On K3 Surface Quotients of K3 or Abelian Surfaces

Alice Garbagnati

Abstract. The aim of this paper is to prove that a K3 surface is the minimal model of the quotient of an Abelian surface by a group G (respectively of a K3 surface by an Abelian group G) if and only if a certain lattice is primitively embedded in its Néron-Severi group. This allows one to describe the coarse moduli space of the K3 surfaces that are (rationally) G-covered by Abelian or K3 surfaces (in the latter case G is an Abelian group). When G has order 2 or G is cyclic and acts on an Abelian surface, this result is already known; we extend it to the other cases.

Moreover, we prove that a K3 surface X_{G} is the minimal model of the quotient of an Abelian surface by a group G if and only if a certain configuration of rational curves is present on X_{G}. Again, this result was known only in some special cases, in particular, if G has order 2 or 3.

1 Introduction

Thanks to the Torelli theorem for K3 surfaces and to the theory of the lattice polarized K3 surfaces, in order to describe the moduli space of K3 surfaces having a certain geometric property it is useful to express this geometric property in terms of embeddings of certain lattices. In this paper we analyze the geometric property: "a K3 surface is the minimal model of the quotient of an Abelian or a K3 surface by a finite group". Under certain conditions we are able to translate this property to a lattice theoretic property and thus to describe the coarse moduli space of the K3 surfaces that are (rationally) covered by Abelian surfaces or by K3 surfaces. This generalizes several previous results by Nikulin [N1], by Bertin [Be], and by Sarti and the author [GS1].

The first and crucial example is given by the Kummer surfaces. A Kummer surface is a K3 surface obtained as minimal resolution of the quotient A / ι, where A is an Abelian surface and ι is an involution on A. In [N1], Nikulin proved that a K3 surface is a Kummer surface if and only if at least one of the two following equivalent conditions holds:
(a) a certain lattice, called the Kummer lattice, is primitively embedded in the NéronSeveri group of the K3 surface;
(b) there are sixteen disjoint smooth rational curves on the K3 surface.

The first condition is more related to the lattice theory and allows one to describe the coarse moduli space of the K3 surfaces that are Kummer surfaces. The second one is clearly more related to the geometry of the surface.

[^0]In a more general setting, we consider the following situation: Y is either an Abelian or a K3 surface, G is a finite group of automorphisms of Y, and the minimal model of Y / G is a K3 surface X. In this case we say that X is (rationally) G-covered by Y. In view of the results by Nikulin on Kummer surfaces, it is quite natural to pose the following two questions.

Question A Is the property " K 3 surface X is (rationally) G-covered by a surface Y " equivalent to the condition "there is a certain lattice (depending on G) that is primitively embedded in $N S(X)$ "?

We observe that a positive answer to this question immediately provides a description of the coarse moduli space of the K3 surfaces (rationally) covered by Abelian or K3 surfaces.

Question B Is the property "a K3 surface X is (rationally) G-covered by a surface Y" equivalent to the condition "there is a certain configuration of rational curves on X "?

The main results of this paper are to give a positive answer to:

- Question A in the case where Y is an Abelian surface (see Theorem 4.4);
- Question B in the case where Y is an Abelian surface (see Theorem 4.7);
- Question A in the case where Y is a $K 3$ surface and G is an Abelian group (see Theorem 5.2).
It is not possible in general to give a positive answer to Question B in the case where Y is a K3 surface. For example, it is known that the answer is negative if we assume that Y is a K 3 surface and $G=\mathbb{Z} / 2 \mathbb{Z}$; $c f$. [GS2]. I do not know if it is possible to extend the positive answer given to Question A in the case where Y is a K3 surface and G is an Abelian group to the weaker hypothesis that Y is a K3 surface, without assumptions (or with different assumptions) on G.

The positive answer to Question A in the case where Y is an Abelian surface was already known if G is a cyclic group; indeed, the classical case of the Kummer surface, i.e., $G=\mathbb{Z} / 2 \mathbb{Z}$, was considered by Nikulin [N1], as we said above, the other cyclic cases are considered in [Be]. In Theorem 4.4 we address the remaining cases. In order to state and prove this theorem, the first step is to find all the finite groups G acting on an Abelian surface in such a way that A / G desingularizes to a K3 surface. We assume, without loss of generality, that G does not contain translations. The list of these groups is classically known (see [F]) and consists of four cyclic groups and three noncyclic (and non Abelian) groups. One of the noncyclic groups, the quaternion group, can act on two different families of Abelian surfaces and the actions have different sets of points with nontrivial stabilizer. So we have to consider four actions of noncyclic groups on an Abelian surface. The second step is the identification of the lattice that should characterize the K3 surfaces that are (rationally) G-covered by an Abelian surface. This lattice depends on G, and the natural candidate (also in view of the previous results by Nikulin and Bertin) is the minimal primitive sublattice of $N S(X)$, which contains all the curves arising from the desingularization of A / G. We call the lattices constructed in this way lattices of Kummer type, and we denote them by K_{G}. They have already been determined if G is a cyclic group, and they are computed in the
noncyclic case in Section 4.2. The lattices arising in the noncyclic cases were considered in [W], but unfortunately some of the results presented in [W, Proposition 2.1] are not correct, as we show below. The last step is to prove our main result; that is, the primitive embedding of the lattices K_{G} in the Néron-Severi group of a K3 surface X is equivalent to the fact that X is (rationally) G-covered by an Abelian surface. We combine a result of [Be], which allows us to give a geometric interpretation of the (-2)-classes appearing in the lattice K_{G}, with classical results on cyclic covers between surfaces, in order to reconstruct the surface A starting from $\left(X, K_{G}\right)$.

The positive answer to Question A in the case where Y is a K 3 surface and G is an Abelian group, is contained in Theorem 5.2. The fourteen admissible Abelian groups are listed in [N3, Theorem 4.5]. Only the case $G=\mathbb{Z} / 2 \mathbb{Z}$ was already known; see [GS1]. The proof of the result is totally analogous to the one given in the case where Y is an Abelian surface, with the advantage that the lattices of Kummer type are substituted by other lattices, denoted by M_{G}, which were already computed in [N3, Sections 6 and 7] for all the admissible groups G. The extension to the non Abelian groups G seems more complicated: the lattices M_{G} are known also in the non Abelian cases, [X], but it is not so clear how to reconstruct the surface Y only from the data $\left(X, M_{G}\right)$.

Let us now discuss the more geometric Question B. The positive answer to Question B in case Y is an Abelian surface was already known in cases $G=\mathbb{Z} / 2 \mathbb{Z}$ and $G=\mathbb{Z} / 3 \mathbb{Z}$. The case of the involution was considered by Nikulin [N1], as mentioned. The case $G=\mathbb{Z} / 3 \mathbb{Z}$ is due to Barth [Bal]. The other groups are considered here. The proof of this very geometric result is essentially based on computations in lattice theory. Indeed, the idea is to prove that if a K3 surface X admits a certain configuration of curves, then the minimal primitive sublattice of the Néron-Severi group containing these curves is in fact K_{G}. We emphasize that the computations with these lattices are strongly conditioned by the fact that we are considering many curves, which implies that the rank of the lattices that they span is high. This is exactly the hypothesis that fails if we consider the case where Y is a K3 surface (and not an Abelian surface). Indeed, in this case the result cannot be extended (at least without conditions on the Abelian group G).

In Section 2 we recall some known results. In Section 3 we present Proposition 3.2 (based on previous results by Bertin), which is fundamental in the proof of our main theorems. In Section 4.2 we compute the lattices K_{G} in the case where G is not a cyclic group and in Section 4.3 we give an exhaustive description of the lattices of Kummer type and of their properties. In Section 4.4 we state and prove two of our main results, giving a positive answer to the Questions A and B in case Y is an Abelian surface (see Theorems 4.4 and 4.7). In Section 4.5 we discuss the relation between K3 surfaces that are (rationally) $\mathbb{Z} / 3 \mathbb{Z}$-covered by Abelian surfaces, K 3 surfaces which are (rationally) $(\mathbb{Z} / 3 \mathbb{Z})^{2}$-covered by $K 3$ surfaces, and $K 3$ surfaces that are (rational) $(\mathbb{Z} / 3 \mathbb{Z})^{2}$-covers of K3 surface. This generalizes a similar result on Kummer surfaces, proved in [GS2].

In Section 5 we concentrate on K3 surfaces covered by K3 surfaces, giving a positive answer to Question A in this setting. Moreover, we give more precise results on the K3 surfaces that are (rationally) $\mathbb{Z} / 3 \mathbb{Z}$-covered by K 3 surfaces, presenting all the possible Néron-Severi groups of a K3 surface with this property and minimal Picard number. This generalizes results proved in [GS1].

Notation

- $\mathbb{D}_{4 n}$ is the dicyclic group of order $4 n$ (also called the binary dihedral group), which has the following presentation: $\left\langle a, b, c \mid a^{n}=b^{2}=c^{2}=a b c\right\rangle$. (In the case where $n=2$ it is the quaternion group). The GAP id of \mathbb{D}_{8} is $(8,4)$ and that of \mathbb{D}_{12} is $(12,1)$.
- \mathbb{T} is the binary tetrahedral group: it has order 24 and the following presentation: $\left\langle r, s, t \mid r^{2}=s^{3}=t^{3}=r s t\right\rangle$. The GAP id of \mathbb{T} is $(24,3)$.
- $\mathfrak{A}_{3,3}$ is the generalized dihedral group of the abelian group of order 9 ; it has order 18 and the following presentation: $\left\langle r, s, t \mid r^{2}=s^{3}=t^{3}=1, t r=r t^{2}, s r=r s^{2}\right\rangle$. The GAP id of $\mathfrak{A}_{3,3}$ is $(18,4)$

2 Preliminaries

In this section we recall some very well known facts and fix the notation.

2.1 Lattices

Definition 2.1 A lattice is a pair $\left(L, b_{L}\right)$, where $L=\mathbb{Z}^{n}, n \in \mathbb{N}$ and $b_{L}: L \times L \rightarrow \mathbb{Z}$ is a symmetric nondegenerate bilinear form taking values in \mathbb{Z}. The number n is the rank of L. The signature of $\left(L, b_{L}\right)$ is the signature of the \mathbb{R} linear extension of $\left(L, b_{L}\right)$.

A lattice is said to be even if the quadratic form induced by b_{L} on L only takes values in $2 \mathbb{Z}$.

The discriminant group of L is L^{\vee} / L, where the dual L^{\vee} can be identified with the set $\left\{m \in L \otimes \mathbb{Q} \mid b_{L}(m, l) \in \mathbb{Z}\right.$ for all $\left.l \in \mathbb{Z}\right\}$ (here we also denote by b_{L} the \mathbb{Q} linear extension of b_{L}). The discriminant form is the one induced by b_{L} on the discriminant group. The length of a lattice $\left(L, b_{L}\right)$, denoted by $l(L)$, is the minimal number of generators of the discriminant group.

A lattice is said to be unimodular if its discriminant group is trivial, i.e., if its length is zero.

The discriminant group of a lattice is a finite free product of cyclic groups. Its order is the determinant of some (and so of any) matrix that represents the form b_{L} with respect to some basis of L. This number is called the discriminant of the lattice L and is denoted by $d(L)$.

In the sequel we are interested in the construction of overlattices of finite index of a given lattice. Let L and M be two lattices with the same rank. Let $L \hookrightarrow M$. Then M is generated by the vectors that generate L plus by some other vectors that are nontrivial in M / L but that necessarily have an integer intersection with all the vectors in L (otherwise the form on M cannot take values in \mathbb{Z}). This means that the nontrivial vectors in M / L are nontrivial elements of in the discriminant group of L.

If, moreover, we require that the lattice M is even, then L is automatically even (since it is a sublattice of M) and also the nontrivial classes in M / L have an even self intersection. So, if we have an even lattice L and we want to construct an even overlattice of finite index, we have to add to the generators of L some nontrivial elements in L^{\vee} / L that have an even self intersection.

More generally, every isotropic subgroup of L^{\vee} / L (where a subgroup H of L^{\vee} / L is isotropic if the discriminant form restricted to H is trivial) corresponds to an overlattice of L of finite index, and, vice-versa, every overlattice of L of finite index corresponds to an isotropic subgroup of L^{\vee} / L; see [N4, Section 1].

If M is an overlattice of L with index r, then $d(L) / d(M)=r^{2}$.
Definition 2.2 Let M and L be two lattices with $\operatorname{rank}(M) \leq \operatorname{rank}(L)$. Let $\varphi: M \rightarrow$ L be an embedding of M in L. We say that φ is primitive, or that M is primitively embedded in L, if $L / \varphi(M)$ is torsion free.

Proposition 2.3 ([N4, Proposition 1.6.1]) Let L be a unimodular lattice, let M be a primitive sublattice of L, and let M^{\perp} be the orthogonal complement to M in L. The discriminant group of M is isomorphic to the discriminant group of M^{\perp}. In particular, since the length of a lattice is at most the rank of the lattice,

$$
l(M)=l\left(M^{\perp}\right) \leq \min \left\{\operatorname{rank}(M), \operatorname{rank}(L)-\operatorname{rank}\left(M^{\perp}\right)\right\}
$$

Definition 2.4 A root of the lattice $\left(L, b_{L}\right)$ is a vector $v \in L$ such that $b_{L}(v, v)=-2$. The root lattice of a given lattice L is the lattice spanned by the set of all the roots in L.

A lattice is called a root lattice if it is generated by its roots.

2.2 Covers

Here we recall a very well known and classical result (see [BHPV, Chapter I, § 17]) on covers, which will be essential for our purpose.

Let Y be a connected complex manifold and let B be an effective divisor on Y. Suppose we have a line bundle \mathcal{L} on Y such that

$$
\begin{equation*}
\mathcal{O}_{Y}(B)=\mathcal{L}^{\otimes n} \tag{2.1}
\end{equation*}
$$

and a section $s \in H^{0}\left(Y, \mathcal{O}_{Y}(B)\right)$ vanishing exactly along B. We denote by L the total space of \mathcal{L} and we let $p: L \rightarrow Y$ be the bundle projection. If $t \in H^{0}\left(L, p^{*}(\mathcal{L})\right)$ is the tautological section, then the zero divisor of $p^{*} s-t$ defines an analytic subspace X in L. The variety X is an n-cover of Y branched along B and determined by \mathcal{L}, and the cover map is the restriction of p to X. If both Y and B are smooth and reduced, then X is smooth.

Let us denote by $D \in \operatorname{Pic}(Y)$ the divisor associated with the line bundle \mathcal{L}. Condition (2.1) is equivalent to $B=n D$, i.e., $B / n=D \in \operatorname{Pic}(Y)$. For this reason we call B an n-divisible divisor in the Picard group. We often call the curves in the support of B an n-divisible set of curves. The previous discussion implies that with each effective divisible divisor one can associate a cyclic cover of the variety.

Let us consider a sort of converse. Let $\pi: X \rightarrow Y$ be an n-cyclic cover between smooth varieties such that the branch locus is smooth and all its components have codimension 1 in Y. Then π determines a divisor (supported on the branch locus) that is divisible by n. This applies in particular to a special situation that we will now consider. Let X and Y be two surfaces. Let α be an automorphism of X of order 2 or 3 that fixes only isolated points. Then it is possible to construct a blow up \widetilde{X} of X such that α induces an automorphism $\widetilde{\alpha}$ of \widetilde{X} whose fixed locus consists of disjoint
curves. So $\widetilde{X} / \widetilde{\alpha}$ is a smooth surface that we denote by Y which is birational to X / α. The quotient map $\widetilde{X} \rightarrow \widetilde{X} / \widetilde{\alpha}=Y$ is a $|\alpha|: 1$ cover of Y branched along a smooth union of curves. Hence there is an $|\alpha|$-divisible set of curves on Y that is a smooth birational model of X / α. If $|\alpha|=2^{a} 3^{b}$, then the iterated application of the previous procedure to suitable powers of α, produces a suitable $|\alpha|$-divisible set of curves on a surface Y that is a smooth surface birational to X / α.

2.3 K3 Surfaces

We work with smooth projective complex surfaces.
Definition 2.5 A surface Y is called a K3 surface if its canonical bundle is trivial and $h^{1,0}(Y)=0$.

The second cohomology group of a K3 surface equipped with the cup product is the unique even unimodular lattice of rank 22 and signature $(3,19)$, and it is denoted by $\Lambda_{K 3}$. The Néron-Severi group of a K3 surface Y is a primitively embedded sublattice of $\Lambda_{K 3}$ with signature $(1, \rho(Y)-1)$. Consequently, the transcendental lattice, which is the orthogonal complement to the Néron-Severi group in the second cohomology group, is a primitively embedded sublattice of $\Lambda_{K 3}$ with signature $(2,20-\rho(Y))$.

Let $G \subset \operatorname{Aut}(Y)$ be a group of automorphisms of Y. We will say that it acts symplectically if it preserves the symplectic structure of Y, i.e., if its action on $H^{2,0}(Y)$ is trivial. The finite groups acting symplectically on a K3 surface are classified by Nikulin [N3], in the case of the Abelian group, and by Mukai [M] in the other cases. A complete list can be found in [X].

If a finite group G acts symplectically on a K 3 surface Y, then Y / G is a singular surface, whose desingularization $\widetilde{Y / G}$ is a K3 surface.

Definition 2.6 Let Y be a K3 surface admitting a symplectic action of a finite group G. Let $\widehat{Y / G}$ be the minimal model of Y / G. We will denote by E_{G} the sublattice of $N S(\overline{Y / G})$ generated by the curves arising from the desingularization of Y / G. We will denote by M_{G} the minimal primitive sublattice of $N S(Y / G)$ that contains E_{G}. We observe that M_{G} is an overlattice of finite index of E_{G}.

We now show an explicit and very classic example: let Y be a K3 surface that admits a symplectic action of $\mathbb{Z} / 2 \mathbb{Z}$. Then $Y /(\mathbb{Z} / 2 \mathbb{Z})$ has eight singular points of type A_{1}. The desingularization of Y / G introduces eight rational curves on $Y /(\mathbb{Z} / 2 \mathbb{Z})$; let us denote them by $M_{i}, i=1, \ldots, 8$. The lattice spanned by the curves M_{i} is clearly isomorphic to A_{1}^{8}, so $E_{\mathbb{Z} / 2 \mathbb{Z}}=A_{1}^{8}$. One can also consider a different construction: one blows up Y in the eight fixed points for the action of $\mathbb{Z} / 2 \mathbb{Z}$. One obtains the surface \widetilde{Y}, with eight exceptional curves $E_{i}, i=1, \ldots, 8$. Then one lifts the action of $\mathbb{Z} / 2 \mathbb{Z}$ on Y to an action of $\mathbb{Z} / 2 \mathbb{Z}$ on \widetilde{Y} that fixes the exceptional curves. So one obtains a smooth surface $\widetilde{Y} /(\mathbb{Z} / 2 \mathbb{Z})$ that is in fact isomorphic to $Y / \overline{(\mathbb{Z} / 2 \mathbb{Z})}$. The $2: 1 \operatorname{map} \widetilde{Y} \rightarrow \widetilde{Y} /(\mathbb{Z} / 2 \mathbb{Z})$ is ramified on the union of the curves E_{i} and so it is branched along the union of the curves M_{i}. By Section 2.2, it follows that $\sum_{i} M_{i}$ is divisible by 2 in $N S(\widetilde{Y / G})$. Hence,
$E_{\mathbb{Z} / 2 \mathbb{Z}}$ is generated by $M_{i}, i=1, \ldots, 8$ and is isometric to $A_{1}^{8} ; M_{\mathbb{Z} / 2 \mathbb{Z}}$ is generated by the same classes as $E_{\mathbb{Z} / 2 \mathbb{Z}}$ and by the divisible class $\sum_{i} M_{i} / 2$.

Similarly one can apply the results of Section 2.2 to the cyclic groups of order 3, 4, 6, and 8 in order to conclude that the K3 surface Y / G contains a divisible set of rational curves. The same is true also for cyclic groups of order 5 and 7 as proved by Nikulin in [N3]. This shows that for every cyclic group G acting symplectically on a K3 surface Y, there is a $|G|$-divisible set of rational curves on the minimal model of Y / G. The description of this $|G|$-divisible set is given in [N3] and implies the description of the lattice M_{G}.

Let us assume that the sum of n disjoint rational curves is divisible by 2 in $N S(Y)$. By Section 2.2, there exists a 2:1 cover of Y branched along the union of these curves. The covering surface is not minimal, but one can contract certain curves in order to obtain a minimal model. It was proved by Nikulin that only two possibilities occur: the minimal model of the covering surface is a K3 surface and in this case $n=8$, or the minimal model of the covering surface is an Abelian surface and in this case $n=16$. A similar result holds for covers of order 3 and was proved by Barth [Bal]. We collect these results in Proposition 2.8 after introducing some definitions.

Definition 2.7 An A_{k} (resp. $D_{m}, m \geq 4, E_{l}, l=6,7,8$) configuration of curves is a set of k (resp. m, l) irreducible smooth rational curves whose dual diagram is a Dynkin diagram of type A_{k} (resp. D_{m}, E_{l}).

A set of disjoint A_{k} configurations is n-divisible if there is a linear combination of the curves contained in the configuration that can be divided by n in the Néron-Severi group of the surface.

Proposition 2.8 ([Bal, N1]) Let Y be a K3 surface that contains a set of m disjoint rational curves (i.e., a set of m disjoint A_{1}-configurations). If this set is divisible by 2 , then m is either 8 or 16. In the first case the cover surface associated to the divisible class is a K3 surface, in the latter it is an Abelian surface.

Let Y be a K3 surface which contains a set of m disjoint A_{2}-configurations. If this set is divisible by 3 , then m is either 6 or 9 . In the first case the cover surface associated with the divisible class is a K3 surface, in the latter it is an Abelian surface.

In case where G is an Abelian group acting symplectically on a K3 surface Y, the type and the number of points with a nontrivial stabilizer is determined by Nikulin in [N3, Section 5]. In the same paper the author determines the lattice E_{G} and M_{G} for all the admissible Abelian groups (we will recall this result in Proposition 5.1).

In certain cases the presence of certain configurations of rational curves suffices to conclude that the K3 surface is covered either by an Abelian or by a K3 surface. Since this property will be useful, we summarize the cases where it appears.

Proposition 2.9 Let Y be a K3 surface that admits sixteen disjoint rational curves. Then it is the desingularization of the quotient of an Abelian surface by the group $\mathbb{Z} / 2 \mathbb{Z}$. In particular, the set of these sixteen curves is 2-divisible (see [N1, Theorem 1]).

Let Y be a K3 surface that admits fifteen disjoint rational curves. Then it is the desingularization of the quotient of a K3 surface by the group $(\mathbb{Z} / 2 \mathbb{Z})^{4}$. In particular, the set
of these fifteen rational curves contains four independent subsets of eight rational curves that are 2-divisible (see [GS2, Theorem 8.6]).

Let Y be a K3 surface that admits fourteen disjoint rational curves. Then it is the desingularization of the quotient of a K3 surface by the group $(\mathbb{Z} / 2 \mathbb{Z})^{3}$. In particular, the set of these fourteen rational curves contains 3 independent subsets of eight rational curves that are 2-divisible (see [GS2, Corollary 8.7]).

Let Y be a K3 surface that admits nine disjoint A_{2}-configurations of rational curves. Then it is the desingularization of the quotient of an Abelian surface by the group $\mathbb{Z} / 3 \mathbb{Z}$. In particular, the set of nine disjoint A_{2}-configurations of rational curves is 3-divisible (see [Bal, Theorem]).

3 A Preliminary and Fundamental Result

In this section we recall a result by Bertin [Be, Lemma 3.1], and we deduce a corollary of this result, Proposition 3.2. These are essential for the sequel.

First we introduce some notation, following [Be]. Let us consider a K3 surface Y. We denote by \mathcal{C}^{+}the component of the cone $\left\{v \in N S(Y) \otimes \mathbb{R}\right.$ such that $\left.v^{2}>0\right\}$ that contains at least one ample class. We observe that the ample cone is contained in \mathcal{C}^{+}. Let us define

$$
\Delta:=\left\{\delta \in N S(Y) \text { such that } \delta^{2}=-2\right\} \text { and } \Delta^{+}:=\{\delta \in \Delta \text { such that } \delta \text { is effective }\} .
$$

Moreover, we let

$$
B:=\left\{b \in \Delta^{+} \text {such that } b \text { is the class of an irreducible curve }\right\} .
$$

We observe that the curves C whose classes are contained in the set B are smooth irreducible rational curves. We pose

$$
\mathcal{K}:=\left\{v \in \mathcal{C}^{+} \text {such that } v b>0 \text { for all } b \in B\right\} .
$$

The cone \mathcal{K} is the ample cone of S, and so $N S(Y) \cap \overline{\mathcal{K}} \cap \mathcal{C}^{+}$is the set of the pseudo ample divisors of Y. This means that if $h \in N S(Y) \cap \overline{\mathcal{K}} \cap \mathfrak{C}^{+}$, then $h^{2}>0$ and $h v \geq 0$ for all the effective classes v.

Lemma 3.1 ([Be, Lemma 3.1]) Let Y be a projective K3 surface and let $h \in N S(Y) \cap$ $\overline{\mathcal{K}} \cap \mathcal{C}^{+}$. Let us denote $\Delta_{h}:=\Delta \cap h^{\perp}$. Then $B \cap h^{\perp}$ is a basis of Δ_{h}.

Proposition 3.2 Let Y be a K3 surface. Let h be a pseudoample divisor on Y and let $L=h^{\perp}:=\{l \in N S(Y)$ such that $l h=0\}$ be the orthogonal complement of h in $N S(Y)$. Let us assume that there exists a root lattice R such that:
(i) L is an overlattice of finite index of R;
(ii) the roots of R and of L coincide.

Then there exists a basis of R that is supported on smooth irreducible rational curves.
Proof Let us consider the root lattice of L, denoted by $R(L)$. By the definition of $\Delta_{h}, R(L)$ and Δ_{h} coincide. So there is a basis of $R(L)$ which is supported on smooth irreducible rational curves by [Be, Lemma 3.1] (i.e., by Lemma 3.1). By the hypothesis,
$R(L)$ is isometric to R and so there exists a basis for R that is supported on smooth irreducible rational curves.

4 K3 Surface Quotients of Abelian Surfaces

In this section we concentrate on K3 surfaces that are constructed as quotients of an Abelian surface by a group of finite order. First, we recall some known results and we compute the lattices associated with this construction in the case where G is not Abelian. The results about these lattices are summarized in Proposition 4.3. Then we state and prove the main results of this section, which are Theorems 4.4 and 4.7.

4.1 Preliminaries and Known Results

Definition 4.1 Let A be an Abelian surface. Let $G \subset \operatorname{Aut}(A)$ be a finite group of automorphisms of A. Let us consider the minimal model of A / G and let us call it X_{G}.

Let K_{i} be the curves on X_{G} arising by the resolution of the singularities of A / G. Let F_{G} be the lattice spanned by the curves K_{i} and let K_{G} be the minimal primitive sublattice of $N S\left(X_{G}\right)$ containing the curves K_{i}. Clearly, K_{G} is an overlattice of finite index, r_{G}, of F_{G}. We will say that the lattice K_{G} is a lattice of Kummer type.

The following well known result, due to Fujiki, classifies the group $G \subset \operatorname{Aut}(A)$ such that G does not contain translations and X_{G} is a $K 3$ surface.

Theorem 4.2 ([F]) Let G be a group of automorphisms of an Abelian surface A that does not contain translations. If the minimal resolution of A / G is a $K 3$ surface, then $G=\mathbb{Z} / n \mathbb{Z}, n=2,3,4,6$, or $G \in\left\{\mathbb{D}_{8}, \mathbb{D}_{12}, \mathbb{T}\right\}$.

The requirement that G does not contain translations is not seriously restrictive; indeed, the quotient of an Abelian surface by a finite group of translations produces another Abelian surface. Up to replacing the first Abelian surface by its quotient by translations, we can assume without loss of generality that the group G does not contain translations.

4.2 Non-cyclic Quotients of Abelian Surfaces

The aim of this section is to describe the lattices K_{G} in case G is not cyclic. These lattices were also computed in [W], but two of the results given in [W, Proposition 2.1] are incorrect. In particular, we prove that the lattices K_{G} are not the ones given in [W, Proposition 2.1] if $G=\mathbb{D}_{8}^{\prime}$ and $G=\mathbb{D}_{12}$.

4.2.1 The Actions of \mathbb{D}_{8} and \mathbb{D}_{8}^{\prime}

Let G be the quaternion group. There are two different families of tori on which we can define the action of G in such a way that X_{G} is a K3 surface, and on these two different families G has different sets of points with nontrivial stabilizer. So the quotients of an Abelian surface by each of these actions produce two different singular surfaces with different sets and types of singularities.

The group G has the presentation

$$
\left\langle\alpha_{4}, \beta \mid \alpha_{4}^{4}=\beta^{4}=1, \alpha_{4}^{2}=\beta^{2}, \alpha_{4}^{-1} \beta \alpha_{4}=\beta^{-1}\right\rangle
$$

We pose $A:=\mathbb{C}^{2} / \Lambda$ and

$$
\begin{aligned}
\alpha_{4}: A \longrightarrow A, & \left(z_{1}, z_{2}\right) \longmapsto\left(i z_{1},-i z_{2}\right) \\
\beta: A \longrightarrow A, & \left(z_{1}, z_{2}\right) \longmapsto\left(-z_{2}, z_{1}\right) .
\end{aligned}
$$

The actions of α_{4} and β are algebraic automorphisms on both $A:=E_{i} \times E_{i}$ (where E_{i} is the elliptic curve with j-invariant equal to 1728 , i.e., the elliptic curve associated with the lattice $\langle 1, i\rangle)$ and the Abelian surface $A^{\prime}:=\mathbb{C}^{2} / \Lambda$, where

$$
\Lambda:=\left\langle(1,0),(i, 0),\left(\frac{1+i}{2}, \frac{1+i}{2}\right),\left(\frac{1+i}{2}, \frac{i-1}{2}\right)\right\rangle .
$$

So the group generated by α_{4} and β is both a subgroup of $\operatorname{Aut}(A)$ and by $\operatorname{Aut}\left(A^{\prime}\right)$. We denote it by \mathbb{D}_{8} when it is considered as subgroup of $\operatorname{Aut}(A)$ and by \mathbb{D}_{8}^{\prime} when it is considered as subgroup of $\operatorname{Aut}\left(A^{\prime}\right)$.

We now identify the points of A (resp. A^{\prime}) that have a nontrivial stabilizer for \mathbb{D}_{8} (resp. \mathbb{D}_{8}^{\prime}). All of them are 2-torsion points and indeed are fixed for $\alpha_{4}^{2}=\beta^{2}$. We obtain Tables 1 and 2

We observe that $\alpha_{4}^{2}\left(=\beta^{2}\right)$ is the center of $G:=\left\langle\alpha_{4}, \beta\right\rangle$, and in particular that it is a normal subgroup of $\left\langle\alpha_{4}, \beta\right\rangle$. So, in order to construct A / G, one can first consider $A /\left\langle\alpha_{4}^{2}\right\rangle$ and then $\left(A /\left\langle\alpha_{4}^{2}\right\rangle\right) / Q$, where Q is the quotient group $G /\left\langle\alpha_{4}^{2}\right\rangle$. The group Q is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ and is generated by $\overline{\alpha_{4}}$ and $\bar{\beta}$, where \bar{g} is the image of $g \in G$ under the quotient map $G \rightarrow G /\left\langle\alpha_{4}^{2}\right\rangle$.

The automorphism α_{4}^{2} is $\left(z_{1}, z_{2}\right) \mapsto\left(-z_{1},-z_{2}\right)$, and the surface A / α_{4}^{2} is singular in the image of the sixteen 2 -torsion points of A. We denote by $A[2]$ the set of these points on A. The desingularization, $\operatorname{Km}(A)$, of $A /\left\langle\alpha_{4}^{2}\right\rangle$ is obtained by blowing up the singular points once, and it is the Kummer surface of A. Let $(p, q) \in A[2]$; then we denote by $K_{(p, q)} \subset \operatorname{Km}(A)$ the sixteen rational curves arising from the desingularization of $A /\left\langle\alpha_{4}^{2}\right\rangle$.

The minimal resolution X_{G} of A / G is birational to the minimal resolution of $\operatorname{Km}(A) / Q$, where $Q=G /\left\langle\alpha_{4}^{2}\right\rangle$. Since the minimal resolution of A / G is a K 3 surface, and birational K3 surfaces are isomorphic, we conclude that the minimal model of A / G is the minimal model of $\operatorname{Km}(A) / Q$. We recall that $\operatorname{Km}(A)$ is a $K 3$ surface and $Q=(\mathbb{Z} / 2 \mathbb{Z})^{2}$ acts on $\operatorname{Km}(A)$ preserving the symplectic structure (indeed the quotient has the induced symplectic structure). The action of the group $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ on a K 3 surface is very well known (see [N3, Section 5]). Each copy of $\mathbb{Z} / 2 \mathbb{Z}$ in $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ stabilizes exactly eight points and there are no points fixed by the full group. So there are 24 points with nontrivial stabilizer in $\operatorname{Km}(A)$ and then in the quotient $\operatorname{Km}(A) / Q$ we have twelve singular points, each of them of type A_{1}. This can be also checked by hand, considering the action of Q over the curves $K_{(p, q)}$. By Tables 1 and 2, G has no points with a nontrivial stabilizer outside the set of the 2-torsion points A [2]. So the points with a nontrivial stabilizer for Q on $\operatorname{Km}(A)$ are all contained in the curves $K_{(p, q)}$.

If the point $(p, q) \in A$ is fixed by G, then $Q \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}$ preserves the curve $K_{(p, q)}$, which is a copy of \mathbb{P}^{1}. Hence, Q has six points with nontrivial stabilizer on $K_{(p, q)}$. So in $\operatorname{Km}(A) / Q$ there are three singular points on the image of $K_{(p, q)}$. Hence on X_{G} there

Points in the same orbit	Stabilizer
$(0,0)$	$\mathbb{D}_{8}=\left\langle\alpha_{4}, \beta\right\rangle$
$\left(\frac{1+i}{2}, \frac{1+i}{2}\right)$	$\mathbb{D}_{8}=\left\langle\alpha_{4}, \beta\right\rangle$
$\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{i}{2}, \frac{i}{2}\right)$	$\mathbb{Z} / 4 \mathbb{Z}=\langle\beta\rangle$
$\left(0, \frac{1+i}{2}\right),\left(\frac{1+i}{2}, 0\right)$	$\mathbb{Z} / 4 \mathbb{Z}=\left\langle\alpha_{4}\right\rangle$
$\left(\frac{1}{2}, \frac{i}{2}\right),\left(\frac{i}{2}, \frac{1}{2}\right)$	$\mathbb{Z} / 4 \mathbb{Z}=\left\langle\alpha_{4} \circ \beta\right\rangle$
$\left(\frac{1}{2}, 0\right),\left(\frac{i}{2}, 0\right),\left(0, \frac{1}{2}\right),\left(0, \frac{i}{2}\right)$	$\mathbb{Z} / 2 \mathbb{Z}=\left\langle\alpha_{4}^{2}\right\rangle=\left\langle\beta^{2}\right\rangle$
$\left(\frac{1+i}{2}, \frac{1}{2}\right),\left(\frac{1+i}{2}, \frac{i}{2}\right),\left(\frac{1}{2}, \frac{1+i}{2}\right),\left(\frac{i}{2}, \frac{1+i}{2}\right)$	$\mathbb{Z} / 2 \mathbb{Z}=\left\langle\alpha_{4}^{2}\right\rangle=\left\langle\beta^{2}\right\rangle$

Table 1: Points of A with nontrivial stabilizer for \mathbb{D}_{8}

Points in the same orbit	Stabilizer
$(0,0)$	$\mathbb{D}_{8}^{\prime}=\left\langle\alpha_{4}, \beta\right\rangle$
$\left(\frac{1+i}{2}, 0\right)$	$\mathbb{D}_{8}^{\prime}=\left\langle\alpha_{4}, \beta\right\rangle$
$\left(\frac{i}{2}, \frac{i}{2}\right)$	$\mathbb{D}_{8}^{\prime}=\left\langle\alpha_{4}, \beta\right\rangle$
$\left(\frac{1}{2}, \frac{i}{2}\right)$	$\mathbb{D}_{8}^{\prime}=\left\langle\alpha_{4}, \beta\right\rangle$
$\left(\frac{1}{2}, 0\right),\left(\frac{i}{2}, 0\right),\left(0, \frac{i}{2}\right),\left(\frac{1+i}{2}, \frac{i}{2}\right)$	$\mathbb{Z} / 2 \mathbb{Z}=\left\langle\alpha_{4}^{2}\right\rangle=\left\langle\beta^{2}\right\rangle$
$\left(\frac{1+i}{4}, \frac{1+i}{4}\right),\left(\frac{1-i}{4}, \frac{i-1}{4}\right),\left(\frac{i-1}{4}, \frac{i-1}{4}\right),\left(\frac{-1-i}{4}, \frac{i+1}{4}\right)$	$\mathbb{Z} / 2 \mathbb{Z}=\left\langle\alpha_{4}^{2}\right\rangle=\left\langle\beta^{2}\right\rangle$
$\left(\frac{1+i}{4}, \frac{i-1}{4}\right),\left(\frac{1-i}{4}, \frac{i+1}{4}\right),\left(\frac{i-1}{4}, \frac{i+1}{4}\right),\left(\frac{-1-i}{4}, \frac{i-1}{4}\right)$	$\mathbb{Z} / 2 \mathbb{Z}=\left\langle\alpha_{4}^{2}\right\rangle=\left\langle\beta^{2}\right\rangle$

Table 2: Points of A^{\prime} with nontrivial stabilizer for \mathbb{D}_{8}^{\prime}
are three rational curves that intersect the image of $K_{(p, q)}$ (arising from the desingularization of these points). We call these curves $K_{(p, q)}^{(i)}, i=1,2,3$ and let $K_{(p, q)}^{(0)}$ be the strict transform of the image of $K_{(p, q)}$ under the quotient map $\operatorname{Km}(A) \rightarrow \operatorname{Km}(A) / Q$. The curves $K_{(p, q)}^{(i)}, i=0,1,2,3$ generate a copy of the lattice D_{4} in $\operatorname{NS}\left(X_{G}\right)$.

If the point $(p, q) \in A$ has the group $\mathbb{Z} / 4 \mathbb{Z} \subset G$ as stabilizer, then there is another point $\left(p^{\prime}, q^{\prime}\right)$ in its orbit. The quotient group Q switches the curves $K_{(p, q)}$ and $K_{\left(p^{\prime}, q^{\prime}\right)}$ and has four points with nontrivial stabilizer in $K_{(p, q)} \cup K_{\left(p^{\prime} j^{\prime}\right)}$ (two on each curve). So on the quotient surface $\operatorname{Km}(A) / Q$ there is a curve $K_{(p, q)}^{(0)}$ which is the common image of $K_{(p, q)}$ and of $K_{\left(p^{\prime}, q^{\prime}\right)}$, and there are two singular points on such a curve. We denote by $K_{(p, q)}^{(1)}$ and $K_{(p, q)}^{(2)}$ the curves in X_{G} arising from the desingularization of these two singular points. The curves $K_{(p, q)}^{(i)}, i=0,1,2$ generate a copy of A_{3} in $N S\left(X_{G}\right)$ (here, with an abuse of notation, we denote by $K_{(p, q)}^{(0)}$ both a curve on $\operatorname{Km}(A) / Q$ and its strict transform on $\left.X_{G}\right)$.

Figure 1: Curves of $F_{\mathbb{D}_{8}}$ on $X_{\mathbb{D}_{8}}$

Figure 2: Curves of $F_{\mathbb{D}_{8}^{\prime}}$ on $X_{\mathbb{D}_{8}^{\prime}}$

If the point $(p, q) \in A$ has the group $\mathbb{Z} / 2 \mathbb{Z} \subset G$ as stabilizer, it is generated by α_{4}^{2} and in the same orbit of (p, q) there are the other three points $\left(p^{\prime}, q^{\prime}\right),\left(p^{\prime \prime}, q^{\prime \prime}\right)$, ($p^{\prime \prime \prime}, q^{\prime \prime \prime}$). The group Q permutes the curves

$$
K_{(p, q)}, \quad K_{\left(p^{\prime}, q^{\prime}\right)}, \quad K_{\left(p^{\prime \prime}, q^{\prime \prime}\right)}, \quad K_{\left(p^{\prime \prime \prime}, q^{\prime \prime \prime}\right)}
$$

in $\operatorname{Km}(A)$. So their image in X_{G} is a unique curve $K_{(p, q)}^{(0)}$.
The curves arising from the desingularization of A / \mathbb{D}_{8} (resp. $A^{\prime} / \mathbb{D}_{8}^{\prime}$) are represented in Figure 1 (resp. Figure 2).

4.2.2 The Lattice $K_{\mathbb{D}_{8}}$

Let us now fix a specific action of G. In particular, let the Abelian surface be A (e.g., $A \simeq E_{i} \times E_{i}$) and so $G \subset \operatorname{Aut}(A)$ is the group \mathbb{D}_{8}. In this case the lattice $F_{\mathbb{D}_{8}}$ is isometric to $D_{4}^{2} \oplus A_{3}^{3} \oplus A_{1}^{2}$; see Table 2. Its discriminant group is $(\mathbb{Z} / 2 \mathbb{Z})^{6} \times(\mathbb{Z} / 4 \mathbb{Z})^{3}$ and is
generated by the following classes:

$$
\begin{array}{rlrl}
d_{1} & :=\frac{1}{2}\left(K_{(0,0)}^{(1)}+K_{(0,0)}^{(2)}\right), & d_{2}:=\frac{1}{2}\left(K_{(0,0)}^{(1)}+K_{(0,0)}^{(3)}\right), \\
d_{3} & :=\frac{1}{2}\left(K_{\left(\frac{1+i}{2}, \frac{1+i}{2}\right)}^{(1)}+K_{\left(\frac{1+i}{2}, \frac{1+i}{2}\right)}^{(2)}\right), & d_{4}:=\frac{1}{2}\left(K_{\left(\frac{1+i}{2}, \frac{1+i}{2}\right)}^{(1)}+K_{\left(\frac{1+i}{2}, \frac{1+i}{2}\right)}^{(3)}\right), \\
d_{5}:=\frac{1}{2} K_{\left(\frac{1}{2}, 0\right)}^{(0)}, & d_{6}:=\frac{1}{2} K_{\left(\frac{1+i}{2}, \frac{1}{2}\right)}^{(0)}, \\
d_{7}:=\frac{1}{4}\left(K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(1)}+2 K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(0)}+3 K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(2)}\right), & d_{8}:=\frac{1}{4}\left(K_{\left(0, \frac{1+i}{2}\right)}^{(1)}+2 K_{\left(0, \frac{1+i}{2}\right)}^{(0)}+3 K_{\left(0, \frac{1+i}{2}\right)}^{(2)}\right), \\
d_{9}:=\frac{1}{4}\left(K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(1)}+2 K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(0)}+3 K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(2)}\right) . & &
\end{array}
$$

The set of twelve curves

$$
\mathcal{S}:=\left\{K_{(0,0)}^{(j)}, K_{\left(\frac{1+i}{2}, \frac{1+i}{2}\right)}^{(j)}, K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(k)}, K_{\left(0, \frac{1+i}{2}\right)}^{(k)}, K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(k)}\right\},
$$

$j=1,2,3, k=1,2$ arises from the desingularization of the quotient of a K3 surface (the surface $\operatorname{Km}(A))$ by the group $(\mathbb{Z} / 2 \mathbb{Z})^{2}$. By [N3, Section 6 , case 2 a), equation (6.17)], \mathcal{S} contains two independent subsets of eight curves that are 2-divisible. Indeed the two classes

$$
v_{1}:=d_{1}+d_{3}+2 d_{7}+2 d_{8}, \quad v_{2}:=d_{2}+d_{4}+2 d_{8}+2 d_{9}
$$

are contained in $N S\left(X_{G}\right)$. Moreover, the set $\mathcal{S} \cup\left\{K_{\left(\frac{1+i}{2}, 0\right)}, K_{\left(\frac{1+i}{2}, \frac{1}{2}\right)}\right\}$ forms a set of fourteen disjoint rational curves contained in the curves of $F_{\mathbb{D}_{s}}$ (this set consists of the vertical curves in Figure 1). By Proposition 2.9, the minimal primitive sublattice of the Néron-Severi group that contains these fourteen curves is spanned by the curves and by three other divisible classes. So there is another divisible class contained in $N S\left(X_{G}\right)$, namely

$$
v_{3}:=d_{1}+d_{3}+2 d_{9}+d_{5}+d_{6} .
$$

Let us denote by $L_{\mathbb{D}_{8}}$ the lattice spanned by $F_{\mathbb{D}_{8}}$ and the classes v_{1}, v_{2}, v_{3}. Its discriminant group is $(\mathbb{Z} / 4 \mathbb{Z})^{3}$ and is generated by:

$$
\begin{aligned}
\delta_{1} & :=d_{4}+d_{7}=\frac{1}{4}\left(2 K_{\left(\frac{1+i}{2}, \frac{1+i}{2}\right)}^{(1)}+2 K_{\left(\frac{1+i}{2}, \frac{1+i}{2}\right)}^{(2)}+K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(1)}+2 K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(0)}+3 K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(2)}\right), \\
\delta_{2} & :=d_{3}+d_{4}+d_{8}=\frac{1}{4}\left(2 K_{\left(\frac{1+i}{2}, \frac{1+i}{2}\right)}^{(2)}+2 K_{\left(\frac{1+i}{2}, \frac{1+i}{2}\right)}^{(3)}+K_{\left(0, \frac{1+i}{2}\right)}^{(1)}+2 K_{\left(0, \frac{1+i}{2}\right)}^{(0)}+3 K_{\left(0, \frac{1+i}{2}\right)}^{(2)}\right), \\
\delta_{3} & :=d_{3}+d_{5}+d_{9} \\
& =\frac{1}{4}\left(2 K_{\left(\frac{1+i}{2}, \frac{1+i}{2}\right)}^{(1)}+2 K_{\left(\frac{1+i}{2}, \frac{1+i}{2}\right)}^{(2)}+2 K_{\left(\frac{1}{2}, 0\right)}+K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(1)}+2 K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(0)}+3 K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(2)}\right) .
\end{aligned}
$$

There are two possibilities, either $K_{\mathbb{D}_{8}} \simeq L_{\mathbb{D}_{8}}$ or $K_{\mathbb{D}_{8}}$ is an overlattice of $L_{\mathbb{D}_{8}}$ of finite index; see Section 2.1. In the latter case $K_{\mathbb{D}_{3}}$ contains an element w that is nontrivial in the discriminant group of $L_{\mathbb{D}_{8}}$. So $w=\sum_{i=1}^{3} \alpha_{i} \delta_{i}, \alpha_{i} \in \mathbb{Z}$ and $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \not \equiv(0,0,0)$ $\bmod 4$. If $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \equiv(2,2,2) \bmod 4$, let $z:=w$; otherwise, let $z:=2 w$. The element $z \in K_{\mathbb{D}_{8}}$ consists of the sum of certain disjoint rational curves divided by 2. These curves are chosen in

$$
\left\{K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(1)}, K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(2)}, K_{\left(0, \frac{1+i}{2}\right)}^{(1)}, K_{\left(0, \frac{1+i}{2}\right)}^{(2)}, K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(1)}, K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(2)}\right\}
$$

(which are the ones which appear in δ_{i} with an odd coefficient). By Proposition 2.8 a set of at most six disjoint rational curves cannot be divisible by 2 , so w cannot exist. We conclude that $L_{\mathbb{D}_{8}} \simeq K_{\mathbb{D}_{8}}$, and it is generated by the generators of $F_{\mathbb{D}_{8}}$ and by $\left\{v_{1}, v_{2}, v_{3}\right\}$.

This result agrees with the one given in [W, Proposition 2.1].

4.2.3 The Lattice $K_{\mathbb{D}_{8}^{\prime}}$

We now consider the Abelian surface A^{\prime}, so $G \subset \operatorname{Aut}\left(A^{\prime}\right)$ is \mathbb{D}_{8}^{\prime}. In this case, $F_{\mathbb{D}_{8}^{\prime}}$ is $D_{4}^{4} \oplus A_{1}^{3}$. Its discriminant group is $(\mathbb{Z} / 2 \mathbb{Z})^{11}$ and is generated by

$$
\begin{array}{ll}
d_{1}^{\prime}:=\frac{1}{2}\left(K_{(0,0)}^{(1)}+K_{(0,0)}^{(2)}\right), & d_{2}^{\prime}:=\frac{1}{2}\left(K_{(0,0)}^{(1)}+K_{(0,0)}^{(3)}\right), \\
d_{3}^{\prime}:=\frac{1}{2}\left(K_{\left(\frac{1+i}{2}, 0\right)}^{(1)}+K_{\left(\frac{1+i}{2}, 0\right)}^{(2)}\right), & d_{4}^{\prime}:=\frac{1}{2}\left(K_{\left(\frac{1+i}{2}, 0\right)}^{(1)}+K_{\left(\frac{1+i}{2}, 0\right)}^{(3)}\right), \\
d_{5}^{\prime}:=\frac{1}{2}\left(K_{\left(\frac{i}{2}, \frac{i}{2}\right)}^{(1)}+K_{\left(\frac{i}{2}, \frac{i}{2}\right)}^{(2)}\right), & d_{6}^{\prime}:=\frac{1}{2}\left(K_{\left(\frac{i}{2}, \frac{i}{2}\right)}^{(1)}+K_{\left(\frac{i}{2}, \frac{i}{2}\right)}^{(3)}\right), \\
d_{7}^{\prime}:=\frac{1}{2}\left(K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(1)}+K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(2)}\right), & d_{8}^{\prime}:=\frac{1}{2}\left(K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(1)}+K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(3)}\right), \\
d_{9}^{\prime}:=\frac{1}{2} K_{\left(\frac{1}{2}, 0\right)}, & d_{10}^{\prime}:=\frac{1}{2} K_{\left(\frac{1+i}{4}, \frac{1+i}{4}\right)}, \\
d_{11}^{\prime}:=\frac{1}{2} K_{\left(\frac{1+i}{2}, \frac{i-1}{2}\right)}^{(1)} . &
\end{array}
$$

The set of twelve curves

$$
\mathcal{S}:=\left\{K_{(0,0)}^{(j)}, K_{\left(\frac{1+i}{2}, 0\right)}^{(j)}, K_{\left(\frac{i}{2}, \frac{i}{2}\right)}^{(j)}, K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(j)}\right\}, \quad j=1,2,3
$$

arises from the desingularization of the quotient of a K 3 surface (the surface $\operatorname{Km}\left(A^{\prime}\right)$) by the group $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ (i.e., the group $\left.Q:=G /\left\langle\alpha_{4}^{2}\right\rangle\right)$ so, by $[\mathrm{N} 3$, Section 6, case $2 a$), equation (6.17)], there are two divisible classes whose curves are in \mathcal{S}. Hence,

$$
\begin{equation*}
v_{1}^{\prime}:=d_{1}^{\prime}+d_{3}^{\prime}+d_{5}^{\prime}+d_{7}^{\prime}, \quad v_{2}^{\prime}:=d_{2}^{\prime}+d_{4}^{\prime}+d_{6}^{\prime}+d_{8}^{\prime} \tag{4.1}
\end{equation*}
$$

are contained in $N S\left(X_{G}\right)$. Moreover, in the lattice $F_{\mathbb{D}_{8}^{\prime}}$ it is easy to identify a set of fifteen disjoint rational curves (the vertical ones in Figure 2), which contains the set \mathcal{S}. By Proposition 2.9 the minimal primitive sublattice of the Néron-Severi group which contains these curves is spanned by the curves and by four other divisible classes. Two of these divisible classes are v_{1}^{\prime} and v_{2}^{\prime}; the others are

$$
v_{3}^{\prime}:=d_{1}^{\prime}+d_{3}^{\prime}+d_{4}^{\prime}+d_{6}^{\prime}+d_{9}^{\prime}+d_{10}^{\prime}, \quad v_{4}^{\prime}:=d_{1}^{\prime}+d_{4}^{\prime}+d_{7}^{\prime}+d_{8}^{\prime}+d_{9}^{\prime}+d_{11}^{\prime}
$$

These four divisible classes are also contained in $K_{\mathbb{D}_{8}^{\prime}}$. Let us denote by $L_{\mathbb{D}_{8}^{\prime}}$ the lattice spanned by $F_{\mathbb{D}_{8}^{\prime}}$ and by the classes $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, v_{4}^{\prime}$. Its discriminant group is $(\mathbb{Z} / 2 \mathbb{Z})^{3}$ and is generated by

$$
\delta_{1}^{\prime}:=d_{2}^{\prime}+d_{3}^{\prime}+d_{4}^{\prime}+d_{5}^{\prime}, \quad \delta_{2}^{\prime}:=d_{3}^{\prime}+d_{4}^{\prime}+d_{6}^{\prime}+d_{7}^{\prime}, \quad \delta_{3}^{\prime}:=d_{4}^{\prime}+d_{5}^{\prime}+d_{6}^{\prime}+d_{7}^{\prime}+d_{11}^{\prime}
$$

If $K_{\mathbb{D}_{8}^{\prime}}$ does not coincide with $L_{\mathbb{D}_{8}^{\prime}}$, then there is a vector w that is nontrivial in the discriminant group of $L_{\mathbb{D}_{8}^{\prime}}$, and is not contained in $K_{\mathbb{D}_{8}^{\prime}}$, by Section 2.1. The curves that appear with a nontrivial coefficient in $\delta_{1}^{\prime}, \delta_{2}^{\prime}$, and δ_{3}^{\prime} are all contained in the set of
fifteen disjoint rational curves considered above. So if a vector as w exists, it gives an overlattice of the lattice spanned by fifteen disjoint rational curves with index greater than 2^{4} and contained in the Néron-Severi group of a K3 surface, but this is impossible. Indeed, if we construct an overlattice of index 2^{4} of A_{1}^{15}, every 2-divisible set contains exactly eight disjoint rational curves by Proposition 2.8, and two divisible sets have exactly four curves in common. Let us denote by e_{i} the fifteen classes generating A_{1}^{15}. The first divisible set contains eight classes, so up to permutation of the indices we can assume that it is $\mathcal{S}_{1}:=\left\{e_{1}, \ldots, e_{8}\right\}$. The second one contains eight classes, four of them in common with \mathcal{S}_{1}, so we can assume that it is $\mathcal{S}_{2}:=\left\{e_{1}, \ldots, e_{4}, e_{9}, \ldots, e_{12}\right\}$. Similarly, the third can be chosen to be $\mathcal{S}_{3}:=\left\{e_{1}, e_{2}, e_{5}, e_{6}, e_{9}, e_{10}, e_{13}, e_{14}\right\}$. This forces the fourth to be $\mathcal{S}_{4}:=\left\{e_{1}, e_{3}, e_{5}, e_{7}, e_{9}, e_{11}, e_{13}, e_{15}\right\}$. But now it is not possible to find another subset of $\left\{e_{1}, \ldots, e_{15}\right\}$ that contains eight elements and such that its intersection with each set \mathcal{S}_{i} contains exactly four elements.

We conclude that $L_{\mathbb{D}_{8}^{\prime}}$ coincides with $K_{\mathbb{D}_{8}^{\prime}}$, which is generated by the vectors in $F_{\mathbb{D}_{8}^{\prime}}$ and by the four vectors $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}$ and v_{4}^{\prime}.

This result is different to the one given in [W]. Indeed, the lattice of Kummer type $\Pi_{\mathbb{D}_{8}^{\prime}}$ described in [W, Proposition 2.1] contains a vector that consists of six disjoint rational curves divided by 2 , which is not possible by Proposition 2.8.

4.2.4 The Lattice $K_{\mathbb{T}}$

Let us now consider the torus A^{\prime}. There is an extra automorphism, which is not contained in \mathbb{D}_{8}^{\prime} and acts on A^{\prime} : the automorphism

$$
\gamma:\left(z_{1}, z_{2}\right) \longrightarrow\left(\frac{i-1}{2}\left(z_{1}-z_{2}\right), \frac{-i-1}{2}\left(z_{1}+z_{2}\right)\right) .
$$

The automorphism γ has order three and the group $\left\langle\alpha_{4}, \beta, \gamma\right\rangle$ is the binary tetrahedral group \mathbb{T}. It is the semidirect product $\langle\gamma\rangle \propto \mathbb{D}_{8}^{\prime}$. In particular \mathbb{D}_{8}^{\prime} is a normal subgroup of \mathbb{T} hence A^{\prime} / \mathbb{T} is birational to $\left(A^{\prime} / \mathbb{D}_{8}^{\prime}\right) /\langle\bar{\gamma}\rangle$, where $\bar{\gamma}$ is the image of γ under the quotient map $\mathbb{T} \rightarrow \mathbb{T} / \mathbb{D}_{8}^{\prime}$. Hence, the K3 surface $X_{\mathbb{D}_{8}^{\prime}}$, desingularization of $A^{\prime} / \mathbb{D}_{8}^{\prime}$, admits a symplectic automorphism, γ_{X}, of order 3 induced by $\bar{\gamma}$. The K3 surface $X_{\mathbb{T}}$, desingularization of A / \mathbb{T}, is then isomorphic to the K 3 which is the desingularization of $X_{\mathbb{D}_{8}^{\prime}} / \gamma_{X}$. In order to construct $F_{\mathbb{T}}$, we consider the action of γ_{X} on the curves of $F_{\mathbb{D}_{8}^{\prime}}$, see Figure 2. Since

$$
\gamma\left(\left(\frac{1+i}{2}, 0\right)\right)=\left(\frac{1}{2}, \frac{i}{2}\right) \quad \text { and } \quad \gamma\left(\left(\frac{1}{2}, \frac{i}{2}\right)\right)=\left(\frac{i}{2}, \frac{i}{2}\right),
$$

the three copies of D_{4}, whose components are

$$
K_{\left(\frac{1+i}{2}, 0\right)}^{(j)}, \quad K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(j)}, \quad \text { and } \quad K_{\left(\frac{i}{2}, \frac{i}{2}\right)}^{(j)} \quad j=0,1,2,3
$$

are permuted by γ_{X}. Hence these three copies of D_{4} are identified on $X_{\mathbb{T}}$ and correspond to a unique copy of D_{4} on $X_{\mathbb{T}}$. The same happens to the three copies of A_{1}, which are permuted by γ_{X} and thus give a unique copy of A_{1} on $X_{\mathbb{T}}$. Since $(0,0)$ is a fixed point for γ, the automorphism γ_{X} preserves the set of curves $\left\{K_{(0,0)}^{(j)}\right\}$, $j=0,1,2,3$. Indeed γ_{X} preserves the curve $K_{(0,0)}^{(0)}$ and permutes the curves $K_{(0,0)}^{(j)}$, $j=1,2,3$. So it is not the identity on $K_{(0,0)}^{(0)}$ (since it moves the intersection points
among $K_{(0,0)}^{(0)}$ and $\left.K_{(0,0)}^{(j)}, j=1,2,3\right)$ and thus has two fixed point on it. On the quotient these two points correspond to two singularities of type A_{2}. This gives six curves on $X_{\mathbb{T}}$ (one is the image of $K_{(0,0)}^{(0)}$, one is the common image of $K_{(0,0)}^{(j)}$ for $j=1,2,3$, four come from the desingularization of the two singular points of type A_{2}) and their dual graph is a copy of E_{6} (the image of $K_{(0,0)}^{(0)}$ intersects the image of $K_{(0,0)}^{(j)}$ and one curve of each copy of the two A_{2} arising from the desingularization).

We recall that a symplectic automorphism of order three on a K3 surface has exactly six fixed points. Since γ_{X} fixes two points on $K_{(0,0)}^{(0)}$ and has no fixed points on the other curves of $F_{\mathbb{D}_{8}^{\prime}}$, it necessarily fixes four points in $X_{\mathbb{D}_{8}^{\prime}}$ outside the curves in $F_{\mathbb{D}_{8}^{\prime}}$. Hence the desingularization $X_{\mathbb{T}}$ introduces four disjoint A_{2}-configurations. Thus, the lattice $F_{\mathbb{T}}$ is isometric to $E_{6} \oplus D_{4} \oplus A_{1} \oplus A_{2}^{4}$. We fix the following notation:

where $\left\{e_{j}\right\}$ forms a basis of E_{6} and $\left\{f_{j}\right\}$ forms a basis of D_{4}. We denote by $a^{(1)}$ a generator of A_{1} and by $a_{j}^{(h)}, j=1,2, h=1,2,3,4$, the basis of the h-th copy of A_{2}. A basis for the discriminant group of $F_{\mathbb{T}}$ is given by

$$
\begin{array}{ll}
d_{1}:=\frac{1}{3}\left(e_{2}+2 e_{3}+e_{4}+2 e_{5}\right)+\frac{1}{2}\left(f_{1}+f_{2}\right), & d_{2}:=\frac{1}{3}\left(a_{1}^{(2)}+2 a_{2}^{(2)}\right)+\frac{1}{2}\left(f_{1}+f_{3}\right), \\
d_{3}:=\frac{1}{3}\left(a_{1}^{(3)}+2 a_{2}^{(3)}\right)+\frac{1}{2} a^{(1)}, & d_{4}:=\frac{1}{3}\left(a_{1}^{(4)}+2 a_{2}^{(4)}\right), \\
d_{5}:=\frac{1}{3}\left(a_{1}^{(5)}+2 a_{2}^{(5)}\right) . &
\end{array}
$$

The curves $e_{2}, e_{3}, e_{4}, e_{5}, a_{1}^{(j)}, a_{2}^{(j)}, j=2,3,4,5$ are the curves arising from the resolution of the quotient $X_{\mathbb{D}_{s}^{\prime}} / \gamma_{X}$. So by Section 2.2 (see also Proposition 2.8), the class

$$
\left(e_{2}+2 e_{3}+e_{4}+2 e_{5}+\sum_{j=1}^{4}\left(a_{1}^{j}+2 a_{2}^{j}\right)\right) / 3
$$

is contained in $N S\left(X_{\mathbb{T}}\right)$ and hence also in $K_{\mathbb{T}}$ (which is the minimal primitive sublattice of $\operatorname{NS}\left(X_{\mathbb{T}}\right)$ which contains the curves $\left.e_{h}, f_{j}, a_{r}^{(s)}\right)$. So the vector $v:=4 d_{1}+$ $4 d_{2}+4 d_{3}+d_{4}+d_{5} \bmod F_{\mathbb{T}}$ is contained in $K_{\mathbb{T}}$. Let us denote by $L_{\mathbb{T}}$ the lattice generated by the curves of $F_{\mathbb{T}}$ and v. Its discriminant group is generated by $\delta_{1}:=d_{1}+d_{2}$, $\delta_{2}:=d_{1}+d_{3}, \delta_{3}:=d_{1}+d_{4}$. If $L_{\mathbb{T}} \neq K_{\mathbb{T}}$, then there exists a vector $w \in K_{\mathbb{T}}$, which is a nontrivial element of the discriminant group of $L_{\mathbb{T}}$, which is $(\mathbb{Z} / 6 \mathbb{Z})^{3}$. So either w or a multiple of w generates either $\mathbb{Z} / 3 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z}$ in the discriminant group of $L_{\mathbb{T}}$. Every linear combination of δ_{1}, δ_{2} and δ_{3} which generates $\mathbb{Z} / 2 \mathbb{Z}$ is the sum of at most four disjoint rational curves divided by 2 , and so cannot be a class in $N S\left(X_{\mathbb{T}}\right)$, by Proposition 2.8. Similarly, every linear combination of δ_{1}, δ_{2}, and δ_{3} that generates $\mathbb{Z} / 3 \mathbb{Z}$ contains at most five disjoint A_{2}-configurations of rational curves. By Proposition 2.8 it is impossible to construct a 3-divisible class with fewer than six disjoint
A_{2}-configurations. We conclude that $K_{\mathbb{T}}=L_{\mathbb{T}}$ is generated by v and by the curves in $F_{\mathbb{T}}$.

This result agrees with the one given in [W].

4.2.5 The Lattice $K_{\mathbb{D}_{12}}$

Let A be the Abelian surface $A:=E_{\zeta_{3}} \times E_{\zeta_{3}}$, where ζ_{3} is a primtive third root of unity and $E_{\zeta_{3}}$ is the elliptic curve with j-invariant 0 . Let us now consider the action of the group \mathbb{D}_{12}, which is algebraic on A and is generated by the two automorphisms $\alpha_{6}:\left(z_{1}, z_{2}\right) \mapsto\left(\zeta_{6} z_{1}, \zeta_{6}^{5} z_{2}\right)$ (where ζ_{6} is a 6-th primitive root of unity), and $\beta:\left(z_{1}, z_{2}\right) \mapsto\left(-z_{2}, z_{1}\right)$. We observe that there are the relations $\alpha_{6}^{3}=\beta^{2}, \alpha_{6}^{6}=\beta^{4}=1$, $\alpha_{6}^{-1} \beta \alpha_{6}=\beta^{-1}$, so α_{6} and β generate $\mathbb{D}_{12} \subset \operatorname{Aut}(A)$. The points of A with nontrivial stabilizer for \mathbb{D}_{12} are those in Table 3:

points in the same orbit	stabilizer
$(0,0)$	$\mathbb{D}_{12}=\left\langle\alpha_{6}, \beta\right\rangle$
$\left(0, \frac{1-\zeta_{3}}{3}\right),\left(\frac{-1+\zeta_{3}}{3}, 0\right),\left(\frac{1-\zeta_{3}}{3}, 0\right),\left(0, \frac{-1+\zeta_{3}}{3}\right)$	$\mathbb{Z} / 3 \mathbb{Z}=\left\langle\alpha_{6}^{2}\right\rangle$
$\left(\frac{1-\zeta_{3}}{3}, \frac{1-\zeta_{3}}{3}\right),\left(\frac{-1+\zeta_{3}}{3}, \frac{1-\zeta_{3}}{3}\right),\left(\frac{1-\zeta_{3}}{3}, \frac{-1+\zeta_{3}}{3}\right),\left(\frac{-1+\zeta_{3}}{3}, \frac{-1+\zeta_{3}}{3}\right)$	$\mathbb{Z} / 3 \mathbb{Z}=\left\langle\alpha_{6}^{2}\right\rangle$
$\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{\zeta_{3}}{2}, \frac{1+\zeta_{3}}{2}\right),\left(\frac{1+\zeta_{3}}{2}, \frac{\zeta_{3}}{2}\right)$	$\mathbb{Z} / 4 \mathbb{Z}=\langle\beta\rangle$
$\left(\frac{\zeta_{3}}{2}, \frac{\zeta_{3}}{2}\right),\left(\frac{1+\zeta_{3}}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1+\zeta_{3}}{2}\right)$	$\mathbb{Z} / 4 \mathbb{Z}=\langle\beta\rangle$
$\left(\frac{1+\zeta_{3}}{2}, \frac{1+\zeta_{3}}{2}\right),\left(\frac{1}{2}, \frac{\zeta_{3}}{2}\right),\left(\frac{\zeta_{3}}{2}, \frac{1}{2}\right)$	$\mathbb{Z} / 4 \mathbb{Z}=\langle\beta\rangle$
$\left(0, \frac{1}{2}\right),\left(0, \frac{\zeta_{3}}{2}\right),\left(0, \frac{1+\zeta_{3}}{2}\right),\left(\frac{1}{2}, 0\right),\left(\frac{\zeta_{3}}{2}, 0\right),\left(\frac{1+\zeta_{3}}{2}, 0\right)$	$\mathbb{Z} / 2 \mathbb{Z}=\left\langle\alpha_{6}^{3}\right\rangle$

Table 3: Points of A with nontrivial stabilizer for \mathbb{D}_{12}

It follows that $F_{\mathbb{D}_{12}}$ is isometric to $D_{5} \oplus A_{2}^{2} \oplus A_{3}^{3} \oplus A_{1}$.
First, we consider the quotient by $\left\langle\alpha_{6}^{2}\right\rangle$, which is a normal subgroup of \mathbb{D}_{12}. The quotient $A /\left\langle\alpha_{6}^{2}\right\rangle$ is a surface with nine singularities of type A_{2}, in the image of the points p contained in the set

$$
\begin{aligned}
\mathcal{P}: & :\left\{(0,0),\left(0, \frac{1-\zeta_{3}}{3}\right),\left(\frac{-1+\zeta_{3}}{3}, 0\right),\left(\frac{1-\zeta_{3}}{3}, 0\right),\left(0, \frac{-1+\zeta_{3}}{3}\right),\right. \\
& \left.\left(\frac{1-\zeta_{3}}{3}, \frac{1-\zeta_{3}}{3}\right),\left(\frac{-1+\zeta_{3}}{3}, \frac{1-\zeta_{3}}{3}\right),\left(\frac{1-\zeta_{3}}{3}, \frac{-1+\zeta_{3}}{3}\right),\left(\frac{-1+\zeta_{3}}{3}, \frac{-1+\zeta_{3}}{3}\right)\right\} .
\end{aligned}
$$

This introduces eighteen curves on the K3 surface $\overline{A /\left\langle\alpha_{6}^{2}\right\rangle}$, which is the desingularization of $A /\left\langle\alpha_{6}^{2}\right\rangle$, namely the curves $K_{p}^{j}, p \in \mathcal{P}, j=1,2$, which desingularize the point $p \in \mathcal{P}$. The automorphism $\beta \in \operatorname{Aut}(A)$ induces an automorphism β^{\prime} on $\overline{A /\left\langle\alpha_{6}^{2}\right\rangle}$. Since β fixes $(0,0), \beta^{\prime}$ preserves the set of curves $\left\{K_{(0,0)}^{(j)}\right\}, j=1,2$. The automorphism β^{\prime} fixes the intersection point $K_{(0,0)}^{(1)} \cap K_{(0,0)}^{(2)}$ and switches the curves $K_{(0,0)}^{(1)}$ and $K_{(0,0)}^{(2)}$. The square $\left(\beta^{\prime}\right)^{2}$ preserves the curves $K_{(0,0)}^{(1)}$ and $K_{(0,0)}^{(2)}$ and fixes their intersection point and another point on each curve. The points in $\mathcal{P}-\{(0,0)\}$ have a trivial stabilizer with respect to the action of $\langle\beta\rangle$ on A, so the eight A_{2}-configurations generated

Figure 3: Curves of $F_{\mathbb{D}_{12}}$ on $X_{\mathbb{D}_{12}}$
by $K_{p}^{j}, p \in \mathcal{P}-\{(0,0)\}, j=1,2$, are moved by β^{\prime}. In particular, neither β^{\prime} or $\left(\beta^{\prime}\right)^{2}$ have fixed points on these curves. The automorphism β fixes other nine points of A (see Table 3), which correspond to three points on $\overline{A /\left\langle\alpha_{6}^{2}\right\rangle}-\left\{K_{p}^{j}\right\}$ (where $p \in \mathcal{P}, j=1,2$)
 other six points on A (see Table 3), which correspond to 2 points of $\overline{A /\left\langle\alpha_{\sigma}^{2}\right\rangle}-\left\{K_{p}^{(j)}\right\}$ (where $p \in \mathcal{P}, j=1,2$) and thus to one singular point of type A_{1} on $A /\left\langle\alpha_{6}^{2}\right\rangle / \beta^{\prime}$.

Hence in the desingularization of $\left(\overline{A /\left\langle\alpha_{6}^{2}\right\rangle}\right) / \beta^{\prime}$, which is isomorphic to $X_{\mathbb{D}_{12}}$, there are the following curves:

$$
K_{(0,0)}^{(h)} \quad h=0, \ldots, 4,
$$

which form a D_{5}; the curves

$$
K_{\left(0, \frac{1-\zeta_{3}}{3}\right)}^{(j)} \quad \text { and } \quad K_{\left(\frac{1-\zeta_{3}}{3}, \frac{1-\zeta_{3}}{3}\right)}^{(j)} \quad j=1,2
$$

which form two disjoint copies of A_{2} and that are image of the eight copies of A_{2} not preserved by β^{\prime}; the curves

$$
K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(j)}, \quad K_{\left(\frac{\zeta_{3}}{2}, \frac{\zeta_{3}}{2}\right)}^{(j)}, \quad K_{\left(\frac{1+\zeta_{3}}{2}, \frac{1+\zeta_{3}}{2}\right)}^{(j)} \quad j=1,2,3
$$

which form three disjoint copies of A_{3}, and the curve $K_{\left(0, \frac{1}{2}\right)}$, which is a copy of A_{1}.
The intersection properties of these curves are presented in Figure 3.

The discriminant group of $F_{\mathbb{D}_{12}}$ is $(\mathbb{Z} / 12 \mathbb{Z})^{2} \times(\mathbb{Z} / 4 \mathbb{Z})^{2} \times \mathbb{Z} / 2 \mathbb{Z}$, generated by

$$
\begin{aligned}
& d_{1}:=\frac{1}{4}\left(2 K_{(0,0)}^{(4)}+K_{(0,0)}^{(1)}+2 K_{(0,0)}^{(2)}+3 K_{(0,0)}^{(3)}\right), \\
& d_{2}:=\frac{1}{4}\left(K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(1)}+2 K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(2)}+3 K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(3)}\right)+\frac{1}{3}\left(K_{\left(0, \frac{1-\zeta_{3}}{3}\right)}^{(1)}+2 K_{\left(0, \frac{1-\zeta_{3}}{3}\right)}^{(2)}\right), \\
& d_{3}:=\frac{1}{4}\left(K_{\left(\frac{\zeta_{3}}{2}, \frac{\zeta_{3}}{2}\right)}^{(1)}+2 K_{\left(\frac{\xi_{2}}{2}, \frac{\zeta_{3}}{2}\right)}^{(2)}+3 K_{\left(\frac{\zeta_{3}}{2}, \frac{\zeta_{3}}{2}\right)}^{(3)}\right)+\frac{1}{3}\left(K_{\left(\frac{1-\zeta_{3}}{3}, \frac{1-\zeta_{3}}{3}\right)}^{(1)}+2 K_{\left(\frac{1-\zeta_{3}}{3}, \frac{1-\zeta_{3}}{3}\right)}^{(2)}\right), \\
& d_{4}:=\frac{1}{4}\left(K_{\left(\frac{1+\zeta_{3}}{2}, \frac{1+\zeta_{3}}{2}\right)}^{(1)}+2 K_{\left(\frac{1+\zeta_{3}}{2}, \frac{1+\zeta_{3}}{2}\right)}^{(2)}+3 K_{\left(\frac{1+\zeta_{3}}{2}, \frac{1+\zeta_{3}}{2}\right)}^{(3)}\right), \\
& d_{5}:=\frac{1}{2} K_{\left(0, \frac{1}{2}\right)} .
\end{aligned}
$$

The curves

$$
K_{(0,0)}^{(j)}, j=1,2,3,4,5, \quad K_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(h)} \quad K_{\left(\frac{\zeta_{3}}{2}, \frac{\zeta_{3}}{2}\right)}^{(h)}, \quad K_{\left(\frac{1+\zeta_{3}}{2}, \frac{1+\zeta_{3}}{2}\right)}^{(h)}, h=1,2,3, \quad \text { and } \quad K_{\left(0, \frac{1}{2}\right)}
$$

arise from the desingularization of the $\mathbb{Z} / 4 \mathbb{Z}$ quotient $\overline{A /\left\langle\alpha_{6}^{2}\right\rangle} \rightarrow\left(\overline{A /\left\langle\alpha_{6}^{2}\right\rangle}\right) / \beta^{\prime}$. So the class $v_{\mathbb{D}_{12}}:=d_{1}+9 d_{2}+9 d_{3}+d_{4}+d_{5}$ is contained in $N S\left(X_{\mathbb{D}_{12}}\right)$, because $X_{\mathbb{D}_{12}}$ is the resolution of $\overline{\left.A /\left\langle\alpha_{6}^{2}\right\rangle\right) / \beta^{\prime}}$.

Let us denote by $L_{\mathbb{D}_{12}}$ the lattice generated by the curves of $F_{\mathbb{D}_{12}}$ and by $v_{\mathbb{D}_{12}}$. The discriminant group of $L_{\mathbb{D}_{12}}$ is $(\mathbb{Z} / 12 \mathbb{Z})^{2} \times \mathbb{Z} / 2 \mathbb{Z}$ and is generated by the vectors $\delta_{1}:=$ $d_{1}+9 d_{2}, \delta_{2}:=d_{1}+9 d_{3}, \delta_{3}:=2 d_{1}+d_{5}$. Either $K_{\mathbb{D}_{12}}$ coincides with $L_{\mathbb{D}_{12}}$ or it is an overlattice of finite index of $L_{\mathbb{D}_{12}}$. In the latter case there would be a nontrivial vector w in the discriminant group of $L_{\mathbb{D}_{12}}$, which is contained in $K_{\mathbb{D}_{12}}$. Either w or a multiple of w generates either $\mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 3 \mathbb{Z}$ in the discriminant group. It is easy to check that there is no vector w as required, since it should correspond either to the sum of $n, n \leq 7$, disjoint rational curves divided by 2 or to the sum of m disjoint A_{2} configurations divided by 3 , with $m \leq 2$. By Proposition 2.8, these two possibilities are not acceptable, so $K_{\mathbb{D}_{12}}$ coincides with $L_{\mathbb{D}_{12}}$.

This result contradicts the one given in [W]. In our construction the lattice of Kummer type is generated by the classes of the curves arising from the desingularization of A / G and by a class 4 -divisible (i.e., the vector $v_{\mathbb{D}_{12}}$). In [W, Proposition 2.1] the lattice of Kummer type (Π_{12}, with the notation used in [W]), is claimed to be generated by the classes of the curves arising from the desingularization of A / G and by a class 2-divisible (and not 4-divisible). The discriminant group of the lattice $\Pi_{\mathbb{D}_{12}}$ described in $[\mathrm{W}]$ is $(\mathbb{Z} / 12 \mathbb{Z})^{2} \times(\mathbb{Z} / 2 \mathbb{Z})^{3}$. This group has five generators. Since the rank of $\Pi_{\mathbb{D}_{12}}$ is 19 and the rank of $\Lambda_{K 3}$ is 22 , this is impossible because of Proposition 2.3.

4.3 The Kummer Type Lattices

Here we collect the results obtained above and the known ones in order to give a description of all the lattices of Kummer type. In particular, we show that for all the lattices K_{G} of Kummer type, the roots of K_{G} coincide with the roots of F_{G}, which will be very useful later.

Proposition 4.3 (See [N1] for $G=\mathbb{Z} / 2 \mathbb{Z}$; [Be] for $G=\mathbb{Z} / n \mathbb{Z}, n=3,4$, 6 ; Section 4.2 and $[\mathrm{W}]$ for $\left.G=\mathbb{D}_{8}, \mathbb{D}_{8}^{\prime}, \mathbb{D}_{12}, \mathbb{T}\right)$.) Let A be an Abelian surface with an action of a finite group G that does not contain translations. Let X_{G} be the minimal model of A / G. If X_{G} is a K3 surface, then G is one of the following seven groups: $\mathbb{Z} / 2 \mathbb{Z}, \mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 4 \mathbb{Z}$, $\mathbb{Z} / 6 \mathbb{Z}, \mathbb{D}_{8}, \mathbb{D}_{12}, \mathbb{T}$. We recall that there are two different actions of the quaternion group, denoted by \mathbb{D}_{8} and \mathbb{D}_{8}^{\prime}.

Let us assume that X_{G} is a K3 surface (so G is one of the seven groups listed above). Let K_{i} be the curves on X_{G} arising by the resolution of the singularities of A / G. Then the lattice F_{G} spanned by the curves K_{i} is one of the following root lattices:

G	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 3 \mathbb{Z}$	$\mathbb{Z} / 4 \mathbb{Z}$	$\mathbb{Z} / 6 \mathbb{Z}$
F_{G}	A_{1}^{16}	A_{2}^{9}	$A_{3}^{4} \oplus A_{1}^{6}$	$A_{5} \oplus A_{2}^{4} \oplus A_{1}^{5}$

G	\mathbb{D}_{8}	\mathbb{D}_{8}^{\prime}	\mathbb{D}_{12}	\mathbb{T}
F_{G}	$D_{4}^{2} \oplus A_{3}^{3} \oplus A_{1}^{2}$	$D_{4}^{4} \oplus A_{1}^{3}$	$D_{5} \oplus A_{3}^{3} \oplus A_{2}^{2} \oplus A_{1}$	$E_{6} \oplus D_{4} \oplus A_{2}^{4} \oplus A_{1}$

Let K_{G} be the minimal primitive sublattice of $N S\left(X_{G}\right)$ containing the curves K_{i}, then K_{G} is an overlattice of finite index r_{G} of F_{G} with the following properties: The roots of

G	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 3 \mathbb{Z}$	$\mathbb{Z} / 4 \mathbb{Z}$	$\mathbb{Z} / 6 \mathbb{Z}$
r_{G}	2^{5}	3^{3}	2^{4}	6
$\operatorname{rank}\left(K_{G}\right)$	16	18	18	18
K_{G}^{\vee} / K_{G}	$(\mathbb{Z} / 2 \mathbb{Z})^{6}$	$(\mathbb{Z} / 3 \mathbb{Z})^{3}$	$(\mathbb{Z} / 4 \mathbb{Z})^{2} \times(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$(\mathbb{Z} / 6 \mathbb{Z})^{3} \times \mathbb{Z} / 2 \mathbb{Z}$

G	\mathbb{D}_{8}	\mathbb{D}_{8}^{\prime}	\mathbb{D}_{12}	\mathbb{T}
r_{G}	2^{3}	2^{4}	4	3
$\operatorname{rank}\left(K_{G}\right)$	19	19	19	19
$K_{G}^{\mathrm{V}} / K_{G}$	$(\mathbb{Z} / 4 \mathbb{Z})^{3}$	$(\mathbb{Z} / 2 \mathbb{Z})^{3}$	$\mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 12 \mathbb{Z})^{2}$	$(\mathbb{Z} / 6 \mathbb{Z})^{3}$

the lattice K_{G} coincide with the roots of the lattice F_{G} for all G.
By construction, K_{G} is a negative definite lattice primitively embedded in $\operatorname{NS}\left(X_{G}\right)$, and thus $\rho\left(X_{G}\right) \geq 1+\operatorname{rank}\left(K_{G}\right)$.

Proof The groups G that act on A in such a way that the resolution of A / G is a K3 surface are classified by [F, Lemma 3.3]. The properties of F_{G} and K_{G} are proved in [N1, Section 1] for $G=\mathbb{Z} / 2 \mathbb{Z}$; [Be, Section 1 and Theorem 2.5] for $G=\mathbb{Z} / n \mathbb{Z}$, $n=3,4,6$; in Section 4.2 and $\left[W\right.$, Proposition 2.1] for $G=\mathbb{D}_{8}, \mathbb{D}_{8}^{\prime}, \mathbb{D}_{12}, \mathbb{T}$. The unique observation that needs to be proved is that the root system of F_{G} coincides with the one of K_{G}. This was explicitly proved in [Be, Proposition 1.3] for $G=\mathbb{Z} / n \mathbb{Z}$, $n=3,4,6$. In Section 4.2 we described a basis for F_{G} and K_{G} if G is noncyclic, and in [N1] a basis for $K_{\mathbb{Z} / 2 \mathbb{Z}}$ is given. One can explicitly write down a Gram matrix for the lattice K_{G}. Since K_{G} is a negative definite lattice, the number of vectors with a given self intersection is finite and can be computed. In particular, one computes
the number of vectors of self-intersection -2 in K_{G} (for example, using the command ShortestVectors ($-K_{G}$) in Magma) and one compares it with the number of vectors of self-intersection -2 in F_{G}. They coincide for every group G in the list, and this concludes the proof.

4.4 The Main Results

The aim of this section is to present and to prove our main result (Theorem 4.4). One can deduce whether a K3 surface is the quotient of an Abelian surface by checking if a certain lattice is primitively embedded in its Néron-Severi group. This essentially implies that one can construct the moduli space of a K3 surface that is a desingularization of the quotient of an Abelian surface by a finite group as a moduli space of a lattice polarized K3 surfaces.

The other result of this section (Theorem 4.7) is that one can deduce whether a K3 surface is rationally G-covered by an Abelian surface by checking if a certain configuration of rational curves is present on the K3 surface.

Combinating these two results we deduce a synthetic description of the lattices of Kummer type as overlattices with certain properties of the lattices F_{G} (see Corollary 4.8).

Theorem 4.4 Let G be one of the groups $\mathbb{Z} / n \mathbb{Z}, n=2,3,4,6, \mathbb{D}_{8}, \mathbb{D}_{8}^{\prime}, \mathbb{D}_{12}$, and \mathbb{T}, and let K_{G} be the lattice of Kummer type defined above. A K3 surface is the minimal model of A / G for a certain Abelian surface A if and only if K_{G} is primitively embedded in $N S\left(X_{G}\right)$.

Proof One of the implications is trivial. If X_{G} is the desingularization of A / G, then $N S\left(X_{G}\right)$ contains the classes of the curves arising from the desingularization of A / G, so it contains the lattice F_{G}. By definition K_{G} is the minimal primitive sublattice of $N S\left(X_{G}\right)$ containing F_{G}, and so K_{G} is primitively embedded in $N S\left(X_{G}\right)$.

Let X_{G} be a K3 surface such that K_{G} is primitively embedded in $N S\left(X_{G}\right)$. We first prove our result in the case where $\rho\left(X_{G}\right)=1+\operatorname{rank}\left(K_{G}\right)$, i.e., where it is the minimal possible. Let us denote by h the generator of the 1-dimensional subspace of $N S\left(X_{G}\right)$ that is orthogonal to K_{G}, so $N S\left(X_{G}\right)$ is an overlattice of finite index of $\mathbb{Z} h \oplus K_{G}$. Up to the action of the Weyl group, we can assume that h is a pseudoample divisor on X_{G}. Since K_{G} is an overlattice of finite index of F_{G}, F_{G} is a root lattice, and the roots of F_{G} coincide with the roots of K_{G}, the assumptions of Proposition 3.2 (with $L:=K_{G}$ and $R:=F_{G}$) are satisfied. Hence we can assume that the classes generating F_{G} are supported on smooth irreducible rational curves. This fact suffices to reconstruct the surface A that is the minimal model of the G-cover of X_{G}. This is well known in the case where $G=\mathbb{Z} / 2 \mathbb{Z}$, see $[\mathrm{N} 1]$. The cases $G=\mathbb{Z} / 3 \mathbb{Z}$ and $G=\mathbb{Z} / 4 \mathbb{Z}$ are described in [Be, Sections (4.1) and (4.2)]. As an example, we describe how one can reconstruct A in the cases $G=\mathbb{Z} / 6 \mathbb{Z}, G=\mathbb{D}_{8}^{\prime}$, and $G=\mathbb{T}$.

Let us assume $G=\mathbb{Z} / 6 \mathbb{Z}$. Then $F_{G} \simeq A_{5} \oplus A_{2}^{4} \oplus A_{1}^{5}$ and K_{G} is obtained by adding to F_{G} the class

$$
v:=\frac{1}{6}\left(\sum_{j=1}^{5} j K_{1}^{(j)}\right)+\frac{1}{3} \sum_{i=2}^{5}\left(K_{i}^{(1)}+2 K_{i}^{(2)}\right)+\frac{1}{2}\left(\sum_{i=6}^{10} K_{i}^{(1)}\right),
$$

where $K_{1}^{(j)}, j=1, \ldots, 5$ is a basis of $A_{5}, K_{i}^{(j)}, j=1,2, i=2,3,4,5$ is a basis of the $(i-1)$-th copy of A_{2}, and $K_{i}^{(1)}, i=6, \ldots, 10$ is a generator of the $(i-5)$-the copy of A_{1}. Let us now consider $3 v$. It exhibits the set of curves

$$
\left\{K_{1}^{(1)}, K_{1}^{(3)}, K_{1}^{(5)}, K_{6}^{(1)}, K_{7}^{(1)}, K_{8}^{(1)}, K_{9}^{(1)}, K_{10}^{(1)}\right\}
$$

as a set of eight disjoint rational curves divisible by 2 on a K3 surface. Then there exists a 2:1 cover of $X_{G}, \widetilde{Y} \rightarrow X_{G}$, branched along these curves and such that the minimal model Y of \widetilde{Y} is a K3 surface. The minimal model Y is obtained contracting the eight (-1)-curves which are the 2:1 cover of the branch curves. Let us consider the rational 2:1 maps $\pi: Y \rightarrow X_{G}$. Then $\pi^{(-1)}\left(K_{i}^{(j)}\right)$ splits into two rational curves for $j=1,2, i=2,3,4,5$, this gives eight A_{2}-configurations on $Y ; \pi^{-1}\left(K_{1}^{(2)}\right)$ is a rational curve which is a 2:1 cover of $K_{1}^{(2)}$ branched in two points; $\pi^{(-1)}\left(K_{1}^{(3)}\right)$ is a rational curve which is a $2: 1$ cover of $K_{1}^{(3)}$ branched in two points and we observe that after the contraction $\widetilde{Y} \rightarrow Y, \pi^{-1}\left(K_{1}^{(2)}\right)$ and $\pi^{-1}\left(K_{1}^{(3)}\right)$ form a copy of A_{2}. So we have nine copies of A_{2} on Y. By Proposition 2.9, there exists an Abelian surface A that is a 3:1 rational cover of Y. The minimal model of this cover is an Abelian surface A, which is indeed a (rational) G-cover of X_{G}.

In case $\rho(X)>1+\operatorname{rank}\left(K_{G}\right)$, the proof follows by a standard deformation argument that we summarize here: If $\rho(X)>1+\operatorname{rank}\left(K_{G}\right)$, then $\rho(X)=20$. There exists a 1-dimensional family $\left\{X_{t}\right\}_{t \in \mathbb{C}}$ that deforms X such that the generic member X_{t} has Picard number 19 and K_{G} is primitively embedded in $N S\left(X_{t}\right)$. Since generically $\rho\left(X_{t}\right)=1+\operatorname{rank}\left(K_{G}\right)$, for a generic t there exists an Abelian surface A_{t}. As described in [MTW, Section 5.2], the members of the 1-dimensional family of Abelian surfaces A_{t} admits a symplectic G action and the desingularization of A_{t} / G is X_{t}. Generically $\rho\left(A_{t}\right)=3$ but there are special members, $A_{\bar{t}}$ in the family $\left\{A_{t}\right\}$ such that $\rho\left(A_{\bar{t}}\right)=4$. These Abelian surfaces are (rational) G-covers of K3 surfaces $X_{\bar{t}}$, which has Picard number 20. In particular there exist an Abelian surface A, special member of the family $\left\{A_{t}\right\}$, which is a (rational) G-cover of X.

Let us now consider the non Abelian case. We remark that in this case $\rho(X)$ is necessarily equal to $1+\rho\left(K_{G}\right)$, because the latter is 20 .

Let $G=\mathbb{D}_{8}^{\prime}$ and $K_{\mathbb{D}_{8}^{\prime}}$ as described in Section 4.2 and let X be a K3 surface such that $K_{\mathbb{D}_{8}^{\prime}}$ is primitively embedded in $N S(X)$. The classes v_{1}^{\prime} and v_{2}^{\prime} given in (4.1) allows one to construct a $(\mathbb{Z} / 2 \mathbb{Z})^{2}$-cover of X. Let us denote by Y the minimal model of the $(\mathbb{Z} / 2 \mathbb{Z})^{2}$-cover of X branched with multiplicity 2 along each the twelve curves in the set

$$
\mathcal{S}:=\left\{K_{(0,0)}^{(j)}, K_{\left(\frac{1+i}{2}, 0\right)}^{(j)}, K_{\left(\frac{i}{2}, \frac{i}{2}\right)}^{(j)}, K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(j)}\right\}, \quad j=1,2,3 .
$$

Let $\pi_{Y}: Y \rightarrow X$ be the rational map induced by the $(\mathbb{Z} / 2 \mathbb{Z})^{2}$-cover and let $\langle\mu, v\rangle$ the cover group. We observe that $\pi_{Y}^{(-1)}\left(K_{(0,0)}^{(0)}\right)$ consists of a unique irreducible rational curve and coincides with the inverse image of the D_{4}-configuration $K_{(0,0)}^{(j)}$, $j=0,1,2,3$. We denote this curve on Y by $K_{(0,0)}$. Similarly the inverse images of the D_{4}-configuration $K_{\left(\frac{1+i}{2}, 0\right)}^{(j)}$, (resp. $\left.K_{\left(\frac{i}{2}, \frac{i}{2}\right)}^{(j)}, K_{\left(\frac{1}{2}, \frac{i}{2}\right)}^{(j)}\right)$ for $j=0,1,2,3$, consists of a unique irreducible rational curve denoted by $K_{\left(\frac{1+i}{2}, 0\right)}$, $\left(\right.$ resp. $\left.K_{\left(\frac{i}{2}, \frac{i}{2}\right)}, K_{\left(\frac{1}{2}, \frac{i}{2}\right)}\right)$. Since the curve
$K_{\left(\frac{1}{2}, 0\right)}\left(\right.$ resp. $\left.K_{\left(\frac{1+i}{4}, \frac{1+i}{4}\right)}, K_{\left(\frac{1+i}{4}, \frac{i-1}{4}\right)}\right)$ is not in the branch locus of the $(\mathbb{Z} / 2 \mathbb{Z})^{2}$-cover of X and does not meet the branch locus, its inverse image on Y consists of four disjoint rational curves, denoted by $K_{\left(\frac{1}{2}, 0\right)}^{(j)}\left(\right.$ resp. $\left.K_{\left(\frac{1+i}{4}, \frac{1+i}{4}\right)}^{(j)}, K_{\left(\frac{1+i}{4}, \frac{i-1}{4}\right)}^{(j)}\right)$ for $j=1,2,3,4$. Thus, there are sixteen disjoint rational curves on Y. Hence, by Proposition 2.9, Y is a Kummer surface of an Abelian surface B, and there exists the rational map $\pi_{B}: B \rightarrow Y$, whose cover involution will be denoted by ι_{B}. Hence, there is a $8: 1 \mathrm{map}$, $\pi_{Y} \circ \pi_{B}: B \rightarrow X$. By construction, the automorphisms μ and v of Y preserve the branch locus of the map $\pi_{B}: B \rightarrow Y$, and thus they induce two automorphisms μ_{B} and v_{B} on B. Let us denote by H_{B} the group generated by ι_{B}, μ_{B} and v_{B}. By construction, $B \rightarrow X$ is the map induced by the desingularization of the quotient B / H_{B}. In particular, the group H_{B} has order 8.

Let $\gamma: X \rightarrow S$ be the contraction of all the curves in $F_{\mathbb{D}_{8}^{\prime}}$. The singular surface S has four singularities of type D_{4} and 3 singularities of type A_{1}. It is immediate to check by our construction that $B \rightarrow X \rightarrow S$ coincides with the quotient $B \rightarrow B / H_{B}$ and so $S=B / H_{B}$. The quotient singularities of type D_{4} correspond to points whose stabilizer is the quaternion group, so the quaternion group \mathbb{D}_{8}^{\prime} has to be a subgroup of the group H_{B}, but the order of H_{B} is 8 , as the order of the quaternion group, so H_{B} is the quaternion group. This implies that X is the desingularization of the quotient $B / \mathbb{D}_{8}^{\prime}$.

The case $G=\mathbb{D}_{8}$ is analogous. In the case where $G=\mathbb{D}_{12}$ one first considers a $4: 1$ cover of the K3 surface X_{G}. The minimal model of such a cover, say Y, contains nine disjoint A_{2}-configurations, hence there exists an Abelian surface B that is a 3:1 cover of Y. Then one proves that X is the desingularization of B / H_{B}, where H_{B} is a group generated by certain automorphisms and, considering the singularities, one proves that H_{B} must be \mathbb{D}_{12} (since it has order 12 and has to contain \mathbb{D}_{12}).

Let us now consider the case $G=\mathbb{T}$. Let X be a K 3 surface such that $K_{\mathbb{T}}$ is primitively embedded in $N S(X)$. So there are nineteen curves that span the lattice $E_{6} \oplus D_{4} \oplus A_{1} \oplus A_{2}^{4}$ and there is a 3-divisible class that involves six disjoint A_{2} configurations. So there exists a 3:1 cover of X whose minimal model is a K3 surface Y. We denote the 3:1 rational map by $\pi: Y \rightarrow X$. The inverse image on Y of the curves in $F_{\mathbb{T}}$ consists of nineteen rational curves that span the lattice $D_{4}^{4} \oplus A_{1}^{3}$ (where a copy of D_{4} is mapped by π to the E_{6} contained in $F_{\mathbb{T}}$, three other copies of D_{4} are mapped to the unique copy of D_{4} in $F_{\mathbb{T}}$, the three copies of A_{1} are mapped by π to the unique copy of A_{1} in $F_{\mathbb{T}}$). We observe that $D_{4}^{4} \oplus A_{1}^{3} \simeq F_{\mathbb{D}_{8}^{\prime}}$. In order to reconstruct the Abelian surface that is the cover of X, it suffices to prove that not only $F_{\mathbb{D}_{8}^{\prime}}$, but exactly $K_{\mathbb{D}_{8}^{\prime}}$ is primitively embedded in $N S(Y)$. Once one proves this, one finds an Abelian surface B such that Y is the minimal resolution of $B / \mathbb{D}_{8}^{\prime}$ (we already proved this result), and one deduces that X is the minimal resolution of B / \mathbb{T} as in the previous cases. In Section 4.2 we constructed the lattice $K_{\mathbb{D}_{8}^{\prime}}$ introducing four divisible vectors. Two of them (v_{1}^{\prime} and v_{2}^{\prime}) are strictly related to the geometry of the quotient that we are considering. The property of these two vectors, which is essential in order to reconstruct the Abelian surface B with a \mathbb{D}_{8}^{\prime}-action, is that the curves appearing in these two divisible classes are all contained in the D_{4}-configurations; i.e., the curves that generate the three copies of A_{1} in $F_{\mathbb{D}_{8}^{\prime}}$ do not appear in these divisible classes. Since there are fifteen disjoint rational curves contained in the set of the nineteen curves that span
$D_{4}^{4} \oplus A_{1}^{3}$, we know that there are also four independent divisible classes in $N S(Y)$ by Proposition 2.9. Now we have to show that at least two of them can be chosen to have no components in the direct summands A_{1}^{3} of $D_{4}^{4} \oplus A_{1}^{3}$. Suppose the opposite; this means that there is a choice of three divisible vectors n_{1}, n_{2}, and n_{3} such that all the elements in $\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ have components among the generators of A_{1}^{3}. Just to fix the notation we gives to the curves in $F_{\mathbb{D}_{s}^{\prime}}$ the same names as in Section 4.2. We choose the first class n_{1} in such a way that it has some components in A_{1}^{3}. We recall that the divisible classes are the sum of eight disjoint rational curves divided by 2 and that they are linear combinations of the elements of the discriminant group. We observe that a divisible class has components among the generators of A_{1}^{3} if and only if at least one of the vectors (of the discriminant group) d_{9}, d_{10}, and d_{11} appears with a nontrivial coefficient in its expression. Since the generators of the discriminant group d_{i} with $i \neq 9,10,11$ are the sum of two rational curves divided by 2 an even number of vectors d_{9}, d_{10} and d_{11} with a nontrivial coefficient appears in the expression of n_{1}. So we can assume that $n_{1}=d_{9}+d_{10}+m_{1}$, where $m_{1} \in\left\langle d_{j}\right\rangle, j=1, \ldots, 8$. Now we construct a second divisible class n_{2}, assuming that it has some components among the generators of A_{1}^{3}. If $n_{2}=d_{9}+d_{10}+m_{2}$, where $m_{2} \in\left\langle d_{j}\right\rangle, j=1, \ldots, 8$, then $n_{1}+n_{2} \in\left\langle d_{j}\right\rangle$, $j=1, \ldots, 8$, i.e., it has no components among the generators of A_{1}^{3}. So we can assume that $n_{2}:=d_{9}+d_{11}+m_{2}, m_{2} \in\left\langle d_{j}\right\rangle, j=1, \ldots, 8$. We observe that $n_{1}+n_{2}=d_{10}+d_{11}+m_{3}$, $m_{3} \in\left\langle d_{j}\right\rangle, j=1, \ldots, 8$. But now there is no way to choose n_{3} is such a way that all the elements in $\left\langle n_{1}, n_{2}, n_{3}\right\rangle$ have components among the curves generating A_{1}^{3}. Indeed, every pair of elements in $\left\{d_{9}, d_{10}, d_{11}\right\}$ appears with a nontrivial coefficient in n_{1} or in n_{2} or in $n_{1}+n_{2}$. This proves that if there is configuration of nineteen rational curves on a K3 surface Y that span the lattice $F_{\mathbb{D}_{8}^{\prime}}$, then the lattice $K_{\mathbb{D}_{8}^{\prime}}$ is primitively embedded in $N S(Y)$, and so Y is the minimal resolution of the quotient of an Abelian surface B by the group \mathbb{D}_{8}^{\prime}. This concludes the proof in the unique remaining case $G=\mathbb{T}$.

Remark 4.5 In [Be] the proof of the previous result is given in case G is a cyclic group of order greater than 2 . The proof given in the case where $\rho\left(X_{G}\right)$ is the minimal possible coincides with our proof. In case $\rho\left(X_{G}\right)$ is greater (and indeed 20), in [Be] it is observed that one can use a deformation argument as we did, but an alternative proof is given. Unfortunately, it is based on [Be, Lemma 3.2], which contains a mistake. Indeed, using the notation of [Be, Lemma 3.2], it is true that there exists an orthogonal embedding η of $\left\{A_{k_{1}}, \ldots, A_{k_{n}}\right\}$ in a system of roots, Q, of type \mathbb{A} such that (up to the action of the Weyl group), $\eta\left(A_{k_{i}}\right)$ is contained in a chosen basis of Q for every $i=1, \ldots, n$, but the same result is not necessarily true if the system of roots Q is of type \mathbb{D}. A simple counterexample is given by the orthogonal embedding of $\left\{A_{1}, A_{1}, A_{1}, A_{1}\right\}$ in D_{4} given by $\left\{\epsilon_{1}+\epsilon_{2}, \epsilon_{1}-\epsilon_{2}, \epsilon_{3}+\epsilon_{4}, \epsilon_{3}-\epsilon_{4}\right\}$ that cannot be contained in a basis of D_{4} (up to the action of the Weyl group of D_{4}).

The advantage of the result in Theorem 4.4 is that one relates a purely geometric property with a purely lattice theoretic property. This is what is needed in order to describe the lattice polarized moduli space of the K3 surfaces with a certain geometric property, so we immediately obtain the following corollary.

Corollary 4.6 Let \mathcal{L}_{G} be the set of lattices L_{G} satisfying the following:
(i) $\quad L_{G}$ has rank $1+\operatorname{rank}\left(K_{G}\right)$;
(ii) L_{G} is hyperbolic;
(iii) L_{G} admits a primitive embedding in $\Lambda_{K 3}$;
(iv) there exists a primitive embedding of K_{G} in L_{G}.

A K3 surface is the desingularization of the quotient of an Abelian surface by G if and only if it is an L_{G}-polarized $K 3$ surface for an $L_{G} \in \mathcal{L}_{G}$.

In particular, the coarse moduli space of the K3 surfaces that are desingularization of the quotient A / G for an Abelian surface A has infinitely many components of dimension $19-\operatorname{rank}\left(K_{G}\right)$.

Proof As a direct consequence of Theorem 4.4, one has that a K3 surface is (rationally) G-covered by an Abelian surface if and only if it is L_{G}-polarized. It remains only to show that the components of the moduli space of the K3 surfaces that are (rationally) G-covered by an Abelian surface A are infinitely many. This depends on the possible choices for the lattice L_{G}. Generically L_{G} is the Nèron-Severi group of an L_{G}-polarized K 3 surface and its orthogonal group in $\Lambda_{K 3}$ is the transcendental group.

Let us consider first the cyclic groups G, in particular, the case where $G \neq \mathbb{Z} / 2 \mathbb{Z}$ (since the case $\mathbb{Z} / 2 \mathbb{Z}$ is very well known). The transcendental lattice of a generic K3 surface X that is (rationally) G covered by an Abelian surface A is determined by that of A. With the notation introduced in [MTW, Section 5.2], an Abelian surface A admits a symplectic action of G if and only if the transcendental lattice T_{A} is primitively embedded in $T\left(G_{\sigma}\right) \simeq H^{2}(A, \mathbb{Z})^{G}$. If $G \neq \mathbb{Z} / 2 \mathbb{Z}$, then $T\left(G_{\sigma}\right)$ has signature $(3,1)$. In order to identify a possible choice for T_{A}, it suffices to define T_{A} as the orthogonal complement to a vector, say v_{a} with a positive self intersection in $T\left(G_{\sigma}\right)$. So it suffices to show that there are infinitely many choices for v, which determine infinitely many lattices T_{A}. By [MTW, Section 4] for every cyclic group G, the lattice $T\left(G_{\sigma}\right)$ splits in the direct sum of a copy of U and another lattice, say R_{G}. Let us assume that v_{a} has nontrivial components only in U and that these components are of the form (1, a). Then $v_{a}^{2}=2 a$ and T_{A} is isometric to

$$
\langle-2 a\rangle \oplus R_{G} \simeq v_{a}^{\perp_{T}\left(G_{\sigma}\right)} .
$$

Since we have infinitely many possible choices for a, we have infinitely many choices for T_{A} and thus for T_{X}.

If G is not cyclic, we did not explicitly compute the lattice $H^{2}(A, \mathbb{Z})^{G}$ where A is the Abelian surface that (rationally) G-covers X. Hence, in this case we compute the possible lattice L_{G} directly. By definition, L_{G} is an overlattice of a finite index of $\mathbb{Z} v_{b} \oplus K_{G}$, where v_{b} is a vector with a positive self intersection $2 b$ in $K_{G}^{\perp_{K 3}}$. Since K_{G} is negative definite of rank $19, K_{G}^{\perp_{\Lambda_{K 3}}}$ is positive definite. Hence, the number of vectors in $K_{G}^{\perp \Lambda_{K 3}}$ with a given length is finite. Since the number of vectors in $K_{G}^{\perp_{\Lambda_{K 3}}}$ is clearly infinite, there are infinitely many choices for the length of v_{b} and thus for the overlattice of finite index of $\mathbb{Z} v_{b} \oplus K_{G}$.

We observe that the conditions (i), (ii), and (iv) in Corollary 4.6 imply that L_{G} is an overlattices of finite index l_{G} of $\mathbb{Z} h \oplus K_{G}$, where h is a vector with a positive self intersection h^{2}. Condition (iii) implies that h^{2} is even and imposes several restriction to l_{G}. The concrete possibilities for the lattices in \mathcal{L}_{G} are classically known for $G=$
$\mathbb{Z} / 2 \mathbb{Z}$ (see, for example, [GS2, Theorem 2.7] for a recent reference) and for $G=\mathbb{Z} / 3 \mathbb{Z}$ (see [Ba2]).

In [N1], it is proved that it is not necessary to check the existence of a primitive embedding of $K_{\mathbb{Z} / 2 \mathbb{Z}}$ in the Néron-Severi group of a K3 surface to conclude that it is a Kummer surface. It suffices to know that it contains sixteen disjoint smooth irreducible rational curves. We underline that from the point of view of the description of the moduli space this result is not very useful, because we have no a way to translate the condition "certain -2 classes correspond to irreducible curves" in the context of the lattice polarized K3 surfaces. On the other hand this result is very nice from a geometric point of view, since it can also be stated in the following way. If a K3 surface admits a model with sixteen nodes, then it is a Kummer surface (for example, this can be used to conclude that a quartic with sixteen nodes is a Kummer surface). A similar result was generalized to the group $G=\mathbb{Z} / 3 \mathbb{Z}$ by Barth [Bal]. Here we generalize this result to all the other admissible groups.

Theorem 4.7 Let G be one of the groups $\mathbb{Z} / n \mathbb{Z}, n=2,3,4,6, \mathbb{D}_{8}, \mathbb{D}_{8}^{\prime}, \mathbb{D}_{12}$, and \mathbb{T}, and let F_{G} be the lattice defined above. Then a K3 surface is the minimal model of A / G for some Abelian surface A if and only if F_{G} is embedded in $N S\left(X_{G}\right)$ and there exists a basis of F_{G} that represents irreducible smooth curves on X_{G}.

Proof This result is known if $G=\mathbb{Z} / 2 \mathbb{Z}$ (see [N1]) and if $G=\mathbb{Z} / 3 \mathbb{Z}$ (see [Ba1]). In the proof of the Theorem 4.4 we proved the statement in the case where $G=\mathbb{D}_{8}^{\prime}$. Here we give a complete proof in the case $G=\mathbb{Z} / 4 \mathbb{Z}$. The other cases are very similar. The lattice $F_{\mathbb{Z} / 4 \mathbb{Z}}$ has rank 18 and length 10 . Since the length of a lattice of rank 18 primitively embedded in $\Lambda_{K 3}$ is at most 4 , we know that $F_{\mathbb{Z} / 4 \mathbb{Z}}$ is not primitively embedded in $\Lambda_{K 3}$ and so there is an overlattice of finite index of $F_{\mathbb{Z} / 4 \mathbb{Z}}$, called $R_{\mathbb{Z} / 4 \mathbb{Z}}$, which is primitively embedded in $\Lambda_{K 3}$. In order to construct an overlattice $R_{\mathbb{Z} / 4 \mathbb{Z}}$ of $F_{\mathbb{Z} / 4 \mathbb{Z}}$ we have to add to $F_{\mathbb{Z} / 4 \mathbb{Z}}$ certain elements that are nontrivial in the discriminant group of $F_{\mathbb{Z} / 4 \mathbb{Z}}$ and that have an even self intersection. Moreover, we have to recall that if the sum of m disjoint rational curves is divided by 2 , then m is either 16 or 8 .

Let us consider the lattice $F_{\mathbb{Z} / 4 \mathbb{Z}}=A_{3}^{4} \oplus A_{1}^{6}$. We denote the basis of the j-th copy of A_{3} by $a_{i}^{(j)}, i=1,2,3, j=1,2,3,4$ and the generator of the $(j-4)$-th copy of A_{1} by $a^{(j)}, j=5,6,7,8,9,10$. The discriminant of $F_{\mathbb{Z} / 4 \mathbb{Z}}$ is generated by

$$
d_{j}:=\frac{1}{4}\left(a_{1}^{(j)}+2 a_{2}^{(j)}+3 a_{3}^{(j)}\right), \quad j=1,2,3,4, \quad d_{j}:=\frac{a^{(j)}}{2}, \quad j=5,6,7,8,9,10
$$

Since $l\left(F_{\mathbb{Z} / 4 \mathbb{Z}}\right)-l\left(R_{\mathbb{Z} / 4 \mathbb{Z}}\right)$ has to be at least six, we have to add at least three divisible vectors to $F_{\mathbb{Z} / 4 \mathbb{Z}}$ in order to obtain $R_{\mathbb{Z} / 4 \mathbb{Z}}$. First, suppose we add three vectors, v_{1}, v_{2}, v_{3} such that $\left\langle v_{1}, v_{2}, v_{3}\right\rangle=(\mathbb{Z} / 2 \mathbb{Z})^{3}$ in the discriminant group (i.e., no vectors among v_{1}, v_{2}, v_{3} has order 4 in the discriminant group of $F_{\mathbb{Z} / 4 \mathbb{Z}}$). Every vector that generates $\mathbb{Z} / 2 \mathbb{Z}$ in the discriminant group of $F_{\mathbb{Z} / 4 \mathbb{Z}}$ is a linear combination of $2 d_{j}$ for $j=1,2,3,4$ and d_{k} for $k=5, \ldots, 10$. The curves that appear with a nontrivial coefficient in each of these linear combinations are among the fourteen disjoint rational curves $\left\{a_{1}^{(j)}, a_{3}^{(j)}, a^{(k)}\right\}$ for $j=1,2,3,4$ and $k=5, \ldots, 10$. We recall that it is possible to add three independent divisible 2-classes starting from fourteen disjoint rational curves, but it is not possible to add four independent divisible classes
using only fourteen rational curves. So we can add exactly the three vectors v_{1}, v_{2}, and v_{3}. Up to permutations of the indices the unique possibility for the three vectors v_{1}, v_{2}, and v_{3} is $v_{1}:=2\left(d_{1}+d_{2}+d_{3}+d_{4}\right), v_{2}:=2 d_{1}+2 d_{2}+d_{5}+d_{6}+d_{7}+d_{8}$, $v_{3}:=2 d_{1}+2 d_{3}+d_{7}+d_{8}+d_{9}+d_{10}$. The lattice $R_{\mathbb{Z} / 4 \mathbb{Z}}$ obtained adding the vectors v_{1}, v_{2} and v_{3} to $F_{\mathbb{Z} / 4 \mathbb{Z}}$ is an overlattice of index 2^{3}. One can directly compute its discriminant group, and one finds that the discriminant group of this lattice is $(\mathbb{Z} / 4 \mathbb{Z})^{2} \times(\mathbb{Z} / 2 \mathbb{Z})^{4}$. But the length of this lattice is 6 , which is not admissible.

We conclude that there is at least one vector, say v_{1}, in $F_{\mathbb{Z} / 4 \mathbb{Z}} / R_{\mathbb{Z} / 4 \mathbb{Z}}$ that generates a copy of $\mathbb{Z} / 4 \mathbb{Z}$ in the discriminant group of $F_{\mathbb{Z} / 4 \mathbb{Z}}$. We recall that $\left(v_{1}\right)^{2}$ has to be an even number, that $\left(d_{j}\right)^{2}=-3 / 4$ if $j=1,2,3,4$, and that $\left(d_{k}\right)^{2}=-1 / 2$ if $k=5, \ldots, 10$. Moreover, $2 v_{1} \bmod F_{\mathbb{Z} / 4 \mathbb{Z}}$ has to be the sum of eight disjoint rational curves divided by 2 (since the sum of n rational curves cannot be divided by 2 if $n \leq 14$ and $n \neq 8$). So there are only the following two possibilities modulo $F_{\mathbb{Z} / 4 \mathbb{Z}}$ (up to a permutation of the indices)
(a) $v_{1}:=d_{1}+d_{2}+d_{3}+d_{4}+d_{5}+d_{6}+d_{7}+d_{8}+d_{9}+d_{10}$ or
(b) $v_{1}:=d_{1}+d_{2}+d_{3}+d_{4}+d_{5}+d_{6}$.

In case (a) one can construct a $4: 1$ cover of X whose branch divisor is v_{1}. So we have a map $Y \rightarrow X$ that is $4: 1$. By construction, the minimal model of Y has a trivial canonical bundle and its Euler characteristic is 0 , so this surface is an Abelian surface, and we conclude the proof. We remark that it suffices to observe that the divisor v_{1} in case (a) is the one described by Bertin in [Be, p. 270] where it was proved that the minimal model of a $4: 1$ cover of a K3 surface whose branch locus has a certain property has to be an Abelian surface.

In case (b) the $4: 1$ cover associated with the vector v_{1} produces a K3 surface, and not an Abelian surface. Thus we have to analyze not only the vector v_{1}, but also the vectors v_{2} and v_{3} in order to show that $R_{\mathbb{Z} / 4 \mathbb{Z}}$ coincides with $K_{\mathbb{Z} / 4 \mathbb{Z}}$. We now consider the vectors v_{2} and v_{3}. Up to replacing, possibly, v_{2} (resp. v_{3}) with $2 v_{2}$ (resp. $2 v_{3}$), we have that v_{2} (resp. v_{3}) generates a copy of $\mathbb{Z} / 2 \mathbb{Z}$ and consists of the sum of eight disjoint rational curves divided by 2 ; four of these curves have to be chosen among $\left\{a_{1}^{(j)}, a_{3}^{(j)}\right\}$, $j=1,2,3,4$, since these are the eight disjoint rational curves of the divisible vector $2 v_{1}$. Up to a permutation of the indices, we can assume that $v_{2}=2 d_{1}+2 d_{2}+d_{5}+d_{6}+d_{7}+d_{8}$ and $v_{3}=2 d_{1}+2 d_{3}+d_{7}+d_{8}+d_{9}+d_{10}$. Now we consider the vector $v_{1}+v_{3}$ (which is surely contained in $R_{\mathbb{Z} / 4 \mathbb{Z}}$). It is $3 d_{1}+d_{2}+3 d_{3}+d_{4}+d_{5}+d_{6}+d_{7}+d_{8}+d_{9}+d_{10}$. Modulo $F_{\mathbb{Z} / 4 \mathbb{Z}}$ and a change of the indices of the generators of A_{3}, this coincides with the vector v_{1} in case (a). So the minimal model of $4: 1$ cover of X whose branch divisor is $v_{1}+v_{3}$ is an Abelian surface and we conclude the proof as before.

The other cases are similar (but easier). One checks that the length of F_{G} is greater than $22-\operatorname{rank}\left(F_{G}\right)$; one deduces that one has to add some divisible classes in order to construct the lattice R_{G}, which is the minimal primitive sublattice of $\Lambda_{K 3}$ containing F_{G}. One identifies these classes (recalling the condition that they are linear combinations of elements of the discriminant group of F_{G} and the conditions imposed by Proposition 2.9). Then one compares the lattice R_{G} with K_{G} or one explicitly constructs a certain cover of X in order to show either that $R_{G}=K_{G}$ (which implies that X is the desingularization of A / G by Theorem 4.4) or directly that there exists an Abelian surface A such that X is the resolution of A / G.

Corollary $4.8 \quad$ Let G be one of the groups $\mathbb{Z} / n \mathbb{Z}, n=2,3,4,6, \mathbb{D}_{8}, \mathbb{D}_{8}^{\prime}, \mathbb{D}_{12}$, and \mathbb{T}, and let F_{G} be the lattice defined above. Let H_{G} be the minimal primitive sublattice of $\Lambda_{K 3}$ that contains F_{G} and such that the root lattice of F_{G} coincides with the one of H_{G}. Then $H_{G} \simeq K_{G}$.

Proof By hypothesis, H_{G} is a negative definite lattice primitively embedded in $\Lambda_{K 3}$ and $\operatorname{rank}\left(H_{G}\right)=\operatorname{rank}\left(F_{G}\right)$. Let D be a vector in $\Lambda_{K 3}$ that is orthogonal to H_{G} and has a positive self intersection. By the Torelli theorem, there exists a K3 surface, X, whose transcendental lattice is the orthogonal complement to $\mathbb{Z} D \oplus H_{G}$ in $\Lambda_{K 3}$. The Néron-Severi group of X is an overlattice of finite index of $\mathbb{Z} D \oplus H_{G}$ such that H_{G} is primitively embedded in it, and, without loss of generality, we can assume that D is pseudoample. Under our assumptions on H_{G}, we can apply Proposition 3.2 to $h=D$, $L=H_{G}$ and $R=F_{G}$. So the lattice F_{G} is spanned by irreducible rational curves on X. By Theorem 4.7, it follows that X is the desingularization of the quotient A / G for a certain Abelian surface A. In this case the minimal primitive sublattice that contains the curves of the lattice F_{G} is K_{G}, but by the hypothesis the minimal primitive sublattice of $N S(X) \subset \Lambda_{K 3}$ which contains F_{G} is H_{G}, so K_{G} coincides with H_{G}.

Remark 4.9 The hypothesis that the roots of H_{G} coincide with the ones of F_{G} in Corollary 4.8 is essential. Indeed, let us consider the case $G=\mathbb{Z} / 2 \mathbb{Z}$. The lattice F_{G} is A_{1}^{16}; let us denote by $K_{i}, i=1, \ldots, 16$ the generators of this lattice. Let us consider the vectors

$$
\begin{aligned}
v_{j} & :=\left(\sum_{i=1}^{4} K_{4 j+i}\right) / 2, \quad j=0,1,2,3, \\
w_{1} & :=\left(K_{1}+K_{2}+K_{5}+K_{6}+K_{9}+K_{10}+K_{13}+K_{14}\right) / 2, \\
w_{2} & :=\left(K_{1}+K_{3}+K_{5}+K_{7}+K_{9}+K_{11}+K_{13}+K_{15}\right) .
\end{aligned}
$$

Let us denote by $H_{\mathbb{Z} / 2 \mathbb{Z}}$ the lattice obtained adding the vectors $v_{i}, i=0,1,2,3$ and w_{h}, $h=1,2$ to F_{G}. It is an overlattice (of index 2^{6}) of F_{G} that admits a primitive embedding in $\Lambda_{K 3}$, but it is not isometric to the Kummer lattice (which, in fact, is an overlattice of index 2^{5} of F_{G}). In this case, v_{1} is a root of H_{G} that is not contained in F_{G}.

4.5 K3 Surfaces (Rationally) $\mathbb{Z} / 3 \mathbb{Z}$-covered by Abelian Surfaces

In [GS2] it was observed that every Kummer surface $\operatorname{Km}(A)$ (i.e., every K3 surface that is the desingularization of $A /(\mathbb{Z} / 2 \mathbb{Z}))$ admits the group $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ as group of symplectic automorphisms. Moreover, $\operatorname{Km}(A)$ is also the quotient of a K3 surface by the symplectic action of $(\mathbb{Z} / 2 \mathbb{Z})^{4}$. This result is based on the observation that if a K 3 surface is a Kummer surface $\operatorname{Km}(A)$, then the translations by the two torsion points of A induce symplectic automorphisms on $\mathrm{Km}(A)$.

A similar result can be obtained if the K 3 surface X_{G} is the (desingularization of) quotient of an Abelian surface by an action of the group $\mathbb{Z} / 3 \mathbb{Z}$.

Proposition 4.10 Let X be the desingularization of the quotient of an Abelian surface A by the group $\mathbb{Z} / 3 \mathbb{Z}$. Then X admits a symplectic action of the group $(\mathbb{Z} / 3 \mathbb{Z})^{2}$. Moreover, there exists a $K 3$ surface Y that admits a symplectic action of $(\mathbb{Z} / 3 \mathbb{Z})^{2}$ such that X is the desingularization of $Y /(\mathbb{Z} / 3 \mathbb{Z})^{2}$.

Proof Let A be an Abelian surface admitting an automorphism α_{A} of order 3 such that X is the desingularization of A / α_{A}. Let $A[3]$ be the group of three torsion points of A and let $\langle P, Q\rangle \subset A[3]$ be the set of points fixed by α_{A}. Let us denote by t_{P} and t_{Q} the translation on A by the points P and Q, respectively. Then $(\mathbb{Z} / 3 \mathbb{Z})^{2} \simeq\left\langle t_{P}, t_{Q}\right\rangle \subset$ $\operatorname{Aut}(A)$, and the automorphisms t_{P} and t_{Q} commute with α_{A}. So t_{P} and t_{Q} induce two automorphisms of order 3 on A / α_{A} that lift to two automorphisms, τ_{P} and τ_{Q}, on X. The period of X (i.e., the generator of $H^{2,0}(X)$) is induced by the generator of $H^{2,0}(A)$, which is preserved by the translations. So τ_{P} and τ_{Q} are symplectic automorphisms of X. This gives a symplectic action of $(\mathbb{Z} / 3 \mathbb{Z})^{2}$ on X.

On the other hand, X contains nine disjoint A_{2}-configurations of rational curves (which generate the lattice $F_{\mathbb{Z} / 3 \mathbb{Z}}$) and the minimal primitive sublattice $K_{\mathbb{Z} / 3 \mathbb{Z}}$ that contains all these curves also contains several divisible classes. In particular, let us denote by $a_{i}^{(j)}, i=1,2, j=1, \ldots, 9$ basis of the j-th copy of A_{2}. Up to a choice of the indices, $K_{\mathbb{Z} / 3 \mathbb{Z}}$ also contains the classes $\left(\bmod F_{\mathbb{Z} / 3 \mathbb{Z}}\right)$
$v_{1}:=\frac{1}{3}\left(\sum_{i=1}^{6} a_{1}^{(j)}-a_{2}^{(j)}\right), v_{2}=\frac{1}{3}\left(\sum_{j=1}^{2}\left(a_{1}^{(j)}-a_{2}^{(j)}\right)-\sum_{h=3}^{4}\left(a_{1}^{(h)}-a_{2}^{(h)}\right)+\sum_{k=7}^{8}\left(a_{1}^{(k)}-a_{2}^{(k)}\right)\right)$,
as shown in [Be, p. 269] with a slightly different notation. But the presence of these divisible classes allows one to reconstruct a $(\mathbb{Z} / 3 \mathbb{Z})^{2}$ cover of X (one first constructs the $3: 1$ cover associated with the class v_{1} as in Section 2.1, and then one considers the pull back of the class v_{2}, which allows one to construct another $3: 1$ cover). Using this process, one obtains a non minimal surface, whose minimal model Y is a K3 surface that is a (rational) $(\mathbb{Z} / 3 \mathbb{Z})^{2}$-cover of X, hence X is the desingularization of the quotient of the K 3 surface Y by the group $(\mathbb{Z} / 3 \mathbb{Z})^{2}$.

Corollary 4.11 The 1-dimensional families of K3 surfaces that are desingularizations of the quotients $A / \mathbb{Z} / 3 \mathbb{Z}$ for certain Abelian surfaces A are contained in the intersection between the 3-dimensional families of the K3 surfaces that are (desingularization of) quotients of $K 3$ surfaces by a symplectic action of $(\mathbb{Z} / 3 \mathbb{Z})^{2}$ and the 3-dimensional families of $K 3$ surfaces that admit a symplectic action of $(\mathbb{Z} / 3 \mathbb{Z})^{2}$.

Remark 4.12 The existence of the surface Y in Proposition 4.10 directly follows by the primitive embedding of lattice $M_{(\mathbb{Z} / 3 \mathbb{Z})^{2}}$ in the lattice $K_{\mathbb{Z} / 3 \mathbb{Z}}$, after proving Theorem 5.2. Similarly one obtains that if X is the minimal model of the quotient $A /(\mathbb{Z} / 4 \mathbb{Z})$ for a certain Abelian surface, then it is also the minimal model of the quotient $Y /(\mathbb{Z} / 4 \mathbb{Z})$ for a certain $K 3$ surface Y, since $M_{\mathbb{Z} / 4 \mathbb{Z}} \subset K_{\mathbb{Z} / 4 \mathbb{Z}}$.

In Proposition 4.10 we proved that a K 3 surface X that is (rationally) $\mathbb{Z} / 3 \mathbb{Z}$-covered by an Abelian surface, necessarily admits certain symplectic automorphisms induced by translation on the Abelian surface. Here we observe that there exists another automorphism on A that induces a symplectic automorphism on X.

Proposition 4.13 Let X be a $K 3$ surface such that $K_{\mathbb{Z} / 3 \mathbb{Z}}$ is primitively embedded in $N S(X)$; then X admits a symplectic involution ι_{X} such that $K_{\mathbb{Z} / 6 \mathbb{Z}}$ is primitively embedded in $N S(W)$ where W is the K3 surface minimal model of X / ι_{X}.

Proof Every Abelian surface admits an involution $t_{A}: A \rightarrow A$ that sends every point to its inverse with respect to the group law of A. Under the hypothesis on X there exists an Abelian surface A with an automorphism $\alpha_{A} \in \operatorname{Aut}(A)$ of order 3 such that X is the desingularization of A / α_{A}. The automorphisms ι_{A} and α_{A} commute and generate an automorphism $\alpha_{A} \circ \iota_{A}$ of order 6 that preserves the non-vanishing holomorphic 2 -form of A. The involution ι_{A} induces an involution ι_{X} on X. The singular surface $A /\left(\alpha_{A} \circ \iota\right)$ is birational to X / ι_{X}. Since the minimal model of $A /\left(\alpha_{A} \circ \iota\right)$ is a K3 surface, the minimal model of X / ι_{X} is also a K3 surface, and these surfaces are isomorphic. We call this surface W, and we observe that it is constructed as minimal model of the quotient of an Abelian surface by the action of $\mathbb{Z} / 6 \mathbb{Z}=\left\langle\alpha_{A} \circ \iota\right\rangle$, so $K_{\mathbb{Z} / 6 \mathbb{Z}}$ is primitively embedded in $N S(W)$.

A generalization of the previous result can be obtained by replacing $(\mathbb{Z} / 3 \mathbb{Z}, \mathbb{Z} / 6 \mathbb{Z})$ with $\left(\mathbb{D}_{8}^{\prime}, \mathbb{T}\right)$.

Corollary 4.14 Let S be a K3 surface such that $K_{\mathbb{D}_{8}^{\prime}}$ is primitively embedded in $N S(S)$; then S admits an automorphism of order $3, \gamma_{S}$, such that $K_{\mathbb{T}}$ is primitively embedded in $N S\left(\widetilde{S / \gamma_{S}}\right)$, where $\widetilde{S} / \gamma_{S}$ is the minimal resolution of S / γ_{S}.

Putting together the Propositions 4.10 and 4.13, one obtains the following corollary.
Corollary 4.15 Let X be a K3 surface that is (rationally) $(\mathbb{Z} / 3 \mathbb{Z})$-covered by an Abelian surface. The group $\mathfrak{A}_{3,3}$ acts symplectically on X.

Proof It suffices to prove that the involution t_{A} and the translations t_{P} and t_{Q} introduced in proofs of Propositions 4.13 and 4.10 generate $\mathfrak{A}_{3,3}$. This can be easily checked; for example, one can specialize the Abelian surface A to the product of two elliptic curves with j-invariant equal to 0 . The order 3 automorphism α_{A} (defined in proof of Proposition 4.10) fixes the points $(0,0), P:=\left(\frac{1}{3}\left(1-\zeta_{3}\right), 0\right)$, and $Q:=\left(0, \frac{1}{3}\left(1-\zeta_{3}\right)\right)$. This identifies the translation t_{P} and t_{Q}, and it is immediate to verify that $\left\langle t_{P}, \iota\right\rangle \simeq\left\langle t_{Q}, \iota\right\rangle$ is the dihedral group of order 6 and then $\left\langle t_{P}, t_{Q}, \iota\right\rangle$ is $\mathfrak{A}_{(3,3)}$.

5 K3 Surface Quotients of K3 Surfaces

The aim of this section is to extend some of the results proved for the K3 surfaces that are (rationally) covered by an Abelian surface, to the K3 surfaces that are (rationally) covered by a K3 surface. We will denote by Y_{G} a K3 surface that admits a symplectic action of the group G and by S_{G} the minimal resolution of the quotient Y_{G} / G. It is well known that S_{G} is a K3 surface (see [N3]).

Proposition 5.1 Let Y_{G} be a $K 3$ surface and let $G \in \operatorname{Aut}\left(Y_{G}\right)$ be a finite group. Let S_{G} be the minimal model of Y_{G} / G. Then S_{G} is a K3 surface if and only if G acts symplectically on Y_{G}. If G is Abelian, then it is one of the following fourteen groups $\mathbb{Z} / n \mathbb{Z}$, $n=2, \ldots, 8,(\mathbb{Z} / m \mathbb{Z})^{2}, m=2,3,4, \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / t \mathbb{Z}, t=4,6,(\mathbb{Z} / 2 \mathbb{Z})^{j}, j=3,4$.

Let M_{i} be the curves on S_{G} arising from the resolution of the singularities of Y_{G} / G. Then the lattices E_{G} spanned by the curves M_{i} is one of the following root lattices:

G	$\mathbb{Z} / 2 \mathbb{Z}$	$\mid Z / 3 \mathbb{Z}$	$\mathbb{Z} / 4 \mathbb{Z}$	$\mathbb{Z} / 5 \mathbb{Z}$	$\mathbb{Z} / 6 \mathbb{Z}$	$\mathbb{Z} / 7 \mathbb{Z}$	$\mathbb{Z} / 8 \mathbb{Z}$
E_{G}	A_{1}^{8}	A_{2}^{6}	$A_{3}^{4} \oplus A_{1}^{2}$	A_{4}^{4}	$A_{5}^{2} \oplus A_{2}^{2} \oplus A_{1}^{2}$	A_{6}^{3}	$A_{7}^{2} \oplus A_{3} \oplus A_{1}$

G	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$(\mathbb{Z} / 2 \mathbb{Z})^{3}$	$(\mathbb{Z} / 2 \mathbb{Z})^{4}$	$\mathbb{Z} / 2 \times \mathbb{Z} / 4$	$\mathbb{Z} / 2 \times \mathbb{Z} / 6$	$(\mathbb{Z} / 3 \mathbb{Z})^{2}$	$(\mathbb{Z} / 4 \mathbb{Z})^{2}$
E_{G}	A_{1}^{12}	A_{1}^{14}	A_{1}^{15}	$A_{3}^{4} \oplus A_{1}^{4}$	$A_{5}^{3} \oplus A_{1}^{3}$	A_{2}^{8}	A_{3}^{6}

Let M_{G} be the minimal primitive sublattice of $N S\left(S_{G}\right)$ that contains the curves M_{i}; then M_{G} is an overlattice of finite index r_{G} of E_{G} and its properties are as follows:

G	$\mathbb{Z} / 2 \mathbb{Z}$	$\mathbb{Z} / 3 \mathbb{Z}$	$\mathbb{Z} / 4 \mathbb{Z}$	$\mathbb{Z} / 5 \mathbb{Z}$	$\mathbb{Z} / 6 \mathbb{Z}$	$\mathbb{Z} / 7 \mathbb{Z}$	$\mathbb{Z} / 8 \mathbb{Z}$
r_{G}	2	3	4	5	6	7	8
$\operatorname{rank}\left(M_{G}\right)$	8	12	14	16	16	18	18
M_{G}^{\vee} / M_{G}	$(\mathbb{Z} / 2 \mathbb{Z})^{6}$	$(\mathbb{Z} / 3 \mathbb{Z})^{4}$	$(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z})^{2}$	$(\mathbb{Z} / 5 \mathbb{Z})^{2}$	$(\mathbb{Z} / 6 \mathbb{Z})^{2}$	$(\mathbb{Z} / 7 \mathbb{Z})$	$\mathbb{Z} / 4 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$

G	$(\mathbb{Z} / 2 \mathbb{Z})^{2}$	$(\mathbb{Z} / 2 \mathbb{Z})^{3}$	$(\mathbb{Z} / 2 \mathbb{Z})^{4}$	$\mathbb{Z} / 2 \times \mathbb{Z} / 4$	$\mathbb{Z} / 2 \times \mathbb{Z} / 6$	$(\mathbb{Z} / 3 \mathbb{Z})^{2}$	$(\mathbb{Z} / 4 \mathbb{Z})^{2}$
r_{G}	2^{2}	2^{3}	2^{4}	8	12	3^{2}	4^{2}
$\operatorname{rank}\left(M_{G}\right)$	12	14	15	16	18	16	18
M_{G}^{\vee} / M_{G}	$(\mathbb{Z} / 2 \mathbb{Z})^{8}$	$(\mathbb{Z} / 2 \mathbb{Z})^{8}$	$(\mathbb{Z} / 2 \mathbb{Z})^{7}$	$(\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z})^{2}$	$\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 6 \mathbb{Z}$	$(\mathbb{Z} / 3 \mathbb{Z})^{4}$	$(\mathbb{Z} / 4 \mathbb{Z})^{2}$

The roots of the lattice M_{G} coincide with the roots of the lattice E_{G} for all the abelian groups G.

By construction, M_{G} is a negative definite lattice primitively embedded in $\operatorname{NS}\left(S_{G}\right)$, and thus $\rho\left(S_{G}\right) \geq 1+\operatorname{rank}\left(M_{G}\right)$.

Proof The classification of the Abelian groups acting symplectically on a K3 surface is given in [N 3 , Theorem 4.5], where it was also proved that S_{G} is a K3 surface if and only if G acts symplectically on Y_{G}. The lattices E_{G} and M_{G} are described in [N3, $\S 6$ and 7]. The fact that the root lattices of M_{G} and of E_{G} coincide can be checked by a Magma computation as in proof of Proposition 4.3.

We obtain an analogue of Theorem 4.4.
Theorem 5.2 Let G be one of the Abelian groups acting symplectically on a K3 surface. A K3 surface S_{G} is the desingularization of the quotient Y_{G} / G for a certain K3 surface Y_{G} if and only if M_{G} is primitively embedded in $N S\left(S_{G}\right)$.

Proof The proof is similar to (but easier than) the one of Theorem 4.4. Since the Abelian groups G acting symplectically on a K3 surface are either cyclic or free products of cyclic groups, there is a correspondence between the divisible classes of M_{G}
and covers of S_{G}, given by Section 2.2. So it is immediate to reconstruct the covering surface and its minimal model Y_{G} from the following data: S_{G}, the lattice M_{G}, the knowledge that certain (-2) classes in M_{G} represent smooth irreducible rational curves on S_{G}. The latter condition is guaranteed by Lemma 3.1 and the fact that the roots of E_{G} coincide with those of M_{G}; see Proposition 5.1.

It is not possible to generalize Theorem 4.7 or Corollary 4.8 to all the Abelian groups acting symplectically on a K3 surface. Indeed, for example, there exist K3 surfaces that contain a set of eight disjoint rational curves, but this set is not divisible by 2, hence these K3 surfaces are not necessarily desingularization of quotient of another K 3 surface by $\mathbb{Z} / 2 \mathbb{Z}$: an example is given by the K 3 surface that is the minimal model of the $2: 1$ cover of \mathbb{P}^{2} branched along a sextic with eight nodes. Indeed, the cover of \mathbb{P}^{2} is singular and has eight singularities of type A_{1}. So on the K3 surface there are eight disjoint rational curves arising from the desingularization of these singularities. But these curves are not a divisible set: this can be checked considering that the fixed locus of the cover involution is a curve of genus 2, and this determines, by [N2], the Néron-Severi group of the K3 surface. It is known that Theorem 4.7 can be extended to the K3 surfaces that contain at least fourteen disjoint rational curves, see [GS2].

Remark 5.3 Theorem 5.2 was proved for $G=\mathbb{Z} / 2 \mathbb{Z}$ in [GS1, Proposition 2.3] using a different method. The approach used in [GS1] was strictly based on a careful description of the action induced by a symplectic involution on $\Lambda_{K 3}$. This allows one to give stronger results, but a similar description of the action induced by a group of symplectic automorphisms on $\Lambda_{K 3}$ is not known for groups G different from $\mathbb{Z} / 2 \mathbb{Z}$.

Theorem 5.2 allows one to describe the moduli space of the K3 surfaces that are covered by other K3 surfaces in terms of lattice polarized K3 surfaces:

Corollary 5.4 Let G be a finite abelian group acting symplectically on a K3 surface. Let \mathcal{W}_{G} be the set of lattices W_{G} satisfying
(i) $\quad W_{G}$ has rank $1+\operatorname{rank}\left(M_{G}\right)$;
(ii) W_{G} is hyperbolic;
(iii) W_{G} admits a primitive embedding in $\Lambda_{K 3}$;
(iv) M_{G} is primitively embedded in W_{G}.

Then a K3 surface is the desingularization of the quotient of a K3 surface by G if and only if it is a W_{G}-polarized K3 surface for a $W_{G} \in \mathcal{W}_{G}$.

In particular, the coarse moduli space of the K3 surfaces that are desingularization of the quotient Y / G for a K3 surface Y has infinitely many components of dimension $19-\operatorname{rank}\left(M_{G}\right)$.

In the case where $G=\mathbb{Z} / 2 \mathbb{Z}$ all the admissible lattices that appear in $\mathcal{W}_{\mathbb{Z} / 2 \mathbb{Z}}$ are described in [GS1, Proposition 2.1 and Corollary 2.1]. Here we obtain the analogous result for $G=\mathbb{Z} / 3 \mathbb{Z}$. First we fix the following notation. The lattice $E_{\mathbb{Z} / 3 \mathbb{Z}}$ is isometric to A_{2}^{6}. We denote by $M_{j}^{(j)}, i=1,2$ the two curves that generate the j-th copy of A_{2} in E_{G} and by $d_{j}:=\left(M_{1}^{\left(j^{j}\right)}+2 M_{2}^{(j)}\right) / 3$. We can assume that $M_{\mathbb{Z} / 3 \mathbb{Z}}$ is generated by the generators of $E_{\mathbb{Z} / 3 \mathbb{Z}}$ and by the class $\sum_{j=1}^{6} d_{j}$.

Proposition 5.5 Let $Y_{\mathbb{Z} / 3 \mathbb{Z}}$ be a $K 3$ surface that admits a symplectic action of $\mathbb{Z} / 3 \mathbb{Z}$. Let $S_{\mathbb{Z} / 3 \mathbb{Z}}$ be the K3 surface desingularization of $\left(Y_{\mathbb{Z} / 3 \mathbb{Z}}\right) /(\mathbb{Z} / 3 \mathbb{Z})$. Let us assume that $\rho\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)=13$. There is a primitive embedding of $M_{\mathbb{Z} / 3 \mathbb{Z}}$ in $N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$. Let us denote by H a generator of the 1-dimensional subspace of $N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$ orthogonal to $M_{\mathbb{Z} / 3 \mathbb{Z}}$ in $N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$. So $H^{2}=2 d$ for a positive integer d, and without loss of generality, we can assume that H is pseudoample. Then there are the following possibilities, and all of them appear:

- $d \equiv \equiv 0 \bmod$ 3: in this case $N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right) \simeq \mathbb{Z} H \oplus M_{\mathbb{Z} / 3 \mathbb{Z}}$;
- $d \equiv 0 \bmod 3:$ in this case there are two possibilities, either $N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)=\mathbb{Z} H \oplus M_{\mathbb{Z} / 3 \mathbb{Z}}$ $\operatorname{or} N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$ is an overlattice of index 3 of $\mathbb{Z} H \oplus M_{\mathbb{Z} / 3 \mathbb{Z}}$. In the latter case $N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$ is generated by the generators of $M_{\mathbb{Z} / 3 \mathbb{Z}}$ and by a class v. Up to isometries the class v $\left(\bmod \mathbb{Z} H \oplus M_{\mathbb{Z} / 3 \mathbb{Z}}\right)$ is uniquely determined byd $\bmod 9$ and it is the following:
- if $d \equiv 0 \bmod 9$, then $v:=H / 3+\sum_{j=1}^{3} d_{j}$;
- if $d \equiv 3 \bmod 9$, then $v:=H / 3+\sum_{j=1}^{2}\left(d_{j}\right)+2 \sum_{h=3}^{4}\left(d_{h}\right)$;
- if $d \equiv 6 \bmod 9$, then $v:=H / 3+d_{1}+2 d_{2}$.

Proof The proof is based on the lattice theory and is analogous to that of [GS1, Propositions 2.1, 2.2 and Corollary 2.1].

Let $S_{\mathbb{Z} / 3 \mathbb{Z}}$ be a K3 surface that is a desingularization of $Y_{\mathbb{Z} / 3 \mathbb{Z}} /(\mathbb{Z} / 3 \mathbb{Z})$ for a certain K3 surface $Y_{\mathbb{Z} / 3 \mathbb{Z}}$. Then $M_{\mathbb{Z} / 3 \mathbb{Z}}$ is primitively embedded in $N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$ and its orthogonal complement is a positive definite sublattice of rank 1 .

So $N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$ is an overlattice of finite index, s, of $\mathbb{Z} H \oplus M_{\mathbb{Z} / 3 \mathbb{Z}}$ where $H^{2}=2 d>0$. The discriminant group of the lattice $\mathbb{Z} H \oplus M_{\mathbb{Z} / 3 \mathbb{Z}}$ is $\mathbb{Z} / 2 d \mathbb{Z} \times(\mathbb{Z} / 3 \mathbb{Z})^{4}$, so the lattice $\mathbb{Z} H \oplus M_{\mathbb{Z} / 3 \mathbb{Z}}$ has length 5 if $d \equiv 0 \bmod 3$, and 4 otherwise. A lattice of length at most 5 and of rank 13 admits a primitive embedding in $\Lambda_{K 3}$. Thus, for each value of d there are K 3 surfaces $S_{\mathbb{Z} / 3 \mathbb{Z}}$ with $N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right) \simeq \mathbb{Z} H \oplus M_{\mathbb{Z} / 3 \mathbb{Z}}$, and so for any value of d there is a K 3 surface obtained as quotient of $Y_{\mathbb{Z} / 3 \mathbb{Z}}$ by $\mathbb{Z} / 3 \mathbb{Z}$ and such that $N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right) \simeq$ $\mathbb{Z} H \oplus M_{\mathbb{Z} / 3 \mathbb{Z}}$.

Let us now assume that the index s of the inclusion $\mathbb{Z} H \oplus M_{\mathbb{Z} / 3 \mathbb{Z}} \rightarrow N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$ is not 1 . Then there is a nontrivial vector v in $\left(\mathbb{Z} H \oplus M_{\mathbb{Z} / 3 \mathbb{Z}}\right) / N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$. Since $M_{\mathbb{Z} / 3 \mathbb{Z}}$ is primitively embedded in $N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$, the vector v is of the form $v:=\frac{1}{s}(H+m)$, where $m \in M_{\mathbb{Z} / 3 \mathbb{Z}}$ and m / s is a nontrivial element in the discriminant group of $M_{\mathbb{Z} / 3 \mathbb{Z}}$. This forces s to be 3. The condition $v H=2 d / 3 \in \mathbb{Z}$ forces d to be a multiple of 3 .

In order to identify v we describe the discriminant group of $M_{\mathbb{Z} / 3 \mathbb{Z}}$. Let us recall that $M_{\mathbb{Z} / 3 \mathbb{Z}}$ is an overlattice of index 3 of $E_{\mathbb{Z} / 3 \mathbb{Z}} \simeq A_{2}^{6}$. Since the lattice $M_{\mathbb{Z} / 3 \mathbb{Z}}$ is obtained by $E_{\mathbb{Z} / 3 \mathbb{Z}}$ adding the vector $\sum_{j=1}^{6} d_{j}$, the vectors in the discriminant group of $M_{\mathbb{Z} / 3 \mathbb{Z}}$ are the vectors $\sum_{j=1}^{6} \alpha_{j} d_{j}$ with $\alpha_{i} \in \mathbb{Z} / 3 \mathbb{Z}$ such that $\sum_{i=1}^{6} \alpha_{i} \equiv 0 \bmod 3$. So the vector v is of the form $H / 3+w$, where $w=\sum_{j=1}^{6} \alpha_{j} d_{j}$ with $\alpha_{i} \in \mathbb{Z} / 3 \mathbb{Z}$ such that $\sum_{i=1}^{6} \alpha_{i} \equiv 0 \bmod 3$. The self intersection of v is $2 d / 9+\sum_{i=1}^{6} \alpha_{i}^{2}(-2 / 3)$. We observe that α_{i}^{2} is either 0 , if α_{i} is 0 , or 1 . The number $k:=\sum_{i=1}^{6} \alpha_{i}^{2}$ is the number of $\alpha_{i} \in \mathbb{Z} / 3 \mathbb{Z}$ which are different from 0 . The condition $v^{2} \in 2 \mathbb{Z}$ is then equivalent to $2 d-6 k \equiv 0$ $\bmod 18$ and so to $d-3 k \equiv 0 \bmod 9$. Since we already know that $d \equiv 0 \bmod 3$, we have that d is equivalent to one of the values 0,3 , or $6 \bmod 9$. If $d \equiv 0 \bmod 9$, then $3 k \equiv 0 \bmod 9$, so $k \equiv 0 \bmod 3$. If $k=0$, then the divisor $H / 3$ is contained
in $N S\left(X_{\mathbb{Z} / 3 \mathbb{Z}}\right)$, which is impossible, since by definition H is a generator of the sublattice of $N S\left(X_{\mathbb{Z} / 3 \mathbb{Z}}\right)$, orthogonal to $M_{\mathbb{Z} / 3 \mathbb{Z}}$. If $k=3$, then, up to a permutation of the indices, the unique choice for v is $v:=H / 3+d_{1}+d_{2}+d_{3}$. We observe that in this case the vector $H / 3+2\left(d_{1}+d_{2}+d_{3}\right)+d_{4}+d_{5}+d_{6}$ is contained in $N S\left(X_{\mathbb{Z} / 3 \mathbb{Z}}\right)$, because it is $v+\sum_{i=1}^{6} d_{i}$. If $k=6$ a priori, we have two possible choices for v : either $v:=H / 3+d_{1}+d_{2}+d_{3}+d_{4}+d_{5}+d_{6}$ or $H / 3+2\left(d_{1}+d_{2}+d_{3}\right)+d_{4}+d_{5}+d_{6}$. The first is not admissible, since it implies $H / 3 \in N S\left(X_{\mathbb{Z} / 3 \mathbb{Z}}\right)$. The second is equivalent to the choice $v:=H / 3+d_{1}+d_{2}+d_{3}$. So if $d \equiv 0 \bmod 9$, then $N S\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$ is generated by the generators of $M_{\mathbb{Z} / 3 \mathbb{Z}}$ and by $v=H / 3+d_{1}+d_{2}+d_{3}$. Similarly, if $d \equiv 3 \bmod 9$, then either $k=1$ or $k=4$. Since $\sum_{i=1}^{6} \alpha_{i} \equiv 0 \bmod 3, k=1$ is not admissible, so (up to a permutation of the indices) we can assume that $v:=H / 3+d_{1}+d_{2}+2 d_{3}+2 d_{4}$. If $d \equiv 6 \bmod 9$, then either $k=2$ or $k=5$. If $k=2$, we can assume that $v:=H / 3+d_{1}+2 d_{2}$. In this case we observe that the vector $H / 3+2 d_{1}+d_{3}+d_{4}+d_{5}+d_{6}$ is contained in $N S\left(X_{\mathbb{Z} / 3 \mathbb{Z}}\right)$, because it is the sum of v and $\sum_{i=1}^{6} d_{i}$. But the vector $H / 3+2 d_{1}+d_{3}+d_{4}+d_{5}+d_{6}$ is the unique admissible choice for v (up to a permutation of the indices) with $k=5$. So if $d \equiv 6 \bmod 9$, we can assume that $v:=H / 3+d_{1}+2 d_{2}$.

Remark 5.6 There is a clear geometric meaning of H and d. Indeed, for every value of d there is a projective model of $S_{\mathbb{Z} / 3 \mathbb{Z}}$, given by $\phi_{|H|}: S_{\mathbb{Z} / 3 \mathbb{Z}} \rightarrow \mathbb{P}\left(H^{0}(X, H)^{\vee}\right)$. The image $\phi_{|H|}\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$ is a surface with six singularities of type A_{2}, and it is in fact the quotient surface $Y_{\mathbb{Z} / 3 \mathbb{Z}} / \mathbb{Z} / 3 \mathbb{Z}$. The self intersection of H determines the dimension of the ambient space of $\phi_{|H|}\left(S_{\mathbb{Z} / 3 \mathbb{Z}}\right)$, which is \mathbb{P}^{d+1}. This is the smallest projective space in which one can describe the quotient $Y_{\mathbb{Z} / 3 \mathbb{Z}} / \mathbb{Z} / 3 \mathbb{Z}$.

Acknowledgments I am grateful to Daniel Huybrechts for several stimulating discussions and for asking me questions that inspired this paper. I thank Bert van Geemen for reading a preliminary version of this paper, for his helpful comments, and for many interesting discussions. I also thank the anonymous referee who carefully read this paper and suggested several useful improvements.

References

[Bal] W. Barth, K3 surfaces with nine cusps. Geom. Dedicata 72(1998), no. 2, 171-178. http://dx.doi.org/10.1023/A:1005074306462
[Ba2] , On the classification of K3 surfaces with nine cusps. In: Complex analysis and algebraic geometry, de Gruyter, Berlin, 2000, pp. 41-59.
[Be] J. Bertin, Réseaux de Kummer et surfaces K3. Invent. Math. 93(1988), no. 2, 267-284. http://dx.doi.org/10.1007/BF01394333
[BHPV] W. Barth, K. Hulek, C. Peters, and A. van de Ven, Compact complex surfaces. Second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, A Series of Modern Surveys in Mathematics, Springer-Verlag, Berlin, 2004. http://dx.doi.org/10.1007/978-3-642-57739-0
[F] A. Fujiki, Finite automorphism groups of complex tori of dimension two. Publ. Res. Inst. Math. Sci. 24(1988), no. 1, 1-97. http://dx.doi.org/10.2977/prims/1195175326
[GS1] A. Garbagnati and A. Sarti, Projective models of K3 surfaces with an even set. Adv. Geom. 8(2008), no. 3, 413-440. http://dx.doi.org/10.1515/ADVGEOM.2008.027
[GS2] _, Kummer surfaces and K3 surfaces with $(\mathbb{Z} / 2 \mathbb{Z})^{4}$ symplectic action. Rocky Mountain J. Math., to appear. arxiv:1305.3514
[M] S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group. Invent. Math. 94(1988), no. 1, 183-221. http://dx.doi.org/10.1007/BF01394352
[MTW] G. Mongardi, K. Tari, and M. Wandel, Prime order automorphisms of abelian surfaces: a lattice-theoretic point of view. arxiv:1506.05679
[N1] V. V. Nikulin, Kummer surfaces. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 39(1975), 278-293; (English) Math. USSR. Izv. 9(1975/1976), 261-275.
[N2] , Factor groups of groups of the automorphisms of hyperbolic forms with respect to subgroups generated by 2-reflections. Soviet Math. Dokl. 20(1979), 1156-1158.
[N3] $\underset{71 \text { _135. Finite automorphism groups of Kähler K3 surfaces. Trans. Moscow Math. Soc. 38(1980), }}{\text { (190 }}$ 71-135.
[N4] , Integral symmetric bilinear forms and some applications. Math. USSR Izvestija 14(1980), 103-167.
[W] K. Wendland, Consistency of orbifold conformal field theories on K3. Adv. Theor. Math. Phys. 5(2001), no. 3, 429-456.
[X] G. Xiao, Galois covers between K3 surfaces. Ann. Inst. Fourier (Grenoble) 46(1996), no. 1, 73-88. http://dx.doi.org/10.5802/aif. 1507
Dipartimento di Matematica, Università di Milano, via Saldini 50, I-20133 Milano, Italia
e-mail: alice.garbagnati@unimi.it

[^0]: Received by the editors July 22, 2015.
 Published electronically March 18, 2016.
 The author is partially supported by PRIN 2010-2011 "Geometria delle varietà algebriche" and FIRB 2012 "Moduli Spaces and their Applications".

 AMS subject classification: 14J28, 14J50, 14J10.
 Keywords: K3 surfaces, Kummer surfaces, Kummer type lattice, quotient surfaces.

