A NOTE ON
SEMIGROUPS OF MAPPINGS ON BANACH SPACES
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In a series of papers K. D. Magill, Jr. (see [1] and its references) has
proved that, in various semigroups of mappings on topological spaces,
every automorphism is inner, where an awutomorphism ¢ of a semigroup o/
is a bijection of & such that

¢(fg) = ¢(N$(2)

for all f and g in &, and it is said to be inner if there exists a bijection
h e &/ such that A~ (the inverse of %) belongs to &7 and

$(f) = hfh
for every fe /.
In this paper, we shall consider the same problem for the semigroups
A, ¢ and 2 which will be defined in the following sections.
Throughout this paper, E stands for a real Banach space, and the Banach
algebra of all continuous linear mappings of E into itself is dencted by £.

1. The semigroups # and ¥
For two mappings f and g of E into itself, the product fg is defined by
(fe) (x) = f(g())
for every z € E.

A mapping f of E into itself is said to be bounded if f(B) is a bounded
subset of E whenever B is a bounded subset of E. The set of all bounded
and continuous mappings is denoted by %, which is obviously a semigroup.

A mapping f of E into itself is said to be completely continuous if it is
continuous and f(B) is contained in a compact subset of E whenever B
is a bounded subset of E. The set of all completely continuous mappings
of E into itself is denoted by ¥, which is obviously a semigroup.

A mapping f of E into itself is said to be constant if there exists a € E
such that f(x) = a for every « € E. This mapping is denoted by c,:

C(x) = a
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for every « € E. The set I(E) of all constant mappings is a semigroup, and
we have

(1) fca = cf(a) a.nd Caf = Ca,

where f is an arbitrary mapping of E into itself.
It is obvious that

(2) I(E)C¥CHA.

Throughout this section, we denote by & an arbitrary semigroup of
mappings of E into itself. A subset I of &/ is said to be an 7deal if fg and gf
belong to &/ whenever fel and g e &. It is easy to see that, if ¢ is an
automorphism of &7, I is an ideal of 7 if and only if ¢(I) is an ideal of /.

The property (1) shows that I(E) is an ideal of & if &/ D I(E). More-
over, we can prove the following facts.

(3) I(E) is the smallest ideal of of whenever I(E) C /.
Proor. Let I be an arbitrary ideal of /. Then, by (3), we have
¢, =c,fel
if x € E and f €I, which means that I(E) C1.
REMARK. IfI(E) C &, the set {0} is not an ideal of &/, because
¢, 0% 0if a 0.
(4) $(I(E)) = I(E) for any automorphism ¢ of o if I(E) C .

PROOF. Since I (E) is the smallest ideal and ¢(I(E)) is an ideal, we have
I(E) C¢(I(E)). To prove the converse, let a be an arbitrary element. Then,
forany z e E,

$(ca) ()

#(c,)c,(y) for any y € E

(ca)$(F)(y) for f e o such that ¢(f) = ¢,
(caf) ()

(ca) (@),

which means that ¢(c,) is a constant mapping.
The follewing theorem is essentially due to K. D. Magill, Jr.

¢
¢
¢

THEOREM 1. Let ¢ be an automorphism of of such that I(E) C oZ. Then,
there exists a bijection h = h($) of E such that

(5) $(f) = hih
for every f e .
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Proor. The mapping % is defined by
(6) $(cz) = Cata

for every z € E. Then, % is injective, because, if A(z) = A{y), we have

$(c) = Cua = Caw = $(¢,),

from which it follows that ¢, = ¢,, or * = y. To prove that % is surjective,
let 4 be an arbitrary element of E. By (4), we can find x € E such that
¢, = ¢(c;) = cu, from which it follows that a = k(z). Finally, to prove
(5), let f be an arbitrary element of 7. Then, for any xz € E,

$() (@) = $(f)c,(y) for any ye E

= ¢(Nd(cr1a) () by (6)
= ¢(fer1mr) (%) by (1)
= ¢(Cn1a) ¥) by (1)
= Cam-1(a) (¥) by (6)
= hfh(z),

from which (5) follows.

This theorem means that every automorphism of the semigroup of all
mappings of E into itself is inner. On the other hand, if the semigroup is
‘small’, an automorphism is not always inner.

(7) In the semigroup I(E) no automorphism is inner,
because the mapping ¢, does not have an inverse.
(8) If E is infinite dimensional, no automorphism of the semigroup € is inner.

Proor. If an automorphism ¢ is inner, the bijection 2 = %(¢$) and its
inverse 471 belong to €. This means that the closed unit sphere is contained
in a compact set, which is true only if E is finite dimensional.

(9) If E is infinite dimensional, in the semigroup 1+€ = {1+f|f € €} where
1 s the identity mapping, some automorphisms are inner and some are
not inner.

Proor. We assume that E is a Hilbert space and consider the one-
dimensional mapping ¢:
{(x) = (a, x)a,

where a is a fixed non-zero element and (, x) is the scalar product of a
and 2. Then, 2 = 14/ is a bijection and

At =1—(14]la]|?)7 € 14-%.

Therefore, the automorphism defined by this 4 is inner. (It is easy to see
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that we have the same conclusion if the mapping / is replaced by any com-
pletely continuous mapping which is monofone in the sense of G. Minty and
F. E. Browder, [1] and [4].)

On the other hand, let 4 be a bicontinuous linear bijection (which
obviously is not in %) and let ¢ be the mapping such that ¢(f) = Afh.
Then, ¢ is an automorphism ofl1 4%, because, if f € €,

$(1+f) = h(1+H)AL = 14-hfh™!

and Afh' € €. Therefore, this ¢ is an automorphism which is not inner.
On the other hand, we can prove the following theorem.

THEOREM 2. Every automorphism of the semigroup % is inner.

ProorF. Let ¢ be an automorphism of #. By Theorem 1, there exists
a bijection # which satisfies (5). Therefore, we have only to prove that 4
and 47! belong to 4.

(10) A is continuous.

Proor. Let a4 be an arbitrary element. We take b € E such that
b #~ h(a). Let ¢ be an arbitrary positive number, and put

S = S(h(a), &) = {x e E| |lz—h(a)|| < &}

Then, since E is completely regular as a topological space, there exists a
continuous function «(z) such that

w(h(@)) =1, afz) =0if ¢S and 0 Z a(x) =1 (xeE).
We consider the mapping
g(e) = a(x)(b—z)+h(a).

Since g e #, we can take fe o such that ¢(f) = g. We have f(a) # a,
because, if f(a) = a, since fc, = c,, we have

i = $(Ca) = (fen) = $(H)P(c,)
= 8Cha) = Cotnia)»

from which it follows that
h(a) = g(h(a) = a(h(a))(b—h(a))+h(a) = b,
which is a contradiction. Therefore, there exists § > 0 such that
f(x) #£ a if ||x—al| < 4.
For this 4, we can prove that

I1h(a)—h(z)|| < e if |je—al| < .
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Assume that there exists ¢ € E such that
k(@) —h()|| = ¢ and |le—al| < o,
Then, since «(k(xz)) =0, it follows from the definition of g that
g(h(x)) = h(a). Therefore, since ¢(f) = g,
f@) = h7'gh(x) = b (g((x))) = A7 (k(a)) = a,
which is a contradiction.

(11) & is bounded.

Proor. Let B be an arbitrary bounded subset of E and we assume
that 4(B) is not bounded. Then, there exists a sequence z, € B such that

Nyl 41 < [|Ynall

where y, = A(z,). Let us consider
Sp =S }) = {peEl {lo—y,ll < 3}

Obviously, y, € S, for each » and S, n S,, = empty if #n #~ m.
Next, we consider continuous functions «,(x) such that

o, (y,) =1, a,(x) =0if ¢S, and 0 < a,(z) =1,

and define a mapping g by

2]

where z, = h{y,).
g ts defined for all x € E.

To see this, let 4 be an arbitrary element. If «,(2) = 0 for all #, we have
g(a) = 0. If ax(a) #~ 0, it follows from the definition of «(z) that a € S;.
Then, since «,(2) = 0 for n + k, we have

g(a) = m(a)(@a—yp+z;)-
g 1s continuous.
Let us assume that lim,, 4, = a. Then, there exists 7, such that

a;eS(a, §) if ¢ = 4,. If S(a, §) n S, = empty for all n, we have g(a,) = 0
(1 =) and g(a) =0. If S(a, &) NS, # empty for some £k, since
S(a, §) n' S, = empty for n # k, we have

g(a;) = a(a;) (@, —yut2) for © =4,

g(a) = a(a)(@a—yx+2),
hence it follows that lim,_, , g(a;) = g(a).
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g is bounded.

For any number y > 0 there exists 2 such that ||y,|| > . Then, 2 ¢ S,
if # >k and ||z|] < y, because

He—yall 2 | [lyall—ll2ll | = lgall—ll2ll = [lgell+1—ll2]] >p+1—p =1,
which means that «,(x) = 0 if » > & and ||z|| << y. Therefore, if ||z|| < y,

gx) =1 2 a,(@)@—yatz,)ll

n=1
k k
é 21 ”x——yn+zn|l g 21 (Hxll_’f_Hyn—an)

k
< ky+ 2 llya—all
n=1

which means that g is bounded.
Thus, it has been shown that g € # and

8(yn) = 2, = h(y,)-
Then, for f € #Z such that ¢(f) = g, we have

f(xn) = h_lgh(xn) = h_lg(yn) = Yn»

which is a contradiction.
Thus, from (10) and (11} it follows that %4 € #4. The fact that A1 e #
can be proved in the same way if we consider ¢! instead of ¢.

2. The semigroup 2

A mapping f of E into itself is said to be (Fréchet)-differentiable at
a € E if there exists £ € & such that

L Hata)—f@)—t@)
fl=([—0 [ll]
This mapping £ is determined uniquely for each 4 and is denoted by f'(a).
If f is differentiable at every point of E, it is said to be differentiable. We
denote the set of all differentiable mappings of E into itself by 2. This
set Z is a semigroup because fg € & whenever fe @2 and g € 9. Moreover,
in this case, we have

= 0.

() (@) = [ (g(x))¢’ (@)
fer every x € E. It is easy to see that

I(E)C2 and ¢ (x) =0 (z,a€E),
FLCD and {'(x) =/ (xeE,te).
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In [3], K. D. Magill, Jr. has proved that, when E is the field of real
numbers, every automorphism of P is tnner. In the proof, he has used the
fact that a bijection of E is a monotone function, which is differentiable
at countably many points. When E is a general Banach space, this is no
longer true. For example, in a Banach space with non-differentiable norm,
the bijection 4(z) = ||z||z is differentiable only at the origin. We have to
leave the following problem unsolved: is every bijection of a Banach space
differentiable at at least one point?

In this section, we shall prove that some automorphisms of & are inner.
At first, we prove the following theorem.

THEOREM 3. Let o7 be a semigroup of mappings of E into E such that
I(E)C o and ¥ C A, and ¢ be an automorphism of & such that $(F) = Z.
Then, ¢ is inner and h(p) € L.

Proor. By Theorem 1, there exists a bijection % such that (5) is satisfied.
We have only prove that 2 e Z.

We denote the mapping « — &z by & Then, the mappings ¢(¢) belong
to the centre of the primitive Banach algebra &, because, if £ € &, since
¢71(f) e &, for any z € E and y = h~'(x), we have

(&) (x) = £$(&)h(y) = thEh h(y) = th(sy)
= hh= h(Ey) = h$1(4) (by) = hés71(E) (y)
= héhUh(Y) = $(&) (x).
Therefore, by Corollary 2.4.5, p. 61, of [5], there exists a real-valued
function A(&¢) of a real variable & such that

$(E)(x) = A(f)x if xe E and —o0 < & < 0.
We shall prove that A(§) = &, or
(12) $(&) = & for all &

Now, from the definition of A(£) we have

Agn)z = $(&n) (@) = $(E)b () (@) = A(E)($(n) (z)) = A(£)A(m)>
for every # which means that

AEn) = MEA(n)-
Next, we have
A(—1) = —1,
because
1= ¢(1) = ¢(—1x—1) = $(—1)$(—1) = A(—1)?
and, since ¢(—1) 5 $(1), A(—1) 5= 1. Moreover, A(£) is a bijection of the
real number field. The fact that A(£) is injective follows immediately from
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the injectivity of ¢. To show that A(£) is surjective, let « be an arbitrary
number. Then, there exists £y € £ such that ¢(f,) = «, and

$(lof) = $(lo)p(f) = xd(f) = $(f)x = $(1)$(fo) = $(¢4),

from which it follows that ¢,¢ = £, for every f € #. This means that ¢,
belongs to the centre of .#. There exists g such that £, = g, which is equiv-
alent to the fact that A(8) = «.

Thus, 4(£) is continuous at at least one point, A(—1) = —1 and the
relation A{&n) = A(£)A(n) is satisfied. Therefore, there exists « such that

A§) = & (= (sign £)[é]")

To prove that « = 1, we consider the one-dimensional linear mapping
v ® & (xe E and £ € E (the conjugate space of E)) defined by

x @ &(y) = Z(y)x for every ye E.
Then, since

PE R Z)(y) = hx® i)h‘l( ) = h(E(h7(y))x)
= $(£(h(9)))h(x) = (£(h7Y(y)))*h(x)

and ¢(z @ Z)(y) is linear with respect to y, (£(h~'(y)))* is a linear functional
on E for each & € E, in other words,

(F(h(a+b)))* = (&(h(a)))*+ (2(A71(5)))

for any Z € E. This means that 4 1(a-5) belongs to the subspace spanned
by #7'(a) and A71(d), because

#(h(a) = (k) = 0

implies &2 1(a+b)) = 0. Therefore,

B (a+b) = ph~(a)+ph~1(b)
for some numbers x4 and p. Now, we take @ and b such that 4271(a) and
h=1(b) are linearly independent. We can take Z € E such that £(A7(a)) =
and Z(A71(b)) = 0. Then,

1 = (&(h\(a)))*+ (hlb)“ (Z(hY(a+b)))*
= (u&(h™(a))+p(h71(b)))"

= ‘u B
from which it follows that x = 1, because u* = A(u) and A(—1) = —1.
Similarly, we have p = 1. Therefore,
(13) hl(a+b) = h—l(a)—{—h—l(b).
Next, we take #e E such that #(h(a)) = & '(b)) = 1. This can be
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done because 271(a) and 47! (b) are linearly independent. Then,
2 = (&£(hYa))+&(A71D)))* = (F(A ' (a+D)))*
= (2(h71 @)+ (2(h7(0)))*
= 2%
from which it follows that « = 1. Thus, the proof of (12) is completed.

Now, we can prove that % is linear. If # and y are linearly independent,
it follows from (13) that

Hh@)+hly)) = z+y,

which is equivalent to
2} +h(y) = h(z+y).

If x and y are linearly dependent, since y = &x for a number £,

h@+y) = h((1+€)z) = h(1+E)h k()
= ¢(1+8)h(x) = (1+£)h(z)
= h(@)+-Eh(@) = h(x)+4(E)h(x)
h(@)+hEh~h(x) = h(x)+h(¢)
= h(x)+h(y).
Finally, we prove that 4 and %! are continuous. Since /% is a bijection,
we have only to prove that it is closed. Let us assume that lim,_,  z, = z,

and lim,, k(x,) = y. Then, for 2 # 0 and an arbitrary Ze E, since
é(x @ ) is a continuous linear mapping,

lim ¢z @ #)(h(x,)) = b= @ €)(y).

n-»00

On the other hand,
$(x @ 2)(h(z,)) = &(x,)h(x)

bz @ Z)(y) = (A7 (y)) ().

Therefore, {z,} converges weakly to ~27'(y), hence it follows y = Z(x,).
Now, we return to the semigroup Z. For f € &, we define the set d(f) by

a(f) = {{'@@)lx e E}.

In [6], we have introduced the notion of d-ideals. Here we introduce the
notion of d-automorphisms in the same way.
An automorphism ¢ of 2 is said to be a d-automorphism if

dp = ¢4,

and
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in other words, ¢ is a d-automorphism if

{3()"(@)|z e E} = {$(/'(*))|= € E}
for each f e 2.
Then the following theorem can easily be proved.

THEOREM 4. Every d-automorphism of D is inner.

ProoF. By THEOREM 3, we have only to prove that ¢(¥) = £.
If £ € &, there exists f € & such that £ = ¢(f). Then,

{t} = dé(f) = $a(f) = {$(f'(2))|x € E},
from which it follows that f(z) is constant with respect to «. Therefore,

feZ, and £ C (&) was proved.
If / € $ (&), since f = ¢(£) for some f € &,

A(f) = dg(f) = ¢d(f) = {$(£)}.
This means that f € . Thus, the proof is completed.

REMARK. If we do not assume ¢{&) = £ in Theorem 3, the problem
becomes almost equivalent to the problem of finding the infinitesimal
generator of the one-parameter semigroup ¢{ef) of purely non-linear
mappings.
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