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CEPHEIDS: PULSATION, EVOLUTION, OPACITY 
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With the advent of new radiative opacities, the gross discrepancies in period ratio 
between observed stars and theoretical models have been eliminated in both the "beat" and 
"bump" Cepheid regimes (Moskalik, et al. 1992; Kanbur & Simon 1994). This paves the way 
for detailed modeling of the beat and bump stars. 

We begin here by summarizing one such effort, the full description of which is given 
by Simon & Kanbur (1994). In this study, the slope of the evolutionary luminosity-mass 
relation is taken to be dlogL/dlogM = 4.0 (Stothers and Chin 1991) and the intercept 
determined by forcing models which follow this slope to also conform with the bump 
Cepheid resonance condition Pj/P0 = 0.50 at P0 = lOd (Simon & Schmidt 1976; Buchler =et 
al. 1990). We then model separately each of the dozen known galactic beat Cepheids, 
subject to the just mentioned evolutionary constraint imposed by the 10-day resonance. We 
find masses and luminosities, ranging from M = 4M0, log L = 3.0 at P0 = 3d to M = 6M0, 
log L = 3.5 at P0 = lOd. Furthermore, a range of metallicity, 0.01<Z<0.02, is required 
among the beat stars, whose period ratios, P,/P0, are predicted to decrease as the metallicity 
rises. This trend has been observed (Andrievsky et al. 1993). However, "standard" 
evolutionary tracks for Z = 0.02 [e.g., the Geneva calculations (Schaller, et al. 1992) or the 
Padua calculations (Bressan, et al. 1993)] cannot produce Cepheids with parameters as given 
above - first because the models are somewhat underluminous at given mass, and second 
because the calculated blue loops do not reach the instability strip for M = 7MQ. On the 
other hand, the models described by El Eid (1994) do penetrate the strip at masses as low as 
4 or 5 M0, but display a luminosity-to-mass ratio considerably too small to satisfy the 
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resonance condition for bump Cepheids. Possible resolutions to these problems include a 
deep Fe convection zone whose effect would be to lower the period ratios (Cox 1993), and/or 
an opacity increase near 1 x 1 0 % which could extend the blue loops (Stothers & Chin 1994). 
Each of these schemes require more research. 

Finally, we point out a difficulty involving the long-period Cepheids, P0>20d. Because 
these stars do not seem to be exceedingly rare, either in the Galaxy or Magellanic clouds, 
they should conespond to "slow" evolutionary timescales, which are generally associated with 
the tips of the blue loops. However, for M>7Mo (high masses are necessary to give the 
long periods in question, for reasonable values of TeH), the evolutionary tracks display loops 
which are too long, so that the tips occur well blueward of the instability strip. This means 
that for the requisite masses, passage through the instability strip is so rapid that few long-
period Cephids ought to be seen. At metallicities corresponding to those of the LMC and 
SMC, respectively, all of the long-period Cepheid sample in the Clouds is to be accounted 
for, a way will be needed to slow the evolution of high mass models through the strip. 
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Determination of masses has been a long standing problem in the Cepheid research. 
Since the early days of Cepheid modeling different methods of mass calibration have lead to 
conflicting results, implying serious discrepancies between the evolution and pulsation 
theories (see Cox 1980 for a review). In recent years this situtation has been mostly 
remedied, and the Baade-Wesselink masses, pulsation masses and evolutionary masses are 
now in good agreement with each other (e.g., Gieren 1989). However, both the bump 
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