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In a series of papers K. D. Magill, Jr. (see [1] and its references) has
proved that, in various semigroups of mappings on topological spaces,
every automorphism is inner, where an automorphism <f> of a semigroup &/
is a bijection of s4 such that

<Hfg) = HfMg)
for all / and g in s/, and it is said to be inner if there exists a bijection
h e J / such that h"1 (the inverse of h) belongs to s/ and

for every f e s/.
In this paper, we shall consider the same problem for the semigroups

38, ^ and 3) which will be defined in the following sections.
Throughout this paper, E stands for a real Banach space, and the Banach

algebra of all continuous linear mappings of E into itself is denoted by Z£.

1. The semigroups 3% and ^

For two mappings / and g of E into itself, the product fg is defined by

for every x e E.
A mapping f oi E into itself is said to be bounded if f(B) is a bounded

subset of E whenever B is a bounded subset of E. The set of all bounded
and continuous mappings is denoted by £8, which is obviously a semigroup.

A mapping f oi E into itself is said to be completely continuous if it is
continuous and f(B) is contained in a compact subset of E whenever B
is a bounded subset of E. The set of all completely continuous mappings
of E into itself is denoted by <€, which is obviously a semigroup.

A mapping f oi E into itself is said to be constant if there exists a e E
such that f(x) = a for every x e E. This mapping is denoted by ca:

ca(x) = a
455
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for every x e E. The set I(E) of all constant mappings is a semigroup, and
we have

(1) fca = ctu) and cj = ca,

where / is an arbitrary mapping of E into itself.
It is obvious that

(2) I(E)C^C3S.

Throughout this section, we denote by si an arbitrary semigroup of
mappings of E into itself. A subset / of si is said to be an ideal if fg and gf
belong to si whenever f el and g e si. It is easy to see that, if <f> is an
automorphism of si, I is an ideal of si if and only if </>(I) is an ideal of si.

The property (1) shows that I(E) is an ideal of si if si D I(E). More-
over, we can prove the following facts.

(3) I{E) is the smallest ideal of si whenever I{E) Csi.

PROOF. Let / be an arbitrary ideal of si. Then, by (3), we have

lix e E and f el, which means that I(E) CI.

REMARK. HI(E)Cs/, the set {0} is not an ideal of si, because
co0 =/: Oif a ^ 0.

(4) <f>(I(E)) = I(E) for any automorphism <j> of si if I(E) C si.

PROOF. Since I(E) is the smallest ideal and <f>(I(E)) is an ideal, we have
I(E) C <£(/(£)). To prove the converse, let a be an arbitrary element. Then,
for any x e E,

Hca)ix) = <Kca)c*(y)for a n y y e E

= <l>(ca)<l>(f)(y) iovfesi such that <£(/) = cx

= Hca)(y),

which means that <f>(ca) is a constant mapping.
The following theorem is essentially due to K. D. Magill, Jr.

THEOREM 1. Let <f> be an automorphism of si such that I{E) C si. Then,
there exists a bijection h = h(<f>) of E such that

(5) tff) = A/A-i

for every f e si.
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PROOF. The mapping h is defined by

(6) Hcx) = cMx)

for every x e E. Then, h is injective, because, if h{x) = h{y), we have

<t>{Cx) = CMx) = CMv) =HCy)>

from which it follows that cx = cv, or x = y. To prove that h is surjective,
let a be an arbitrary element of E. By (4), we can find x e E such that
ca = <t>(cx) = cMx), from which it follows that a — h(x). Finally, to prove
(5), let / be an arbitrary element of «s/. Then, for any x e E,

any y e E

by (6)

by(l)

by(l)

= cm-Hx) (y) by (6)
= hfh-i(x),

from which (5) follows.
This theorem means that every automorphism of the semigroup of all

mappings of E into itself is inner. On the other hand, if the semigroup is
'small', an automorphism is not always inner.

(7) In the semigroup I(E) no automorphism is inner,

because the mapping ca does not have an inverse.

(8) / / E is infinite dimensional, no automorphism of the semigroup %> is inner.

PROOF. If an automorphism <f> is inner, the bijection h = h(<f>) and its
inverse h"1 belong to <S. This means that the closed unit sphere is contained
in a compact set, which is true only if E is finite dimensional.

(9) If E is infinite dimensional, in the semigroup \-\-'& = {l-{-f\f €<£} where
1 is the identity mapping, some automorphisms are inner and some are
not inner.

PROOF. We assume that £ is a Hilbert space and consider the one-
dimensional mapping t:

t(x) = {a, x)a,

where a is a fixed non-zero element and (a, x) is the scalar product of a
and x. Then, h = \-\-t is a bijection and

Therefore, the automorphism defined by this h is inner. (It is easy to see
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that we have the same conclusion if the mapping I is replaced by any com-
pletely continuous mapping which is monotone in the sense of G. Minty and
F. E. Browder, [1] and [4].)

On the other hand, let h be a bicontinuous linear bijection (which
obviously is not in c€) and let <f> be the mapping such that <f>(f) = hfh"1.
Then, <f> is an automorphism o f l + ^ because, if / e ^,

and hfh-1 e <€. Therefore, this <f> is an automorphism which is not inner.
On the other hand, we can prove the following theorem.

THEOREM 2. Every automorphism of the semigroup 8$ is inner.

PROOF. Let cf> be an automorphism of 88. By Theorem 1, there exists
a bijection h which satisfies (5). Therefore, we have only to prove that h
and h~x belong to 88.

(10) h is continuous.

PROOF. Let a be an arbitrary element. We take b e E such that
b ^ h(a). Let e be an arbitrary positive number, and put

S = S(h{a), e) = {x e E\ \\x-h{a)\\ < s}.

Then, since E is completely regular as a topological space, there exists a
continuous function <x(x) such that

0L(h(a)) = 1, x(x) = 0 if x $ S and 0 ^ <x(z) ^ 1 {x e E).

We consider the mapping

g{x) = *{z)(b-x)+h{a).

Since ge8§, we can take fes/ such that <f>(f) — g. We have /(«) ̂  a,
because, if f(a) = a, since fca = ca, we have

<*o> = -MO = <H/O = <f>(f)4>(ca)
= Sch(a) = Cg(h(a))'

from which it follows that

h(a)=g(h{a)) = x{h(a))(b-h(a))+h{a) = b,

which is a contradiction. Therefore, there exists 6 > 0 such that

f(x) ^a if | | x -a | | <d.

For this <5, we can prove that

||A(a)-A(a;)|| < e if | | * - « | | < 8.
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Assume that there exists x e E such that

\\h(a)—h(x)\\ ^ e and ||x—a\\ < d.

Then, since a.(h(x)) = 0, it follows from the definition of g that
g(h(x)) = h(a). Therefore, since <£(/) = g,

f{x) = h-*gh{x) = h-i(g(h(x))) = h-i(h(a)) = a,

which is a contradiction.

(11) h is bounded.

PROOF. Let B be an arbitrary bounded subset of E and we assume
that h(B) is not bounded. Then, there exists a sequence xn e B such that

lly.ll+i < lly,+ill

where yn = h(xn). Let us consider

Sn = S(yn, i) = {x e E\ \\x-yn\\ < ft.

Obviously, yn e Sn for each n and Sn n Sm = empty if n ^ m.
Next, we consider continuous functions a.n(x) such that

*«(yn) = 1, 0,(3!) = 0 if x * Sn and 0 ^ xn(x) ^ 1,

and define a mapping g by
oo

g{x) = 2 *„(*)(*—«/»+*„)
n=l

where zn =

g is defined for all x e E-

To see this, let a be an arbitrary element. If a.n{a) = 0 for all n, we have
g(a) = 0. If oi.k(a) ^ 0, it follows from the definition of cnk{x) that a e Sk.
Then, since xn(a) = 0 for n =£ k, we have

g(a) = <x.k(a)(a—yk+zk).

g is continuous.

Let us assume that l im^^ af = a. Then, there exists i0 such that
a( e S(a, ^) if i ^ i0. If S(a, ^) n Sk = em^y for all w» w e h a v e ^(fli) = °
(i ^ «„) and g(a) = 0. If S(a, ^) r> Sk =£ empty for some &, since
5 (a, J) ^ 5n = empty for n ^ k, we have

^ K / f c + * ) for * ^

g(a) = a*(a)(a—j/t+^fc),

hence it follows that ]imi^O0g(ai) = g(a).
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g is bounded.
For any number y > 0 there exists k such that ||yfc|| > y. Then, x $ Sn

if n > k and ||x|| < y, because

\\x-yn\\ ^ I lly.N-IMI I = Ily.ll-IMI ^ ||y*ll+i-IMI >y+i-y = h
which means that xn(x) = 0 if » > k and \\x\\ < y. Therefore, if ||x|| < y,

g{x) = \\ | *n(x)(x-yn+zn)\\

^ I ll*-y.+*.ll ^ I (INH-I|y.-««II)

n = l

which means that ^ is bounded.
Thus, it has been shown that geSS and

g(yn) =zn = %»)•

Then, for / e 38 such that <f>(f) = g, we have

which is a contradiction.
Thus, from (10) and (11) it follows that he38. The fact that h~l e@

can be proved in the same way if we consider $~l instead of <f>.

2. The semigroup 9)

A mapping / of E into itself is said to be (Fr6chet)-differentiable at
a e E if there exists / e JS? such that

| | * | | -o 11*11
This mapping t is determined uniquely for each a and is denoted by f'{a).
If / is differentiate at every point of E, it is said to be differentiable. We
denote the set of all differentiable mappings of E into itself by 3). This
set Si is a semigroup because fg e 2 whenever / e 3) and g e 3>. Moreover,
in this case, we have

fcr every x e E. It is easy to see that

I{E) C 3 and ^(a;) = 0 (x, a 6 E),
<ec@ and /'(*) = / (a: e £, / e <£).
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In [3], K. D. Magill, Jr. has proved that, when E is the field of real
numbers, every automorphism of 3> is inner. In the proof, he has used the
fact that a bijection of £ is a monotone function, which is differentiable
at countably many points. When £ is a general Banach space, this is no
longer true. For example, in a Banach space with non-differentiable norm,
the bijection h(x) = \\x\\x is differentiable only at the origin. We have to
leave the following problem unsolved: is every bijection of a Banach space
differentiable at at least one point}

In this section, we shall prove that some automorphisms of 3l are inner.
At first, we prove the following theorem.

THEOREM 3. Let s/ be a semigroup of mappings of E into E such that
I(E) C stf and ££ C s&, and <f> be an automorphism of s/ such that <£(=£?) = J? .
Then, <f> is inner and h(<f>) e JiC.

PROOF. By Theorem 1, there exists a bijection h such that (5) is satisfied.
We have only prove that h e ££.

We denote the mapping x -> £x by | . Then, the mappings <f>(£) belong
to the centre of the primitive Banach algebra ^C, because, if t e ££, since
<f>~l{t) e JS?, for any x e E and y = h~1(x), we have

Therefore, by Corollary 2.4.5, p. 61, of [5], there exists a real-valued
function A(|) of a real variable I such that

(x) = X(£)x ii xeE and — oo < £ < oo.

We shall prove that A (I) = f, or

(12) 0(|) = £ for all f.

Now, from the definition of A(|) we have

for every x which means that

Next, we have

because
1 = 0(1) = 0 ( - l x - 1 ) = 0 ( - l ) 0 ( - l ) = A(-1)2

and, since <f>{—1) ^ 0(1), A(—1) =£ 1. Moreover, X(£) is a bijection of the
real number field. The fact that A(f) is injective follows immediately from
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the injectivity of <f>. To show that A(|) is surjective, let <x be an arbitrary
number. Then, there exists t0 e 3? such that (f>(f0) = a, and

from which it follows that tot = /"/„ for every t e SC. This means that /„
belongs to the centre of ££. There exists {} such that f0 = /?, which is equiv-
alent to the fact that A(/3) = a.

Thus, A (I) is continuous at at least one point, A(—1) = —1 and the
relation A(|?y) = A(|)A(»?) is satisfied. Therefore, there exists a such that

2 ( £ ) = | « (= (sign f)|||«).

To prove that a = 1, we consider the one-dimensional linear mapping
x ® x [x e E and x e £ (the conjugate space of E)) defined by

x (& x(y) = x(y)x for every y e E.
Then, since

<f>(x (8) x)(y) = h(x (8) xjh^iy) = h{x(h-\y))x)

(x) = (x(h-Hy)))«h(x)

and (j>(x ® £)(y) is linear with respect to y, (x(/j~1(«/)))ot is alinear functional
on E for each x e E,m other words,

for any x e E. This means that A-1(a+6) belongs to the subspace spanned
by h~1(a) and A-1 (6), because

( ( ) ) = 0

implies ^(A^1(a+&)) = 0. Therefore,

for some numbers ,a and p. Now, we take a and 6 such that h~1(a) and
A"1 (6) are linearly independent. We can take x e E such that ^(/^(a)) = 1
and x^ib)) = 0. Then,

from which it follows that //, = 1, because ^ = X{jx) and A(—1) = — 1.
Similarly, we have p = 1. Therefore,

(13) A-^a + fi) = h-i{a)+h-l(b).

Next, we take i e £ such that ^ ( / J " 1 ^ ) ) = f(A"1^)) = 1. This can be
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done because h~1(a) and h~x(b) are linearly independent. Then,

2 = (x(h-\a))+x{h-i(b))Y = {x(h-l(a+b)))«

= {x{h^{a))Y+{x{h-i{b))y

==2-,

from which it follows that a = 1. Thus, the proof of (12) is completed.
Now, we can prove that h is linear. If x and y are linearly independent,

it follows from (13) that

h~l(h(x)+h(y)) = x+y,
which is equivalent to

h(x)+h(y) = h(x+y).

If x and y are linearly dependent, since y = £x for a number f,

h(x+y) = '

= h(x)+£h(x) = h(x)+<f>(£)h(x)

= h(x)+h(y).

Finally, we prove that h and h'1 are continuous. Since h is a bijection,
we have only to prove that it is closed. Let us assume that lim^^,^ xn = x0

and limn_>oo h(xn) = y. Then, for x ^ 0 and an arbitrary x e E, since
<f>(x ® x) is a continuous linear mapping,

(z (8> x)(h(xn)) = <j>(x ®
n-+oo

On the other hand,

4>{x ® x){h{xn)) = x{xn)h{x)
and

Therefore, {xn} converges weakly to h~1(y), hence it follows y = h(x0).
Now, we return to the semigroup 3l. For / e 3>, we define the set d{f) by

= {f'(x)\xeE}.
In [6], we have introduced the notion of d-ideals. Here we introduce the
notion of d-automorphisms in the same way.

An automorphism <f> of 3l is said to be a d-automorphism if
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in other words, <f> is a ^-automorphism if

for each f e Si.
Then the following theorem can easily be proved.

THEOREM 4. Every d-automorphism of 3) is inner.

PROOF. By THEOREM 3, we have only to prove that 4>{J?) = 3?.
\it s<e, there exists f e 3> such that t = <f>(f). Then,

{/} = d<f>(f) = 4>d(f) = {Hf\x))\x e E},

from which it follows that f'(x) is constant with respect to x. Therefore,
/ e Se, and & C </>(&) was proved.

If / e 4>(£C), since f = 4>(t) for some te&,

d(/) =. *4>(t) = 4*i(t) = {^(/)}.

This means that / e £?. Thus, the proof is completed.

REMARK. If we do not assume <£(.£?) = SP in Theorem 3, the problem
becomes almost equivalent to the problem of finding the infinitesimal
generator of the one-parameter semigroup <f>{e^) of purely non-linear
mappings.
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