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Let f(x, y, z, t) satisfy the equation

For certain purposes, particularly in connection with the propagation of a boundary of fusion
etc., it is of interest to discover solutions of (1) which permit the equation :

/ = constant, (2)
to be solved explicitly in the form :

g(x,y,z)-K(t) (3)

This suggests the examination of solutions of the type

/=/(£) W
where £=</>(x, y, z). t/i{t), (5)

and / , </>, <fi are functions to be determined. To save repetition, Roman capitals denote
arbitrary constants throughout.

1. Linear system. /= / (* , t) =/[£(*, *)]; ft=fxx.
(a) Let £ e a W . Then, by (1),

nxif'(O=m(m-l)tf'{£)+m2xmtn+1f"(Q (6)
That is,

/ " nx n -m(m- l )£" (7)

Consequently w=0, or m= -In.

If m = - 2w^0, we may without loss of generality take n = - \, whereupon m — \, and

/" / / '= -{/2 ;...(8)
Then f =Ae~W\ (9)

and so /(£)=2?erf (£/2) + C (10)
n — 0 yields the trivial case

(11)

which may be regarded as a limiting form of (10).
The only solutions of (1) of the form/(xm<n) are therefore

f=Ax + B (13)

2 (x

* erf (*)=-== e-»*du.
VTT Jo
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(b) To generalise, let now ^=</>(z) <ji(t).
Here

and / r a

where the dot signifies differentiation with respect to z or t. Consequently, by (1),

J IJ ^ ( ;

If we denote/"// ' by 0(£), then

0x*=6'4i<l> a n d ef =

Consequently
(15)

and from (14) and (15), after some reduction, we have

which is of the form :

It follows that either /x or / 2 is a constant. That is,

<$ = B<f>* or î  = ̂ V (17)
In the former case,

$$+cj>$ = 2B<j>f = ty$2l(j>,
so that / 4 {x) = 0. Also

</> = C</>s, </>1-B = (1-B){CX+D) (18)

and we lose no generality in setting 5 = 0 , so that

<f>^Cx+D (19)
Then

3^M = #M (20)
whence

i,= -E^, t = l/2J(Et+F) (21)
and we may, without loss, take E = 2C2.

Finally, by (14), (18) and (21),

/"//'= " § = - 2 C (22)
which leads to

Q (23)

Thus, when </></>!(f>2 = constant , the only solution is

f=Px + Q (25)
is again a trivial limiting case.

f3(t)=2A* and if,=Be^'* (26)
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Also, by (14),

f if =

so that

1

The term C<f>2j<f> can be removed by setting j> =<t>1~°, so tha t we may take O = 0, giving

<j> = DeAx + Ee~Ax (28)
Then, by (27),

/ " / / '=0 . (29)
which implies

f = Ft + G (30)
Collecting (26), (28), and (30), we conclude that when ifi/ift = constant, the only solution is

f=eAH[PeAx + Qe~Ax]+R (31)

A may be imaginary, in which case P and Q are complex.
The only solutions f[<f>{x) . tfi(t)] offt=fxx are therefore : (24), (25) and (31).

2. Cylindrical systemf=f<f,t)=f[£(r,t)]; /«=/„•+-/,.

Let t=<f,(/•)</,(«).
Then

IT- ^ , (32)
and (15) leads to

whence
<j>j>=B<j>* or i/i=

In the former case, <f>=C(j>B, </>1-B = C(l -B)(r + D), and we may take B = 0, (7 = 1, where-
upon

# = 0, <£ = 1, <f>=r + D (34)
Then, by (33)

so tha t £> = 0, giving </> = r. Also

i/.i/r' = 3 ^

We may take E =2, whence

Finally, by (32),

which leads to *

/"// '= - 2 { - l (36)

^ 5 ) ) : ( 3 7 )

*Ei(x) = \ *
J
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Again, if =JJ-A2I}>, <p = Be-A'* and
4 A*<t>+$ + <f>lr

f l f - ~ l J2 . (38)

so that

$ + -<j>+As<f>~C<pl<f> (39)
I

The term, C^2/<£ can be removed by substituting <f> = <P1~c, so that we may without loss
;ake C = 0. The solution of (39) is then

<f,=DJ0(Ar)+EY0(Ar), (40)

vhere «70 and Yo are zero-order Bessel functions of first and second kinds respectively.
Finally, by (38),

/ " / / ' = 0,
0 that

f=OC+B (41)
Collecting the results,

f=e-*'t[PJ0(Ar)+QY0(Ar)] + B (42)

1 may again be imaginary, with P, Q complex.
When A = 0, we have the trivial limiting case

f^Plnr + Q (43)

37), (42) and (43) represent the only solutions f[<j>{r) . ip(t)] oift=frr +-fr.

3. Spherical system f=f(r, t) =f[£(r, <)] ; / ( = / „ +~fr. As before, let £ =<f>(r) if,(t). The

ylindrical solution applies, except that 1/r must be replaced by 2/r in (32) and (33). (35) fol-
DWS as before, but (36) becomes

/ " / / ' = - 2 f - | , (44)

rhich leads to

Again, if i/i = A2t/), (39) becomes

£ + ?^-4V = <W. (46)

nd the term G^/^ may be removed as before, so that we take C = 0, whereupon

r]lr (47)
(41) still applies, and so

f [ Q]+ (48)

[ may again be imaginary, with complex P, Q.

https://doi.org/10.1017/S2040618500032949 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500032949


52 STEWART PATERSON

When A = 0, we have the trivial limiting case

(45), (48) and (49) are the only solutions

of / ( =
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