B\left(b_{1}\right) \leqq 2 M$ and $B\left(b_{2}\right) \leqq 3 M$. There are two cases to consider: (1) $B\left(b_{2}\right)>2 M$ and (2) $B\left(b_{2}\right) \leqq 2 M$. In (1), $b_{2}=b_{1}+x$, where $B(x) \leqq M$. If $b_{3}=b_{2}+y$, where $B(y) \leqq M$, then $B\left(b_{3}\right) \leqq B\left(b_{1}+x+y\right) \leqq 4 M$; otherwise, $b_{3}=b_{2}+b_{1}$ and $B\left(b_{3}\right)=$ $B\left(2 b_{1}+x\right) \leqq 3 M$. In (2), B($\left.b_{3}\right) \leqq 4 M$ obviously holds. Now since only one non- D (at F_{1}) remains, $B\left(b_{\omega}\right) \leqq 8$.

By Lemmas 11 and 12, the hypothesis of Lemma 10 holds with $C=1$, $R=8$.

This completes the proof of Theorem 4.
Theorem 5. $\theta \geqq 2 \cdot(\log 2 / \log 48)>\frac{1}{3}$.
Proof. It easily follows from the second statement of Lemma 11 that if $A=\cup \mathscr{C}_{j}, \mathscr{C}_{i}$ and \mathscr{C}_{i+1} cannot both be words of (2); thus, $B\left(c_{j}\right), c_{j} \in \mathscr{C}_{j}$, grows at most like $(6 \cdot 8)^{i / 2}$.

More careful use of Lemmas 11 and 12 would probably yield a larger lower bound for θ.

Note added in proof. A much more extensive bibliography will be found in D. E. Knuth's book (The art of computer programming, Vol. 2, Addison-Wesley, Reading, Massachusetts, to appear) along with numerical tables of $l(n)$, a proof of the conjecture at the end of the second paragraph of $\S 1$, and related results.

References

1. R. Bellman, Advanced problem 5125, Amer. Math. Monthly 70 (1963), 765.
2. A. T. Brauer, On addition chains, Bull. Amer. Math. Soc. 45 (1939), 736-739.
3. A. A. Gioia, M. V. Subbarao, and M. Sugunamma, The Scholz-Brauer problem in addition chains, Duke Math. J. 29 (1962), 481-487.
4. W. Hansen, Zum Scholz-Brauerschen problem, J. Reine Angew. Math. 202 (1959), 129-136.
5. A. M. Il'in, On additive number chains, Problemy Kibernet. 13 (1965), 245-248. (Russian)
6. A. Scholz, Jahresbericht, Deutsche Math.-Verein. 47 (1937), 41.
7. E. G. Straus, Addition chains of vectors, Amer. Math. Monthly 71 (1964), 806-808.
8. W. R. Utz, A note on the Scholz-Brauer problem in addition chains, Proc. Amer. Math. Soc. 4 (1953), 462-463.
9. C. T. Whyburn, A note on addition chains, Proc. Amer. Math. Soc. 16 (1965), 1134.

The Institute for Advanced Study, Princeton, New Jersey

[^0]: Received December 27, 1967. This research was partially supported by National Science Foundation Grant GP-5802.

