ON CERTAIN TYPES OF SOLUTION OF THE EQUATION OF HEAT CONDUCTION

by STEWART PATERSON

(Received 20th December, 1949)
Let $f(x, y, z, t)$ satisfy the equation

$$
\begin{equation*}
f_{t}=\nabla^{2} f=f_{x x}+f_{y y}+f_{z z} \tag{1}
\end{equation*}
$$

For certain purposes, particularly in connection with the propagation of a boundary of fusion etc., it is of interest to discover solutions of (l) which permit the equation :

$$
\begin{equation*}
f=\text { constant } \tag{2}
\end{equation*}
$$

to be solved explicitly in the form :

$$
\begin{equation*}
g(x, y, z)=h(t) \tag{3}
\end{equation*}
$$

This suggests the examination of solutions of the type

$$
\begin{align*}
& f=f(\zeta), \ldots \ldots \ldots \ldots \tag{4}\\
& \zeta \equiv \phi(x, y, z) \cdot \psi(t) \tag{5}
\end{align*}
$$

where
and f, ϕ, ψ are functions to be determined. To save repetition, Roman capitals denote arbitrary constants throughout.

1. Linear system. $f=f(x, t)=f[\zeta(x, t)] ; f_{t}=f_{x x}$.
(a) Let $\zeta \equiv x^{m} t^{n}$. Then, by (1),

$$
\begin{equation*}
n x^{2} f^{\prime}(\zeta)=m(m-1) t f^{\prime}(\zeta)+m^{2} x^{m} t^{n+1} f^{\prime \prime}(\zeta) \tag{6}
\end{equation*}
$$

That is,

Consequently

$$
\begin{align*}
\frac{f^{\prime \prime}}{\overline{f^{\prime}}} & =\frac{n x^{2+\frac{m}{n}}-m(m-1) \zeta^{\frac{1}{n}}}{m^{2} \zeta^{1+\frac{1}{n}}} \tag{7}\\
n & =0, \quad \text { or } \quad m=-2 n
\end{align*}
$$

If $m=-2 n \neq 0$, we may without loss of generality take $n=-\frac{1}{2}$, whereupon $m=1$, and

$$
\begin{equation*}
f^{\prime \prime} \mid f^{\prime}=-\zeta / 2 \tag{8}
\end{equation*}
$$

Then $f^{\prime}=A e^{-\zeta^{2} / 4}$,
and so

$$
\begin{equation*}
f(\zeta)=B \operatorname{erf}(\zeta / 2)+C \tag{9}
\end{equation*}
$$

$n=0$ yields the trivial case

$$
\begin{equation*}
f(\zeta)=A \zeta^{\frac{1}{m}}+B=A x+B \tag{11}
\end{equation*}
$$

which may be regarded as a limiting form of (10).
The only solutions of (1) of the form $f\left(x^{m} t^{n}\right)$ are therefore

$$
\begin{array}{r}
f=B \operatorname{erf} *\left(\frac{x}{2 \sqrt{t}}\right)+C, \\
f=A x+B . \ldots \ldots \ldots \tag{13}\\
* \operatorname{erf}(x) \equiv \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2}} d u .
\end{array}
$$

(b) To generalise, let now $\zeta \equiv \phi(x) \psi(t)$.

Here

$$
f_{t}=\phi \psi f^{\prime} \quad \text { and } \quad f_{x x}=\ddot{\phi} \psi f^{\prime}+\dot{\phi}^{2} \psi^{2} f^{\prime \prime}
$$

where the dot signifies differentiation with respect to x or t. Consequently, by (1),

$$
\begin{equation*}
f^{\prime \prime} \left\lvert\, f^{\prime}=\frac{\phi \dot{\psi}-\psi \ddot{\phi}}{\dot{\phi}^{2} \psi^{2}}\right. \tag{14}
\end{equation*}
$$

If we denote $f^{\prime \prime} \mid f^{\prime}$ by $\theta(\zeta)$, then

$$
\theta_{x}=\theta^{\prime} \psi \phi \text { and } \theta_{t}=\theta^{\prime} \phi \psi
$$

Consequently

$$
\begin{equation*}
\phi \dot{\psi} \theta_{x}=\psi \dot{\phi} \theta_{t} \tag{15}
\end{equation*}
$$

and from (14) and (15), after some reduction, we have

$$
\begin{equation*}
\frac{2 \phi \ddot{\phi}}{\dot{\phi}^{2}} \cdot \frac{\dot{\psi}}{\psi}=\left(\frac{3 \dot{\psi}}{\psi}-\frac{\ddot{\psi}}{\dot{\psi}}\right)+\left(\frac{2 \ddot{\phi}^{2}}{\dot{\phi}^{2}}-\frac{\ddot{\phi}}{\dot{\phi}}-\frac{\ddot{\phi}}{\phi}\right) \tag{16}
\end{equation*}
$$

which is of the form :

$$
f_{1}(x) f_{2}(t)=f_{3}(t)+f_{4}(x)
$$

It follows that either f_{1} or f_{2} is a constant. That is,

$$
\begin{equation*}
\phi \ddot{\phi}=B \dot{\phi}^{2} \quad \text { or } \quad \dot{\psi}=A^{2} \psi \tag{17}
\end{equation*}
$$

In the former case,
so that $f_{4}(x) \equiv 0$. Also

$$
\phi \ddot{\phi}+\dot{\phi} \ddot{\phi}=2 B \dot{\phi} \ddot{\phi}=2 \phi \ddot{\phi}^{2} / \phi,
$$

$$
\begin{equation*}
\phi=C \phi^{B}, \quad \phi^{1-B}=(1-B)(C x+D) . \tag{18}
\end{equation*}
$$

and we lose no generality in setting $B=0$, so that

$$
\begin{equation*}
\phi=C x+D . \tag{19}
\end{equation*}
$$

Then

$$
\begin{equation*}
3 \dot{\psi} / \psi=\ddot{\psi} / \dot{\psi} \tag{20}
\end{equation*}
$$

whence

$$
\begin{equation*}
\dot{\psi}=-E \psi^{3}, \quad \psi=1 / 2 \sqrt{ }(E t+F) \tag{21}
\end{equation*}
$$

and we may, without loss, take $E=2 C^{2}$.
Finally, by (14), (18) and (21),

$$
\begin{equation*}
f^{\prime \prime} \left\lvert\, f^{\prime}=-\frac{E \zeta}{C^{2}}=-2 \zeta\right. \tag{22}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
f(\zeta)=P \operatorname{erf}(\zeta)+Q . \tag{23}
\end{equation*}
$$

Thus, when $\phi \ddot{\phi} / \phi^{2}=$ constant, the only solution is

$$
\begin{align*}
& f=P \operatorname{erf}\left(\frac{x+R}{2 \sqrt{t+S}}\right)+Q . \tag{24}\\
& f=P x+Q \quad \ldots \ldots \ldots \ldots \tag{25}
\end{align*}
$$

is again a trivial limiting case.

$$
\text { If } \dot{\psi}=A^{2} \psi
$$

$$
\begin{equation*}
f_{3}(t)=2 A^{2} \quad \text { and } \quad \psi=B e^{\Delta^{2} t} . \tag{26}
\end{equation*}
$$

Also, by (14),

$$
\begin{equation*}
f^{\prime \prime} \left\lvert\, f^{\prime}=\frac{A^{2} \phi-\ddot{\phi}}{\dot{\phi}^{2}} \cdot \frac{\phi}{\zeta}\right., \tag{27}
\end{equation*}
$$

so that

$$
\ddot{\phi}-A^{2} \phi=C \phi^{2} / \phi .
$$

The term $C \phi^{2} / \phi$ can be removed by setting $\phi=\Phi^{\frac{1}{1-\sigma}}$, so that we may take $C=0$, giving

$$
\begin{equation*}
\phi=D e^{A x}+E e^{-A x} . \tag{28}
\end{equation*}
$$

Then, by (27),
which implies

$$
\begin{equation*}
f^{\prime \prime} \mid f^{\prime}=0 \tag{29}
\end{equation*}
$$

Collecting (26), (28), and (30), we conclude that when $\psi / \psi=$ constant, the only solution is

$$
\begin{equation*}
f=e^{A^{2} t}\left[P e^{A x}+Q e^{-A x}\right]+R . \tag{31}
\end{equation*}
$$

A may be imaginary, in which case P and Q are complex.
The only solutions $f[\phi(x) \cdot \psi(t)]$ of $f_{t}=f_{x x}$ are therefore : (24), (25) and (31).
2. Cylindrical system $f=f(r, t)=f[\zeta(r, t)] ; f_{t}=f_{r r}+\frac{1}{r} f_{r}$.

Let $\zeta \equiv \phi(r) \psi(t)$.
Then

$$
\begin{equation*}
\theta(\zeta) \equiv f^{\prime \prime} \left\lvert\, f^{\prime}=\frac{\phi \dot{\psi}-\ddot{\phi} \psi-\frac{1}{r} \dot{\phi} \psi}{\dot{\phi}^{2} \psi^{2}}\right. \tag{32}
\end{equation*}
$$

and (15) leads to

$$
\begin{equation*}
\frac{2 \phi \ddot{\phi}}{\dot{\phi}^{2}} \cdot \frac{\psi}{\psi}=\left(\frac{3 \dot{\psi}}{\psi}-\frac{\ddot{\psi}}{\psi}\right)+\left(\frac{2 \ddot{\phi}^{2}}{\phi^{2}}-\frac{\ddot{\phi}}{\phi}-\frac{\ddot{\phi}}{\phi}+\frac{1}{r^{2}}+\frac{1}{r} \frac{\ddot{\phi}}{\dot{\phi}}-\frac{1}{r} \frac{\phi}{\phi}\right) \tag{33}
\end{equation*}
$$

whence

$$
\phi \ddot{\phi}=B \dot{\phi}^{2} \quad \text { or } \quad \dot{\psi}=-A^{2} \psi .
$$

In the former case, $\phi=C \phi^{B}, \phi^{1-B}=C(1-B)(r+D)$, and we may take $B=0, C=1$, whereupon

Then, by (33)

$$
\begin{equation*}
\ddot{\phi}=0, \quad \dot{\phi}=\mathbf{1}, \quad \phi=r+D . \tag{34}
\end{equation*}
$$

$$
0=\left(\frac{3 \dot{\psi}}{\psi}-\frac{\ddot{\psi}}{\psi}\right)+\frac{1}{r^{2}}-\frac{1}{r(r+D)},
$$

so that $D=0$, giving $\phi=r$. Also

$$
\psi \ddot{\psi}=3 \dot{\psi}^{2}, \quad \dot{\psi}=-E \psi^{3}, \quad \psi=1 / \sqrt{2 E(t+R)} .
$$

We may take $E=2$, whence

$$
\begin{equation*}
\zeta=\frac{r}{2 \sqrt{t+R}} \tag{35}
\end{equation*}
$$

Finally, by (32),

$$
\begin{equation*}
f^{\prime \prime} \left\lvert\, f^{\prime}=-2 \zeta-\frac{1}{\zeta}\right. \tag{36}
\end{equation*}
$$

which leads to *

$$
\begin{gather*}
f=P E i\left(\frac{-r^{2}}{4(t+R)}\right)+Q . \tag{37}\\
* E i(x) \equiv \int_{\infty}^{-x} e^{-u} d u / u .
\end{gather*}
$$

Again, if $=\psi-A^{2} \psi, \psi=B e^{-A^{2} t}$ and

$$
\begin{equation*}
f^{\prime \prime} / f^{\prime}=-\frac{\phi}{\zeta} \cdot \frac{A^{2} \phi+\ddot{\phi}+\dot{\phi} / r}{\dot{\phi}^{2}} \tag{38}
\end{equation*}
$$

30 that

$$
\begin{equation*}
\ddot{\phi}+\frac{1}{r} \dot{\phi}+A^{2} \phi=C \dot{\phi}^{2} / \phi . \tag{39}
\end{equation*}
$$

The term, $C \dot{\phi}^{2} / \phi$ can be removed by substituting $\phi=\Phi^{\frac{1}{1-C}}$, so that we may without loss aake $C=0$. The solution of (39) is then

$$
\begin{equation*}
\phi=D J_{0}(A r)+E Y_{0}(A r) \tag{40}
\end{equation*}
$$

where J_{0} and Y_{0} are zero-order Bessel functions of first and second kinds respectively.
Finally, by (38),

$$
f^{\prime \prime} \mid f^{\prime}=0
$$

o that

$$
\begin{equation*}
f=G \zeta+R . \tag{41}
\end{equation*}
$$

Jollecting the results,

$$
\begin{equation*}
f=e^{-A^{2} t}\left[P J_{0}(A r)+Q Y_{0}(A r)\right]+R \tag{42}
\end{equation*}
$$

1 may again be imaginary, with P, Q complex.
When $A=0$, we have the trivial limiting case

$$
\begin{equation*}
f=P \ln r+Q . \tag{43}
\end{equation*}
$$

37), (42) and (43) represent the only solutions $f[\phi(r) \cdot \psi(t)]$ of $f_{t}=f_{r r}+\frac{1}{r} f_{r}$.
3. Spherical system $f=f(r, t)=f[\zeta(r, t)] ; f_{t}=f_{r r}+\frac{2}{r} f_{r}$. As before, let $\zeta \equiv \phi(r) \psi(t)$. The ylindrical solution applies, except that $1 / r$ must be replaced by $2 / r$ in (32) and (33). (35) folJws as before, but (36) becomes

$$
\begin{equation*}
f^{\prime \prime} \left\lvert\, f^{\prime}=-2 \zeta-\frac{2}{\zeta}\right. \tag{44}
\end{equation*}
$$

rhich leads to

$$
\begin{equation*}
f=P\left[\frac{\sqrt{t+R}}{r} e^{-\frac{r^{2}}{4(t+R)}}+\frac{\sqrt{\pi}}{2} \operatorname{erf} \frac{r}{2 \sqrt{t+R}}\right]+Q \tag{45}
\end{equation*}
$$

Again, if $\psi=A^{2} \psi$, (39) becomes

$$
\begin{equation*}
\ddot{\phi}+\frac{2}{r} \dot{\phi}-A^{2} \phi=C \dot{\phi}^{2} / \phi, \tag{46}
\end{equation*}
$$

nd the term $C \dot{\phi}^{2} / \phi$ may be removed as before, so that we take $C=0$, whereupon

$$
\begin{equation*}
\phi=\left[D e^{A r}+E e^{-A r}\right] / r . \tag{47}
\end{equation*}
$$

(41) still applies, and so

$$
\begin{equation*}
f=\frac{e^{A^{\mathbf{2} t} t}}{r}\left[P e^{\boldsymbol{A} r}+Q e^{-\boldsymbol{A} r}\right]+R . \tag{48}
\end{equation*}
$$

! may again be imaginary, with complex P, Q.

When $A=0$, we have the trivial limiting case

$$
\begin{equation*}
f=\frac{P}{r}+Q . \tag{49}
\end{equation*}
$$

(45), (48) and (49) are the only solutions

$$
f[\phi(r) \cdot \psi(t)] \quad \text { of } \quad f_{t}=f_{r r}+\frac{2}{r} f_{r}
$$

Imperial Chemical Industries Lid
Nobel Division Research Department Stevenston

