ON THE LAWS OF SOME VARIETIES OF GROUPS

M. R. VAUGHAN-LEE

(Received 24 February 1969)
Communicated by G. E. Wall

1. Introduction

D. E. Cohen has shown in [1] that a variety consisting of metabelian groups has a finite basis for its laws. In this paper I make use of Cohen's result to prove the following theorem.

Theorem. A variety of groups which satisfy an identity

$$
\left[\left[x_{1}, x_{2}, \cdots, x_{m}\right],\left[x_{m+1}, x_{m+2}\right]\right]=1
$$

has a finite basis for its laws.
($\left[x_{1}, x_{2}, \cdots, x_{m}\right]$ denotes the commutator $\left.\left[\left[\cdots\left[\left[x_{1}, x_{2}\right], x_{3}\right], \cdots\right], x_{m}\right].\right)$ The theorem is an extension of Cohen's result, which covers the cases $m=1,2$.

2. Notation

The notation is that of [2]. The laws of a variety, \boldsymbol{U}, of groups are in one-one correspondence with the elements, or words, of a fully invariant subgroup, U, of the free group, X, on the variables x_{1}, x_{2}, \cdots. The laws of U are finitely based if U is finitely generated as a fully invariant subgroup of X. If U is determined by its n variable laws then \boldsymbol{U} is determined by a fully invariant subgroup, W, of the free group of rank n, X_{n}. Then the laws of U are finitely based if W is finitely generated as a fully invariant subgroup of X_{n}.

Two sets of words are equivalent if they generate the same fully invariant subgroup of X. If $w_{1}, w_{2}, \cdots, w_{r}$ are words of a group F, then $V\left(w_{1}, w_{2}, \cdots, w_{r}\right)$ denotes the fully invariant subgroup of F generated by $w_{1}, w_{2}, \cdots, w_{r}$.
$X^{\prime \prime}$ denotes the second derived group of $X . X^{\prime \prime}$ is generated by

$$
\{[[a, b],[c, d]] \mid a, b, c, d \in X\}
$$

I use the following notation for the lower central series of a group F. Put

$$
\gamma_{1}(F)=F, \gamma_{i+1}(F)=\left[\gamma_{i}(F), F\right] .
$$

I shall use the construction of commutators given in Chapter 3 of [2], applying
it to the free group X. The commutators of weight one are the elements x_{i}^{n}; $i=1,2, \cdots, n$ positive or negative, but not zero. If c_{1}, c_{2} are commutators of weight k, l respectively then, provided $\left[c_{1}, c_{2}\right] \neq 1,\left[c_{1}, c_{2}\right]$ is a commutator of weight $k+l$.

Let. δ_{i} denote the endomorphism of X mapping x_{i} to 1 , and mapping x_{j} to x_{j} for $j \neq i$. Then the commutator c involves the variable x_{i} if and only if $c \delta_{i}=1$. If a commutator involves n distinct variables then its weight is at least n, and it is contained in $\gamma_{n}(X)$.

3. Preliminary lemmas

Lemma 1. If $a=a_{1} a_{2} \cdots a_{m}, b=b_{1} b_{2} \cdots b_{n}$ then [a, b] is a product of elements of the form $\left[c_{1}, c_{2}, \cdots, c_{k}\right]$, where $k \geqq 2$ and $c_{i} \in\left\{a_{1}, a_{2}, \cdots, a_{m}\right.$, $\left.b_{1}, \cdots, b_{n}\right\}$ for $i=1,2, \cdots, k$.

Proof. The proof is by induction on $m+n$, the result being trivial if $m+n=2$. If $m+n>2$ then either $m>1$ or $n>1$.

Suppose that $m>1$. Then using the identity $[x y, z]=[x, z]^{y}[y, z]$, we obtain:

$$
\begin{aligned}
{[a, b] } & =\left[a_{1} a_{2} \cdots a_{m}, b_{1} b_{2} \cdots b_{n}\right] \\
& =\left[a_{1} \cdots a_{m-1}, b_{1} \cdots b_{n}\right]^{a_{m}}\left[a_{m}, b_{1} \cdots b_{n}\right]
\end{aligned}
$$

By induction $\left[a_{1} \cdots a_{m-1}, b_{1} \cdots b_{n}\right]=d_{1} d_{2} \cdots d_{k},\left[a_{m}, b_{1} \cdots b_{n}\right]=e_{1} e_{2} \cdots e_{l}$, where $d_{1}, d_{2}, \cdots, d_{k}, e_{1}, e_{2}, \cdots, e_{1}$ are of the required form.

Hence

$$
\begin{aligned}
{[a, b] } & =\left(d_{1} d_{2} \cdots d_{k}\right)^{a_{m}} e_{1} e_{2} \cdots e_{l} \\
& =d_{1}^{a_{m}} d_{2}^{a_{m}} \cdots d_{k}^{a_{m}} e_{1} e_{2} \cdots e_{l} \\
& =d_{1}\left[d_{1}, a_{m}\right] d_{2}\left[d_{2}, a_{m}\right] \cdots d_{k}\left[d_{k}, a_{m}\right] e_{1} e_{2} \cdots e_{l}
\end{aligned}
$$

Since $\left[d_{1}, a_{m}\right],\left[d_{2}, a_{m}\right], \cdots,\left[d_{k}, a_{m}\right]$ are clearly of the required form this shows that $[a, b]$ is a product of elements of the required form.

The same result follows similarly if $n>1$, using the identity $[x, y z]=[x, z]$ $[x, y]^{z}$. This proves Lemma 1 .

Corollary. An element of $X^{\prime \prime}$ can be written as a product of commutators of the form $\left[c^{\prime}, d^{\prime}\right]$, where c^{\prime}, d^{\prime} are both commutators of weight at least two.

Proof. It is sufficient to show that an element $[[a, b],[c, d]]$ can be written as a product of commutators of the form $\left[c^{\prime}, d^{\prime}\right]$ where c^{\prime}, d^{\prime} are commutators of weight at least two.

Now a, b, c, d can all be written as products of commutators of weight one.

Hence, by Lemma 1, $[a, b]$ and $[c, d]$ can both be written as products of commutators of weight at least two. By Lemma 1, again, this implies that [$[a, b],[c, d]]$ can be written as a product of commutators of the form $\left[c_{1}, c_{2}, \cdots, c_{k}\right] ; k \geqq 2$; $c_{1}, c_{2}, \cdots, c_{k}$ commutators of weight at least two. This proves the corollary since $\left[c_{1}, c_{2}, \cdots, c_{k}\right]=\left[\left[c_{1}, c_{2}, \cdots, c_{k-1}\right], c_{k}\right]$.

Lemma 2. A word in $X^{\prime \prime}$ is equivalent to a set of $2(m-1)$ variable words and a set of words in $\left[\gamma_{m}(X), \gamma_{2}(X)\right]$.

Proof. Theorem 33.45 of [2] states that a word w in n variables $x_{1}, x_{2}, \cdots, x_{n}$ is equivalent to a set of words each of which is a product of commutators involving precisely the variables $x, i \in M$, for some subset M of $\{1,2, \cdots, n\}$.

Now, if $i_{1}, i_{2}, \cdots, i_{k}$ are all distinct, a word $u\left(x_{i_{1}}, x_{i_{2}}, \cdots, x_{i_{k}}\right)$ is equivalent to $u\left(x_{1}, x_{2}, \cdots, x_{k}\right)$, and so this theorem implies that a word w in n variables is equivalent to a set of words each of which is, for some $k \leqq n$, a product of commutators involving precisely the variables $x_{1}, x_{2}, \cdots, x_{k}$. But a word u which is a product of commutators each involving the variables $x_{1}, x_{2}, \cdots, x_{k}$ satisfies $u \delta_{i}=1$ for $i=1,2, \cdots, k$, and so a word w in $X^{\prime \prime}$ is equivalent to a set of $2(m-1)$ variable words and a set of words $\left\{u_{\alpha}\right\}$ in $X^{\prime \prime}$ satisfying $u_{\alpha} \delta_{i}=1, i=1,2, \cdots$, $2 m-1$. I shall show that a word in $X^{\prime \prime}$ which is in the kernel of δ_{i} for $i=1,2, \cdots$, $2 m-1$ is contained in [$\gamma_{m}(X), \gamma_{2}(X)$], and this will complete the proof of Lemma 2.

I shall call a commutator $[c, d]$ a commutator of type 2 if c and d are commutators of weight at least two. Let $u \in X^{\prime \prime}$, and suppose that $u \delta_{i}=1$ for $i=1,2, \cdots$, $2 m-1$. By the corollary to Lemma $1 u$ can be written as a product $d_{1} d_{2} \cdots d_{r}$, where $d_{1}, d_{2}, \cdots, d_{r}$ are commutators of type 2 . Suppose that d_{i} involves x_{1}, but that d_{i+1} does not involve x_{1}. Then

$$
\begin{aligned}
u & =d_{1} \cdots d_{i-1} d_{i} d_{i+1} d_{i+2} \cdots d_{r} \\
& =d_{1} \cdots d_{i-1} d_{i+1} d_{i}\left[d_{i}, d_{i+1}\right] d_{i+2} \cdots d_{r}
\end{aligned}
$$

Clearly $\left[d_{i}, d_{i+1}\right]$ is of type 2 and involves x_{1}, and so in this way we can shift the commutators not involving x_{1} to the left of those that do. Hence we may suppose that $u=d_{1} d_{2} \cdots d_{r}$, where each d_{i} is of type 2 , and where d_{1}, \cdots, d_{s} do not involve $x_{1}, d_{s+1}, \cdots, d_{r}$ do involve x_{1}, for some $s \leqq r$.

Then $1=u \delta_{1}=\left(d_{1} \delta_{1}\right)\left(d_{2} \delta_{1}\right) \cdots\left(d_{r} \delta_{1}\right)=d_{1} d_{2} \cdots d_{s}$. Hence $u=d_{s+1} \cdots$ d_{r}, i.e. u is a product of commutators of type 2 , each involving x_{1}. By induction u is a product of commutators of type 2 each involving all of $x_{1}, x_{2}, \cdots, x_{2 m-1}$. Let d be a commutator of type 2 involving each of $x_{1}, x_{2}, \cdots, x_{2 m-1}$. Then the weight of $d(w t d)$ is at least $2 m-1$. Since d is of type $2, d=\left[c_{1}, c_{2}\right]$ where $w t c_{1}$, $w t c_{2} \geqq 2$ and $w t c_{1}+w t c_{2}=w t d \geqq 2 m-1$. It follows that at least one of $w t c_{1}$, $w t c_{2} \geqq m$, i.e. that at least one of c_{1}, c_{2} is contained in $\gamma_{m}(X)$. Since both c_{1} and c_{2} are contained in $\gamma_{2}(X)$ this implies that $d=\left[c_{1}, c_{2}\right] \in\left[\gamma_{m}(X), \gamma_{2}(X)\right]$. Therefore $u \in\left[\gamma_{m}(X), \gamma_{2}(X)\right]$ and this proves Lemma 2.

4. Proof of theorem

Let U be variety of groups determined by the fully invariant subgroup U of X. Suppose that $\left[\left[x_{1}, x_{2}, \cdots, x_{m}\right],\left[x_{m+1}, x_{m+2}\right]\right] \in U$ for some $m \geqq 2$.

Let π be the natural projection of X onto $X / X^{\prime \prime}$. Then $X \pi$ is isomorphic to the free metabelian group of countable rank, and so $U \pi$ is a fully invariant subgroup of $X \pi$, since any endomorphism of $X \pi$ is induced by an endomorphism of $X([2]$, 13.24).

It follows ([1]) that $U \pi$ is finitely generated as a fully invariant subgroup of $X \pi$, since $U \pi$ determines a variety of metabelian groups. So $U \pi=V\left(u_{1} \pi\right.$, $u_{2} \pi, \cdots, u_{r} \pi$) for some $u_{1}, u_{2}, \cdots, u_{r} \in U$. Let $u \in U$. Then there is an element $v \in V\left(u_{1} \pi, u_{2} \pi, \cdots, u_{r} \pi\right)$ such that $u \pi=v$. Since any endomorphism of $X \pi$ is induced by an endomorphism of X there is an element $w \in V\left(u_{1}, u_{2}, \cdots, u_{r}\right)$ such that $w \pi=v=u \pi$. Then $\left(u w^{-1}\right) \pi=1$, and so $u w^{-1} \in X^{\prime \prime}$. Hence U, as a fully invariant subgroup of X, is generated by $u_{1}, u_{2}, \cdots, u_{r}$ and by a set of words in $X^{\prime \prime}$.

Hence, by Lemma $2, U$, as a fully invariant subgroup of X, is generated by $u_{1}, u_{2}, \cdots, u_{r}$ a set of $2(m-1)$ variable words and a set of words in $\left[\gamma_{m}(X), \gamma_{2}(X)\right]$. Since $\left[\left[x_{1}, x_{2}, \cdots, x_{m}\right],\left[x_{m+1}, x_{m+2}\right]\right] \in U$ this implies that U, as a fully invariant subgroup of X, is generated by $u_{1}, u_{2}, \cdots, u_{r}$, a set of $2(m-1)$ variable words and the word [$\left[x_{1}, x_{2}, \cdots, x_{m}\right.$], $\left.\left[x_{m+1}, x_{m+2}\right]\right]$. Suppose that u_{i} is an n_{i} variable word for $i=1,2, \cdots, r$ and let $n=\max \left\{n_{1}, n_{2}, \cdots, n_{r}, 2(m-1), m+2\right\}$. Then U is determined by a set of n variable words, and so \boldsymbol{U} is determined by a fully invariant subgroup of X_{n}, the free group of rank n. Since [$\left[x_{1}, x_{2}, \cdots, x_{m}\right]$, $\left[x_{m+1}, x_{m+2}\right]$] is a law in $\boldsymbol{U}, \boldsymbol{U}$ is determined by a fully invariant subgroup of X_{n} containing [$\gamma_{m}\left(X_{n}\right), \gamma_{2}\left(X_{n}\right)$]. But fully invariant subgroups of X_{n} containing [$\gamma_{m}\left(X_{n}\right), \gamma_{2}\left(X_{n}\right)$] are in one-one correspondence with fully invariant subgroups of $X_{n} /\left[\gamma_{m}\left(X_{n}\right)\right.$, $\left.\gamma_{2}\left(X_{n}\right)\right]$, which is a finitely generated abelian by nilpotent group. Now finitely generated abelian by nilpotent groups satisfy the maximal condition on normal subgroups ([3]), and a fortiori satisfy the maximal condition on fully invariant subgroups. Hence fully invariant subgroups of X_{n} containing [$\gamma_{m}\left(X_{n}\right), \gamma_{2}\left(X_{n}\right)$] satisfy the maximal condition, and so are finitely generated as fully invariant subgroups. This proves the Theorem.

References

[1] D. E. Cohen, 'On the Laws Of A Metabelian Variety; Journal of Algebra, 5 (1967), 267-273.
[2] Hanna Neumann, Varieties of Groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37).
[3] P. Hall, 'Finiteness Conditions for Soluble Groups', Proc. London Math. Soc., (3), 4 (1954), 419-436.

Vanderbilt University
Nashville
Tennessee

