ON CERTAIN TYPES OF SOLUTION OF THE
EQUATION OF HEAT CONDUCTION
by STEWART PATERSON
(Received 20th December, 1949)
Let f(x, y, 2, t) satisfy the equation
R i A O O U (1)

For certain purposes, particularly in connection with the propagation of a boundary of fusion
etc., it is of interest to discover solutions of (1) which permit the equation :

J=0onstant, ....c.coiiiiiiiiieiiiiiiirrrrr e aaes 2
to be solved explicitly in the form :
G, Y, Z2) =R (B). ceeinineeeinii e (3)
This suggests the examination of solutions of the type
FoFUD)s ceeeeeeeeeecieie e e (4)
where L=d(2,4,2) . (), cevvreriiiriiiniricii e (8)

and f, ¢, ¢ are functions to be determined. To save repetition, Roman capitals denote
arbitrary constants throughout.

L. Linear system. f=f(x,t)=f[{(x,8)]; fi=Frs
(@) Let { =xmt». Then, by (1),

22’ (£) =m(m —~ D)Ef’ (L) + M ™ (L)oot ieeeereeereeriisannennrnneens (6)
That is,
2+ 1
S/ mx h—m(m 1) e, (N
f me ;1+y—t
Consequently n=0, or m= -2n.

If m = -2n50, we may without loss of generality take n = —}, whereupon m =1, and

P = =020 it sreneeesene s enn(8)
Then J/=Aem B et sr e (9)
and so SO =Berf(/2)+C. cvvriiiriiiiiiriiiiitiaeicnieneinennan (10)
n =0 yields the trivial case
1
FO=ALm 4+ B=AZ+B, ..cccoverrrrreirerseeeieirrnrennrenns (11)

which may be regarded as a limiting form of (10).
The only solutions of (1) of the form f(z™¢") are therefore

=B rf*(—”‘—) O, e eeeereeseerreeeeeranresaaans 12
f=Be ot * (12)
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THE EQUATION OF HEAT CONDUCTION
(b) To generalise, let now { =¢ () (t).
Here

fe=¢gf’ and fo=dUf + 423",

where the dot signifies differentiation with respect to = or t. Consequently, by (1),

fl//f ¢¢' lp(ﬁ

G

If we denote f*/f* by 6({), then
0, =0y and 6,=0"¢y.

Consequently

R 1 OO

and from (14) and (15), after some reduction, we have
26 J_(3_$\, (2 _¢_¢
4 ( " ¢'.>+( )
f1(®) fo () =f5 () +/s (@)
It follows that either f, or f, is a constant. That is,

which is of the form :

dp=Bg? or P=A%p. .cccceiiiiiiiiiiirr

In the former case,

i+ b 2B = 2
50 that f, () =0. Also $¢ +pp =2B44 =244%/¢

$=CdB, -B=(1-B)(Cx+D). wevevrrererererrrrrnnes

and we lose no generality in setting B =0, so that

=0 +D. .rcvviiiiiiiiiii
Then . s
B/ =t ceeeiiiiiiiii
whence
Y= —Ey3, =12 /(Bt+F) .cccevvrririinnanrieeennen,

and we may, without loss, take £ =2C2.
Finally, by (14), (18) and (21),

E
e S
which leads to
FO=Perf (D) +Q. oveeerreerrerrreecreeserenneens
Thus, when ¢¢/$? =constant, the only solution is
R
=P erf ( d +_> F@ i
f 2Vt +8 ¢
T=Pr4Q v
is again a trivial limiting case.
If = A%,
Sa(t)=242% and §=DBed™ . ...
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50 STEWART PATERSON

Also, by (14), i
I = ‘ig“f’.f’é, Ceterere s (27)

so that . )
¢~ A% =Cd*$.
1

The term C2/¢ can be removed by setting ¢ =®1-C, 30 that we may take C' =0, giving

p=Ded® + EemT . iiiiiiiiiiiiiiiiieneiririnenen (28)
Then, by (27),
T =0, i (29)
which implies
JEFL+G. i (30)
Collecting (26), (28), and (30), we conclude that when /¢ = constant, the only solution is
f=e4"[Pedr + Qe 4% £ R, .iiiiiiiiiiiiiiieiniineeieeiaeaans (31)

A may be imaginary, in which case P and ¢ are complex.
The only solutions fi¢ (x) . Y (£)] of f,=f,, are therefore : (24), (25) and (31).

2. COylindrical system f=f(r,t)=f[{(r,)]; fe=Frm +%f1_
Let {=¢(r) $(0).

Then v
b -y -1 o
L (32)
d (15) leads t '
an eads to %f=<3_¢_f>+<2_¢f_é_é+l+lq_5_lé> .
# (G0 Grgararsgrg)s

whence - '
$p=B4* or =A%)
In the former case, ¢ =C¢B, $1-B=C(1 - B) (r + D), and we may take B=0, C' =1, where-
upon

B=0, d=1, ¢=r+D. .orivrrrrrecrrerrrerireeeeieens 34
Then, by (33) » 3¢i 1¢ T+ (34)
1
0=<¢‘J>+ﬁ“(r—+z’)‘)’

so that D=0, giving ¢ =r. Also
Yh=3¢% Y= -Ey%, $=1/V2E(+R).

We may take E =2, whence
r

LT LT TN 35
¢ 2Jt+R (85)
Finally, by (32),
1
F7 I = =20 =%, e (36)
which leads to *
. — 72
f—PEi (M) 40 e, e (37)

*Ei(x) = g:: e~Udufu.
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THE EQUATION OF HEAT CONDUCTION 51
Again, if =y — A%}, Y =Be~4™ and
{ &2
30 that
L (39)

The term, Od2/¢ can be removed by substituting ¢ =<DI“—(", so that we may without loss
iake C'=0. The solution of (39) is then

¢ =DIG(Ar) + EXo(AT), eeeevenrerairenvesransrereeseneanns (40)

vhere J, and Y, are zero-order Bessel functions of first and second kinds respectively.
Finally, by (38),

f”[f, = O]
o that
A 2 | AUt (41)
Jollecting the results,
S=e4A"PJ(Ar) + QYo (Ar)] + R, covvnriviiiiiniii (42)

1 may again be imaginary, with P, ¢ complex.
When 4 =0, we have the trivial limiting case

F=PIr+Qaieeiieieeeeeeeeeeeeennne, e, (43)

37), (42) and (43) represent the only solutions f{é(r) . 4 (t)] of f,=Ff,, +; Ir

3. Spheriéal system f=f(r, ) =fIL(r, )] fi=Fer +§fr. As before, let { =¢(r)(t). The

ylindrical solution applies, except that 1/r must be replaced by 2/r in (32) and (33). (35) fol-

»ws as before, but (36) becomes
' 2

frlf=-2 TE e e (44)
7hich leads to
VE+R 2 m r :
=P|——e 4(‘+R)+~—erf~———1+ e 45
f r 2 " oJt+R 9 5)
Again, if J = A%, (39) becomes
. 2 .
G+ G- AP=Cg, o (46)
nd the term C¢?/¢ may be removed as before, so that we take C =0, whereupon
S =[Dedr + Ee=AT][r. ... iiiiiiiiiiiiiiieiiiiieeeeieennnn (47)
(41) still applies, and so
eAzt
f= ; [Pedr + Qe 4TI+ B, .ovveviniiiiiininannnnn PN (48)

| may again be imaginary, with complex P, ¢.
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52 STEWART PATERSON
When 4 =0, we have the trivial limiting case

o Qe e (49)

r
(45), (48) and (49) are the only solutions

S0 HO] of fimft2f,
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