
JFP 11 (6): 629–671, November 2001. c© 2001 Cambridge University Press

DOI: 10.1017/S095679680100418X Printed in the United Kingdom

629

How to look busy while being as lazy as ever:
the Implementation of a lazy functional

debugger

HENRIK NILSSONã
Department of Computer Science, Yale University, CT, USA

(e-mail: nilsson@cs.yale.edu)

Abstract

This article describes the implementation of a debugger for lazy functional languages like

Haskell. The key idea is to construct a declarative trace which hides the operational details of

lazy evaluation. However, to avoid excessive memory consumption, the trace is constructed

one piece at a time, as needed during a debugging session, by automatic re-execution of the

program being debugged. The article gives a fairly detailed account of both the underlying

ideas and of our implementation, and also presents performance figures which demonstrate

the feasibility of the approach.

Capsule Review

This paper is concerned with the problems of gathering and storing information about the

evaluation steps that lazy functional programs go through during execution. This information

is stored in a structure called the Evaluation Dependence Tree (EDT), a call graph like

structure. The EDT stores values in their most evaluated form, so can be considered (for

debugging purposes) as a strict call graph, and can be optionally operated on in a manner

typical to strict languages.

This paper describes in detail a specific implementation of an EDT implementation inside

the authors’ compiler for a large subset of Haskell. A number of creative techniques are used

to make the system tractable, and an algorithmic debugger backend is also described using

an example debugging session.

1 Introduction

Lazy functional languages have many attractive features. Unfortunately, availability

of good, general-purpose debuggers is not one of them (Wadler, 1998). Why is this?

One reason might be that the need for debugging tools for lazy functional

languages is less pressing than for traditional languages like C. In any event, it

ã This work has been supported by the Swedish Board for Industrial and Technical Development
(NUTEK) and by the Wenner-Gren Foundations, Stockholm, Sweden. The implementation work was
mainly carried out at Linköpings Universitet, Sweden. The paper was mainly written at INRIA Sophia
Antipolis, France.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

630 H. Nilsson

is clear that a lot less effort has been spent on developing debugging1 tools for

lazy languages than, say, to find clever compilation techniques. Hence those who

persist in using lazy functional languages have learned to live without the kind of

debugging support the rest of the world takes for granted, even further reducing the

perceived need for such tools. This is a pity, since the lack of debuggers is likely to

be one reason for why lazy functional languages so far have not gained widespread

acceptance. Who can blame, say, a student from being discouraged when there is

no easy way to find even simple beginners’ mistakes? Moreover, even the most

experienced and devout functional programmer is likely to waste time looking for

bugs which ought to be trivial to find.

A more fundamental reason is that it is difficult to develop good debuggers

for lazy languages. There are two major problems. The first is inherent in the

lazy evaluation strategy. In traditional languages, the execution closely follows the

syntactic structure of the source code. This makes it straightforward to trace the

computation, set break-points, single step, etc. In a lazy language there is no such

immediate relationship between the structure of the source code and the structure of

the computation since the computation is demand-driven (Morris, 1982; O’Donnell

& Hall, 1988). This is of course why lazy functional languages are interesting in

the first place, but it does mean that conventional debugging techniques are only of

limited use.

The second problem is the programming style which ensues when the abstraction

possibilities offered by functional languages are really exploited, for example in

monad-structured code or when using sophisticated combinator libraries. The net

effect is typically an abundance of large and complicated functional values, made up

from built-in and user-defined functions by means of partial application. Trying to

decipher such values during debugging can be quite a challenge. While this problem

is not specific to lazy functional languages per se, it seems to be the case that this

kind of programming idioms are particularly popular within the lazy functional

programming community.

However, there is some reason to hope that usable, lazy debuggers could soon

be developed. Recent, on-going work in the area includes Sparud & Runciman

(1997) and Spraud (1999), as well as our own (Nilsson, 1998, 1999). The purpose

of this article is to contribute to this end by giving a fairly detailed account of

the implementation techniques used in our debugger, and how these mechanisms

can be fitted into lazy functional language implementations. While some of the

key ideas behind this work are not new (Nilsson & Fritzson, 1994, Nilsson, 1997),

refining them and putting it all together into a full-scale prototype required a

substantial effort and was only completed fairly recently. Thus, this is the first

time the tested and working versions of our techniques are presented in detail to

a broader audience (the only previous detailed description being the author’s thesis

(Nilsson, 1998)).

1 Note that we are not concerned with performance debugging (or profiling) here. That area has been
successfully addressed by others (Runciman & Wakeling, 1993; Runciman & Röjemo, 1996; Sansom
& Peyton Jones, 1995).

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 631

The techniques presented in this article address the first of the two problems

outlined above, aiming at providing debugging support which is on par with what

can be found for other classes of languages. The nature of the second problem is

different, and it is a bit difficult to see how a debugger should automatically be able

to penetrate arbitrary, user-introduced monads and combinators in order to present

a computation at a suitable level of abstraction. Some kind of user extensibility

would probably be needed. On the other hand, for a language like Haskell, where all

I/O is monadic and where there is syntactic support for programming in monadic

style, it is clear that a good debugger at least would have to provide partial solutions

in this respect. The implemented system handles higher-order functions and partial

application. Thus monadic and combinator-structured code can be debugged, but

since there is no specialized support, this is usually not easy. The system does not

handle the special monadic syntax in Haskell at all.

Many ‘real world’ applications tend to rely on commonly implemented language

extensions such as unsafe execution of I/O computations, concurrency, and impera-

tive state. In practice, as one of the anonymous referees suggested, it is possible that

this is where a large part of any programming mistakes are made. This paper does

not address these extensions, but we acknowledge that a comprehensive debugger

for a lazy functional language eventually must do so. However, dealing with the

purely functional aspects is still going to be central, in particular for users with little

previous exposure to functional programming.

Our approach is based on tracing lazy computations abstractly. The trace con-

structed is an Evaluation Dependence Tree (EDT) (Nilsson & Sparud, 1997), which

effectively hides most of the artefacts of the lazy evaluation strategy. The EDT,

which is a declarative trace, can be used for algorithmic debugging (Shapiro, 1982),

or, since it resembles a strict call tree, to explore the computation in a way similar

to how a conventional debugger is used. Since construction of a complete EDT

in many cases would be infeasible due to time and space constraints, we employ

a scheme where parts of the EDT are constructed on demand by re-executing the

program being debugged. We refer to this as piecemeal tracing. The practicability

of this scheme is, of course, to a large part determined by the extent to which it is

possible to obtain acceptable performance. We have demonstrated promising results

in this respect (Nilsson, 1999). For the sake of completeness, this article also presents

some measurements, in some cases for large, realistic, benchmarks which previously

could not be tested due to limitations in our compiler.

We do not attempt to evaluate the effectiveness of the debugger in finding bugs in

this paper. An independent comparative evaluation of three systems including ours

has been carried out by Chitil, Runciman & Wallace (2001). That study indicates

that our debugger is fairly straightforward to use, at least for non-monadic and

non-combinator-structured code.

The structure of the rest of the article is as follows. Section 2 defines what an

EDT is. Section 3 explains the techniques we use to construct them. Section 4 gives

a detailed account of our particular implementation of these techniques, and how

they have been integrated into a language implementation. Section 5 evaluates the

performance of our debugger. Section 6 discusses related work. Section 7 sums up

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

632 H. Nilsson

and discusses future work. The appendix explains algorithmic debugging and gives

a substantial debugging example.

2 The Evaluation Dependence Tree

The Evaluation Dependence Tree is a tree-structured, declarative execution record

or trace of a lazy computation. Its key property is that it abstracts from operational

details, such as evaluation order, emphasising the syntactic structure of the program

instead. This section defines and illustrates this notion.

2.1 EDT definition

Each node in an EDT corresponds to a reduction step, recording the name of the

applied function, the arguments and the result. The EDT is declarative in the sense

that it essentially is a proof tree relating terms to terms through the equations

defining the program to be debugged, the target. From this perspective, the structure

of the tree reflects a proof strategy where terms as soon as possible are simplified

exactly as much as needed for obtaining the final result of the program; that is, an

eager evaluation strategy which somehow stops as soon as the result of a reduction

would not be used. Thus one might think of the EDT as a strict call tree, up to a

point. This also means that values will be present in their most evaluated form in

the tree since reductions are seemingly performed as soon as possible.

(Sub)expressions left unevaluated can, for the purpose of finding some particular

bug, be abstracted to a special value meaning ‘unevaluated, assume it is correct’ since

they cannot have influenced the computation in any way. Even if the assumption

is wrong, the bug can still be found. This is an important realization, since this

abstraction often reduces screen clutter considerably, thereby helping the user focus

on the relevant parts of the displayed terms. In the present system, the abstraction is

carried out by the user interface, so in principle it would still be possible to display

unevaluated expressions if desired.

A crucial aspect of this scheme is that the semantics of the target program is

unaffected: construction of and subsequent navigation through an EDT does not

cause further evaluation.

The following definitions capture the central aspects of the EDT notion. It might

be helpful to read these in conjunction with Section 2.2 which provides a concrete

example.

Definition 2.1 (Direct evaluation dependence) Let f x1 . . . xm be a redex for some

function f (of arity m) with arguments xi, 1 6 i 6 m. Suppose

f x1 . . . xm ⇒ . . . (g y1 . . . yn) . . .

where g y1 . . . yn is an instance of an application occurring in f’s body and further-

more a redex for the function g (of arity n) with arguments yi, 1 6 i 6 n. Should

the g redex ever be reduced, then the reduction of the f redex is direct evaluation

dependent on the reduction of the g redex. �

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 633

The g redex in Definition 2.1 is thus a direct descendant of the f redex (i.e.

an instance of an application syntactically occurring in the body of f), and the

evaluation of the latter, as far as it was taken, caused the evaluation of the former.

Hence direct evaluation dependence. Notice that this is a relation between reductions,

which also can be seen as function calls. Thus direct evaluation dependence can be

understood as a generalized call dependence which does not require the function

calls on which a call depends to take place during the latter call.2 Also note that

normal call dependence is subsumed by Definition 2.1 as long as it is understood

that a direct function call is equivalent to instantiating an application and then

reducing it, only much more efficient.

Definition 2.2 (Most evaluated form) The most evaluated form of a value is its rep-

resentation once execution has stopped, assuming reduced redexes are updated with

the result of the reduction. �

Definition 2.3 (EDT node) An EDT node represents the reduction of a redex. It has

the following attributes:

• the name of the applied function

• the names and values of any free variables

• the actual arguments

• the returned result

where values are represented in their most evaluated form. �

Definition 2.4 (EDT) An Evaluation Dependence Tree (EDT) is a tree structured

execution record abstracting the evaluation order, where:

(i) The tree nodes are EDT nodes (in the sense of Definition 2.3), and a special

root node which represents the evaluation of the entire program.

(ii) A node p is the parent of a node q if the reduction represented by p is direct

evaluation dependent on the reduction represented by q.

(iii) The special root node is the parent of the EDT nodes representing reductions

of top-level redexes.

(iv) The ordering of children is such that a node representing the reduction of an

inner redex is to the left of a node representing the reduction of an outer redex

w.r.t. the body of the applied function of the parent node. �

The nodes in an EDT may represent only a subset of the reductions which actually

were performed if some functions are trusted. The special root node is needed because

there may be many top-level redexes in the form of CAFs (Constant Application

Forms) besides main. Requirement (iv) of Definition 2.4 is not a prerequisite for

successful debugging, but does ensure that the user gets a chance to verify the

computation of arguments before these are used in a call. This is usually helpful. On

the other hand, the ordering between the arguments of a function is less important

and thus left unspecified.

2 Maybe ‘lazy call dependence’ would have been a more apt description of the relation.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

634 H. Nilsson

Fig. 1. Sieve of Eratosthenes and its EDT.

2.2 The EDT for a small program

As an illustration, Figure 1 shows a Haskell implementation of the sieve of Er-

atosthenes and its EDT. The example illustrates several points regarding the EDT

definitions. First, note that the structure of the EDT reflects the syntactic structure

of the source code. For example, since take is ‘syntactically called’ from main, the

take-node is one of main’s children. For comparison, Figure 2 shows what the

structure of the actual, lazy, computation might look like. Here, take is called by

whomever first needs to inspect the result of that redex. However, while the EDT

is similar to a strict call tree, there are differences. For instance, filter appears to

stop calling itself recursively despite not having reached the end of its list argument.

Secondly, observe how arguments and results are shown as evaluated as possible.

A redex which was never evaluated cannot be shown in normal form since that would

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 635

Fig. 2. Partial outline of the lazy call tree for the sieve (Figure 1(a)).

imply forcing the redex and thus changing the semantics of the target. Indeed, as

illustrated by this example, it is often the case that such redexes do not have any

finite normal form. Any remaining redexes are instead indicated by ’?’ meaning that

they, for the purpose of debugging, can be assumed to be correct, as discussed above.

In contrast, Figure 2 shows that what is really returned by, for instance, main is

not at all the string "[2,3,5]", but a suspended computation which eventually will

evaluate to this string. The other suspensions are even more complicated and just

shown as <SUSPn>. The interested reader is invited to assume suitable definitions of

the involved functions and construct these suspensions in greater detail.

Finally, Figure 1 also illustrates how the names and values of free variables are

recorded to make it possible to show a closure both when it occurs as an arguments

or result (xnf where x=2), and when it is applied (e.g. xnf 3 where x=2).

The reader might find it helpful at this point to refer to the appendix, which

contains further examples of EDTs and how they are used.

3 EDT generation

This section explains the principles of the EDT-generation mechanisms which we

have developed. The basic scheme, piecemeal tracing, as well as various optimisations

such as selecting starting points and minimising tracing of trusted functions, are

discussed. An implementation based on compiled graph reduction is assumed, but

apart from this the presentation is fairly general. The choice to carry out tracing at

the graph reduction level was made for efficiency reasons and the need to interact

closely with the graph reduction process. Alternative approaches are discussed in

Section 6.

3.1 Dependences

Let us first briefly recall the basic principles of compiled graph reduction. A code

sequence is compiled for each function (supercombinator). This code sequence is

invoked whenever a saturated application of the function, i.e. a redex, is about to

be evaluated. It constructs an instance of the function body and then physically

overwrites the redex root with the root of the instantiated body.

For example, suppose that we have a function f x y = g (h y) x. The code

for f will then perform the rewriting step illustrated in Figure 3, where E and F

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

636 H. Nilsson

Fig. 3. Graph reduction of f E F. The application node indices identify physical heap

locations.

are arbitrary pieces of graph, and the indices on the application nodes (@) identifies

physical locations on the heap. The redex root is application node 1 in Figure 3(a),

and it has thus been physically overwritten with the root of the instantiated function

body in Figure 3(b). The application nodes 3 and 4 are new, constructed by the code

of f in some newly allocated memory cells, whereas the remaining application node

in the original graph, number 2, becomes garbage unless it happens to be shared.

Referring to the EDT definition (Definitions 2.1 to 2.4), recall that an EDT node

represents the reduction of a redex. It records the name of the applied function, the

arguments and the result. Furthermore, the evaluation of a redex depends on the

evaluation of another if the latter redex is an instance of a function application that

syntactically occurs in the body of the applied function.

An EDT node is thus created as the result of reducing a redex, not as a result of

constructing it. On the other hand, the parent of an EDT node is determined when

the corresponding redex is constructed. Since the reduction of a redex can occur

much later than its construction, it is necessary to keep track of the prospective

parent until the redex is reduced (or until the program terminates, at which point it

will be clear that the redex will never be reduced).

We solve this by annotating application nodes with a reference to the EDT node

in question. Whenever a redex is reduced, the annotation of the application node at

the redex root will refer to the node which is the parent of the EDT node which is

about to be created. The application nodes are annotated as they are constructed,

i.e. during the instantiation of a function body. The annotation refers to the EDT

node representing the current reduction, thus capturing the syntactic aspect of the

definition of EDT dependence. The EDT node referenced by a redex will sometimes

also simply be called ‘the parent of the redex’, since this EDT node is the record of

the reduction that created the redex.

Figure 4 illustrates the above scheme. It is the example from Figure 3, but the

application nodes have been annotated with references to the EDT (the dashed

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 637

Fig. 4. Graph reduction with annotated application nodes. A and B are EDT nodes. The

application node indices identify physical heap locations.

arrows). As shown in Figure 4(a), the redex root of the graph is annotated with a

reference to an EDT node marked A. This node is the record of the function call

during which the redex f E F was built, and it will thus become the parent of the

EDT node representing the reduction of this redex.

The situation after the reduction is shown in Figure 4(b). A new EDT node,

marked B, which is the record of the reduction of f E F, has been created and

inserted into the EDT as a child of node A. The new application nodes, created as

a result of instantiating the body of f, have been annotated with references to node

B. This is also true for application node 1 since it is a new node, even though it is

built on top of the old redex root.

This process can be optimised by observing that only application nodes that

could be redexes need to be annotated3. For instance, if h in the above example

is a function of arity two or more, then h F is not a saturated application. An

unsaturated application is not a redex, and there is thus no point in annotating that

application node with a reference to the EDT node. Annotated application nodes

take more time to construct, occupy more space on the heap, and take longer to

garbage collect than unannotated ones.

The children of a node should be ordered innermost-redex first (Definition 2.4).

But due to the demand-driven evaluation, this is not the order in which nodes

chronologically are going to be inserted into the EDT. Application nodes are

3 It is not always statically known whether an application is a redex or not.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

638 H. Nilsson

therefore annotated with a number along with the parent reference as they are

created. The numbering reflects the desired syntactical ordering and allows the

children of an EDT node to be sorted into order as and when the corresponding

redex is reduced.

3.2 Values

The EDT definition also stipulates that function arguments and results should occur

in their most evaluated form in the EDT. Consequently, arguments and results must

not be copied from the heap when an EDT node is built, something which in

any event would be very expensive, but instead be shared via pointers. Once the

execution has terminated, these pointers will refer to the arguments and results in

their most evaluated form by the nature of graph reduction.

Keeping references from the EDT4 to live pieces of graph in the heap means

that the garbage collector must be made aware of the EDT. Otherwise values which

are part of the EDT but no longer referenced by the target would be lost. As

a consequence, not only will the EDT nodes themselves occupy memory, but as

new nodes are added, the EDT will also hold on to an increasing amount of heap

memory which normally would be reclaimed by the garbage collector. We will return

to this point in Section 3.4.

The following example shows how arguments and results are handled. Suppose

that the function f is defined as f x = x + x. Suppose also that we are evaluating

f E, where E is a redex and the result of a preceding reduction step. The situation

immediately after the reduction of f E is shown in Figure 5(a). Notice that the

argument and the result are live pieces of graph, referred to via pointers from

the newly constructed EDT node. Also note how each allocated redex refers to its

parent in the tree (the dashed arrows), and that not every application is a redex.

The result of f E is a new expression, E + E, and the next thing that will happen is

that this expression is reduced. Now, + is strict in both its arguments, which forces

the evaluation of E, yielding 7, say.

The new situation is shown in Figure 5(b). The new EDT nodes, representing

the reductions of the redexes E and E + E, have been inserted as children of the

redexes’ parents. Note how each of these expressions has been overwritten by the

value obtained by evaluating it. Thus, once the execution has terminated, values

referred from the EDT will be in their most evaluated form.

3.3 Piecemeal tracing

A problem with trace based debugging is that there is no upper limit to the size

of the trace. For an EDT-based debugger this is a big practical problem since the

4 In the following, the term EDT will be used both to refer to the EDT as previously defined, including
the heap-allocated values, and in a narrower sense referring only to the EDT nodes proper. When the
distinction is important, it will be clear from the context. This impreciseness is due to the fact that
many parts of the graph simultaneously belong to the EDT and to the running program, making the
exact extent of the EDT difficult to decide.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 639

Fig. 5. Handling of values. The arguments and results in the EDT nodes are live pieces of

graph, referred to via pointers.

logged events (reductions) are very frequent, and since the EDT for efficiency reasons

must be held in primary memory. The latter is a consequence of the structure of the

computation being different from the structure of the EDT. This means that two

consecutive reductions can end up in completely different parts of the tree. Thus, to

carry out the structure transformation simultaneously with the trace construction,

as we do, efficient random access is needed to insert a node in the right place in the

EDT. Furthermore, the EDT nodes maintain pointers to arguments and results on

the heap. During garbage collection, these pointers must be updated, which again

means that efficient random access is needed.

In practice, only a small fraction of the execution events are of any interest for

finding a bug. Thus it is interesting to use various filtering techniques so as to

avoid storing uninteresting events such as reductions involving trusted functions

(see Section 3.8). However, while filtering helps combating the large trace size, and

in addition speeds up the debugging process, one cannot expect such techniques to

make it possible to carry out arbitrary debugging within limited memory resources:

there is no more an upper limit to the number of ‘interesting’ events than there is

one to the total number of events.

Instead of storing the complete EDT, our solution is to store only so much of it as

there is room for. Debugging is then started on this first piece of the tree. If this is

enough to find the bug, all is well. Otherwise, the target is automatically re-executed,

and the next piece of the EDT is captured and stored. The user only notices a

hopefully not too long delay. We refer to this as piecemeal EDT generation. In the

current implementation, re-execution is implemented by running the entire program

again in order to provide the correct demand context. Re-executing the program is

not a problem since pure functional programs are deterministic, even though, from

a practical point of view, it is a bit involved since any input to the program must

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

640 H. Nilsson

Fig. 6. Piecemeal EDT generation. The large, dashed triangle represents the entire EDT, the

smaller triangles represent the parts of the EDT which are stored during the first, second

and third execution. The path going from the root downwards illustrates how the EDT is

traversed during debugging.

be preserved and reused, a forced termination of a looping program automatically

re-issued at the appropriate moment, etc. The process is illustrated in Figure 6.

3.4 Deciding which nodes to store

When tracing piecemeal, the EDT nodes which are going to be stored for an

execution must be selected. The first step is to select the root of the piece of the

EDT which is going to be constructed. This node is called the current root, and only

descendants of the current root are eligible for being kept. Then we assume that

the EDT usually is going to be traversed in an orderly manner, as is the case when

debugging algorithmically or when ‘stepping through’ a computation. This order

directly induces a priority order among the nodes: to choose between two nodes,

prefer the one which would be visited first.

Thus the assumption is that during debugging, the next node to be visited is

typically either the sibling to the right of the current node, or the first child of the

current node. The first choice corresponds to answering ‘yes, correct’ during algorith-

mic debugging, or stepping over a function call. The second choice corresponds to

answering ‘no, incorrect’, or stepping into a function call. Under these assumptions,

a distance measure relative to the current root can be obtained.

Definition 3.1 (Query distance) The query distance measures the distance from the

current root to a descendant in terms of the number of questions which have to

be answered to get from the former to the latter when debugging algorithmically.

Thus:

(i) The query distance to the current root from the current root is 0.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 641

(ii) If the query distance to a node from the current root is d, then the children of

that node are assigned increasing query distances, from left to right, starting

from d+ 1.

(iii) The query distance to nodes which are not descendants of the current root is

undefined. �

How many nodes constitute a suitably large EDT piece? The answer is that the

number of nodes on its own is not a good measure of the size of the EDT since a

single node could refer to an arbitrarily large piece of graph on the heap. A much

more robust solution is obtained by monitoring the real heap memory consumption

of the EDT. This allows the size of the EDT to be kept below a certain limit by

removing the most distant nodes when the EDT grows too large. There is also a

(user-definable) upper bound on the number of stored EDT nodes5. Notice that an

absolutely tight upper bound on the heap consumption is not imposed as the storage

requirements intermittently do exceed the prescribed limit: this is what activates the

pruning process. But as long as a reasonable amount of heap memory is allocated

for debugging (a few megabytes or more), the scheme seems to work well in practice.

It is important to realize that the size constraints cannot be maintained simply by

stopping adding nodes once a size limit has been reached. Instead, the size of the

tree must be constantly monitored and the tree must be pruned whenever a limit is

exceeded. There are two reasons for this. First, nodes are not inserted into the EDT

in an orderly manner (see Section 3.3). This means that the insertion of a node may

necessitate the removal of a more distant node to keep the size of the EDT within

the prescribed limits. Second, the values referred to from an EDT node may grow

after the node has been inserted into the EDT. For instance, suppose that we have

the following function:

from n = n : from (n+1)

Suppose further that there is a redex from 1. Once this redex is reduced, the resulting

EDT node would refer to the result 1 : from 2, which is a compact representation

of the conceptually infinite list of all integers from 1 and upwards. After a while

a much larger part of the result may have been computed, which means that the

EDT node refers to a list 1 : 2 : 3 : . . . This representation of the result occupies

much more space than the previous one.

3.5 Handling constant application forms

Constant Application Forms (CAFs) are top-level constants or, equivalently, 0-arity

functions. Consistently with the lazy paradigm, the value of a CAF is computed

on demand and then shared among its users. The run-time computation of CAFs

is what sets them apart from named functions of arity one or more: the latter are

always compile-time constants.

5 Bounding by the number of nodes occasionally works better than bounding by the size. In addition, the
EDT nodes proper are allocated in a pool outside the heap (see Section 4.2.3). Knowing the maximal
number of nodes simplifies and speeds up the implementation a little.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

642 H. Nilsson

From a debugging perspective, the question is where in the EDT the computation

of a CAF belongs. A natural solution is to let the computation of each CAF result

in a separate EDT since the redexes in the bodies of the CAFs are allocated once

and for all at the top-level. However, the CAF computations are not in general

independent since a CAF may refer to other CAFs. If the value of a CAF is wrong,

the reason may well be that one of the referenced CAFs is erroneous. Unfortunately,

if each CAF yields a separate, top-level EDT, these dependences are not explicitly

recorded and the debugger may conclude that the bug is located in the wrong CAF.

One solution would be to make the CAF dependences explicit by taking out

referred CAFs as extra arguments (cf. lambda lifting). However, that would lose

CAF sharing. Another solution is to topologically sort the EDTs for the CAFs into

dependence order. This ensures that an algorithmic debugger asks the questions

bottom-up, as it were, starting with fundamental CAFs which do not depend on

other CAFs. An advantage over the first approach is that the questions asked will

be simpler. On the other hand, mutually recursive CAFs cause a problem since they

cannot be totally ordered while respecting all dependences. Our implementation

uses the sorting approach. The problem of mutually dependent CAFs is currently

ignored. At the very least, the debugger should warn the user when a CAF belonging

to a mutually recursive set is being verified, and in the event that a bug is found

in such a CAF, the debugger should list all involved CAFs as being potentially

erroneous.

3.6 Handling non-terminating programs

Programs are conventionally expected to compute an answer and then terminate.

Failure to terminate is regarded as an error. In practice there are programs which

are meant to run indefinitely, such as various types of server or control programs,

but these are in any event expected to respond to input, or perform some other

kind of activity, within bounded time. We will not try to characterise harmful non-

termination exactly, but instead assume that it is obvious to a user when a program

is non-terminating in the wrong way. In any case, the user is supposed to stop a

non-terminating computation, e.g. by pressing some special key combination such

as CTRL-C, allowing the debugger to gain control.

To ensure transparent re-execution, it is necessary to add a mechanism which

automatically stops the target. This can be solved by counting the reductions and

stopping when the reduction count reaches the reduction number where the execution

was originally stopped by the user.

Semantically, the standard approach is to identify a non-terminating computation

with other types of execution errors (division by 0, pattern matching failed, etc.).

All of these are denoted by the special symbol ⊥ meaning undefined. Thus, once a

non-terminating program has been stopped, debugging it is in principle no different

than debugging any other program. The undefined values are those redexes which

were being reduced when the error occurred or the user aborted the execution.

Observe that just being a redex is not enough to qualify as being undefined. In

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 643

an implementation which performs zapping6 the problem is easily solved since the

zapped redexes are exactly those which are being evaluated. Thus a debugger can

identify a zap-node with ⊥.

3.7 Arbitrary starting-points

During debugging, it is often the case that the programmer focuses on some par-

ticular functions, hoping that this quickly will lead to the source of the problem.

For instance, these functions might just have been changed, apparently breaking a

previously working program. In a traditional debugger, a common method is to set

breakpoints at strategic points in the code. Similar functionality is desirable also in

an EDT-based debugger. Not only would this save the user the trouble of always

having to start debugging from the root of the entire tree, but the number of nodes

in the EDT could also be reduced drastically.

Our system allows the user to dynamically7 designate one or more functions as

starting-points. During tracing, this has the effect of delaying tree construction until

an application of one of the starting-point functions is encountered, resulting in a

forest of EDTs which are collected below a special root node. Once tracing has

begun, functions designated as starting-points are not treated in any special way.

In particular, recursive applications of a starting-point function does not result in

separate subtrees immediately below the root.

3.8 Trusted functions

Recording every single reduction in the EDT is clearly wasteful. A large number

of the reductions are likely to be applications of well-known and trusted built-in

functions such as arithmetic operations or functions from the standard libraries

(take, drop, etc.). Moreover, large systems are usually built modularly. So, when

a new bug is discovered, a common scenario is that there are a number of well-

tested, trusted modules, and a few prime suspects which recently have been added

or changed. Hence it would be advantageous if tracing of trusted functions could

be minimised.

Shapiro also makes this observation in his seminal paper on algorithmic debugging

for Prolog (Shapiro, 1982), and suggests that procedures that have been declared to

be ‘correct’ should not be traced. Shapiro makes use of this to avoid tracing built-

in primitives in a sample implementation. This works since Prolog is a first-order

language.

Functional languages, on the other hand, are higher-order. Thus it may be

statically unknown which function is being applied. This raises the question what

6 Overwriting a redex being reduced with a special marker for the purpose of detecting black holes and
avoiding a class of space leaks.

7 The code generator associates a flag with each supercombinator which is written and read imperatively
by the debugger. The desired starting points are given as arguments to the command debug which
(conceptually) creates the EDT on which to perform debugging. A user can abandon a particular EDT
at any point and create a new one by issuing the command debug again.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

644 H. Nilsson

it means exactly to ‘trust’ a function. Does the trust extend to all functions which

could be applied in a higher-order function like map, for instance? If not, and it

does seem unreasonable that it would, then it is clear that trusting a function does

not necessarily mean that it can be ignored by the tracer since it may be necessary

to trace subordinate applications. This is actually an issue in a first-order language

too, since it may not be desirable to extend the trustedness of a function to all its

descendants in the (static) call graph.

We take the view that the trust only applies to the actual source code of a

function. The meaning of trust thus becomes clear: ‘there is no bug in the body of

this function.’ There is no trust by transitivity: trusting a function does not imply that

functions applied in the body become trusted, not even if they are statically known.

In the current implementation, the user can declare a module to be trusted through a

pragma, indicating that all functions defined in that module are trusted. The compiler

then computes an attribute for each function which indicates whether it needs to be

traced or not, based on its trustedness and the tracedness of functions applied in its

body. The tracedness information is propagated across module boundaries for the

purpose of separate compilation. In addition, it is possible to interactively declare

further functions to be trusted during debugging. Note that trusting functions with

function-valued arguments is no different from trusting first-order functions, except

that the former usually end up needing tracing since the tracedness of their function

arguments (in general) is unknown.

Now we can make an observation. If untrusted functions are being applied in the

context of a trusted function, then the correctness of a call to the trusted function

is determined solely by the correctness of any calls to the untrusted functions being

applied in its body. In the case of trusted but traced recursive functions, the tracer

makes use of this fact and only inserts nodes corresponding to calls of the untrusted

functions for recursive invocations. This reduces the the number of nodes in the

EDT. See Nilsson (1998) for details.

4 Implementation

This section discusses the implementation of our system. The focus is on the

implementation of the EDT generator, but an overview of the entire system is

provided first in order to explain the relationships between the different parts and

how everything fits together. Our system is based on a traditional G-machine.

However, the ideas do carry over to the STG machine as well, and we conclude this

section with a brief discussion on this.

4.1 System overview

Our debugger has been developed in the context of a compiler (called Freja) which

currently handles a large subset of Haskell8. It compiles to native assembler (SPARC)

8 Roughly, Haskell less user-defined type classes (standard classes like Eq, Ord are built in), and less
support for monadic programming and monadic I/O.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 645

Fig. 7. The components of a debuggable executable. The target program has been compiled

for debugging, resulting in instrumented object code. This is linked with the EDT generator

and the EDT navigator thus forming a debuggable executable.

using a traditional G-machine approach (Augustsson, 1984; Johnsson, 1984). The

generated object code is linked with the Freja version of the Prelude and the runtime

system to form an executable. For debugging, the compiler generates instrumented

code, the linking step also includes the debugger, and a traced version of the Prelude

is used instead of the standard version; see Figure 7. The debugger consists of

the EDT generator and the EDT navigator (a simple user interface). The design

of the navigator is such that it easily could be controlled from a separate process

implementing a more sophisticated user interface.

4.1.1 The compiler

The compiler itself is written entirely in Haskell (HBC). Scanning and parsing

are followed by various transformations and optimisations, type checking, lambda-

lifting, generation of G-code, peep-hole optimisation of the G-code, and generation

of SPARC assembler. When compiling for debugging, simplified translation strategies

are sometimes used and fewer optimisations are performed (e.g. no inlining) to make

it easier to relate the generated code to the original source.

The intermediate representations carry debugging attributes which are gradually

filled in during the compilation. For example, source code references are maintained

(in the form of source code regions) to make it possible for the debugger to show

the relevant source code fragments to the user. Other debugging attributes include

function and module name, names of any free variables, arity, and attributes related

to inference of tracedness (see Section 3.8). All attributes are eventually embedded

in the generated assembler code in the form of an object information record for each

function, making it easy to access the information from the debugger. Some of the

attributes are also propagated to the interface files in order to be available during

subsequent compilations (e.g. information about tracedness), and to the run-time

system generator (see Section 4.1.2) through the run-time system dependence files.

Tracing is supported by instrumenting the generated code on a supercombinator

basis with calls to the tracing routines in the EDT generator and with code that

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

646 H. Nilsson

conditionally, as dictated by the tracing routines, adds tracing annotations to the

graph in the form of traced application nodes.

4.1.2 The run-time system generator

The Run-time System Generator (RSG) generates a large part of the run-time

system and computes some debugging-related information according to the needs of

the compiled modules. It is run once all modules have been compiled, immediately

before linking. Thus the RSG has access to global, cross-module, information. The

needs are communicated via special run-time system dependence files which are

generated by the compiler. Since it is often the case that many modules have similar

needs, the RSG arranges for ‘resource’ sharing whenever possible. For instance,

garbage collection routines are generated and shared extensively: the compiler just

tells the RSG what kind of routines a particular module needs (object sizes, CAF

dependences). A global dependence analysis is carried out to generate code for

performing proper garbage collection of CAFs using a variation of the solution

suggested in Peyton Jones (1987, p. 312).

For debugging purposes, the RSG generates an index which gives the debugger

access to all information records for the traced supercombinators. It also computes

globally unique function (group) numbers which are used to quickly identify recursive

calls during optimised EDT construction as described in Section 3.8. In fact, these

numbers are obtained as a side effect of the global dependence analysis performed

to handle garbage collection of CAFs. Section 3.5 explained that the CAF redexes

have to be topologically sorted into dependence order. This is also done by the RSG

since the dependence analysis has to be carried out across module boundaries, and

again the extra implementation effort was minimal since the RSG carries out this

analysis anyway as discussed above.

Generally speaking, the RSG has turned out to be a very useful device since it

allows a number of tasks to be postponed to ‘link time’ when information from all

modules is available.

4.1.3 The run-time system

The following are the most important points related to debugging:

• The representation of the graph is such that it can be interpreted by the

debugger. For example:

— All objects have distinct tags.

— Function objects carry the function name9, the names of any free variables,

and source code position.

— Data objects carry the constructor name and the names of any associated

fields.

• The EDT is added to the set of garbage collection roots.

9 Local functions are given hierarchical names. Lambda-abstractions are given unique, generated, names.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 647

• The garbage collector measures the size of the heap-allocated data which is

only referenced by the EDT.

• Control is passed to the debugger on run-time errors and user interrupts.

• Support for re-execution through an interface which allows the debugger to

execute and then transparently re-execute the target.

Currently a two-space copying garbage collector is used. It was chosen because

of its simplicity.

4.2 The EDT generator

This section describes the implementation of our EDT generator.

4.2.1 Pruning criteria

The strategy we have chosen for pruning was outlined in Section 3.4: measure the

size of the EDT in terms of its heap memory consumption and the number of EDT

nodes; prune the EDT whenever a size limit is exceeded, keeping nodes which are

close to the current root according to the query distance. The memory consumption

is defined as the amount of heap memory which is only referenced from the EDT;

pieces of graph still in use by the running target program do not count. An invariant

is that either all or no nodes at a certain distance are present in the stored portion

of the tree. This means that once nodes at distance d have been removed, only nodes

strictly closer than d are eligible for insertion.

Since it is difficult to know how much memory the pruned tree occupies without

performing a new garbage collection, we currently do not check that the pruned tree

actually is small enough. However, the tree is pruned substantially at each occasion,

by halving the maximum distance of stored nodes, so in a troublesome situation (e.g.

when the root node refers to large graphs), the tree will become small quickly. This

does mean that the implementation falls short of the ideal of guaranteeing a firm

upper bound on the size of the EDT. Furthermore, no attempt is currently made

to handle a situation where the root node alone holds on to more memory than

permitted. The latter actually turns out to be a real problem in some cases, which

shows that it may be necessary to prune the arguments and result of an EDT node

as a last resort. Of course, that might mean throwing away important information.

If so, the user could try to increase the size bound, try to take a shortcut into the

tree by using starting points, or try to debug a ‘smaller’ problem, for example.

Computing the query distance exactly according to Definition 3.1 turns out to be

difficult since nodes are not going to be inserted in an orderly manner from left

to right when the tree is constructed. Thus the qd attributes cannot be computed

until all nodes have been inserted in the tree, which defeats the purpose of the

attribute! This is solved by attributing each redex with an estimate of the distance

attribute. This estimate can easily be computed given qd of the EDT node for the

call which created the redex, and syntactic features of the source code reflecting the

innermost-first ordering of the children that we have chosen. When and if a redex is

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

648 H. Nilsson

reduced, we take qd of the resulting EDT node to be the estimated distance attribute

of the redex. The estimated query distance is also used to sort the resulting EDT

node into the correct place among its siblings (see Definition 2.4). Using an estimate

means that the pruning might be a bit uneven. In the worst case, this results in some

extra re-executions.

4.2.2 EDT node identity

Under a piecemeal generation scheme, only a part of the complete EDT is going to

be physically stored in the memory at any one point in time. Yet it must be possible

to refer to an arbitrary node in the complete tree. For instance, EDT references

from annotated application nodes must be valid regardless of which EDT nodes

physically are present.

Each node in the complete tree is therefore assigned an identity, id, which is

independent of which part of the tree is currently stored. One possibility (in a

sequential implementation) is to count the reductions. Since the reductions will

occur in exactly the same order when the program is re-executed, and since each

node in the EDT represents a single reduction, the current reduction count can be

used as the id of the node corresponding to the latest reduction. A hash table is

maintained which makes it possible to quickly find an EDT node given its id as long

as the node is present.

4.2.3 EDT nodes

Figure 8 shows a simplified version of the EDT node. The EDT generator allocates

a pool (an array) of such nodes during initialization, the size of which is decided by

the user. The fields id and qd were described above. The field fun info is a pointer

to the information record for the applied function (Section 4.1.1). The fields args

and result point to the list of arguments and the result on the heap. The fields

parent and leftsib point to the parent and to the sibling to the left (if any) of the

node. They are used to facilitate pruning. The field next is used for implementing

the hash table which maps an id to the corresponding EDT node (if present), and

next same qd is used to link all nodes at the same distance from the current root

for pruning purposes.

The remaining fields refer to the sibling to the right (if any) and to the first child (if

any). Thus each EDT node refers to a linked list of its children. What complicates

matters slightly, is that it must be possible to refer to nodes which exist in the

complete tree but have been pruned away. At the same time, it must be possible to

quickly traverse the tree, insert new nodes, etc.

While the id of a node, via the hash table, could be used to refer to siblings

and children, this was rejected for efficieny reasons. Instead, two fields are used in

combination as follows. If rightsib qd is zero, then the field rightsib points to

the sibling to the right of the node. A NULL pointer is used to indicate that there is

no sibling. If, on the other hand, rightsib qd is non-zero, then this indicates that

the sibling to the right has been removed and that the field rightsib is invalid. The

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 649

Fig. 8. A somewhat simplified version of the EDT node (C syntax).

value of rightsib qd is the qd of the removed sibling (which is strictly larger than

zero for all nodes except the root). The fields firstchd and firstchd qd work in

a similar manner, but refer to the first child of the node.

This might seem a rather indirect way to refer to a missing child or sibling, but

the id of the parent together with the difference between the parent’s qd and the

missing child’s or sibling’s qd make it easy to capture the right part of the tree once

an attempt to access a missing node during debugging has triggered a re-execution.

The tracer first waits for the the parent id, which becomes the new current root,

and then for the right child, identified by the qd difference. The point of this is

that any siblings to the right of the desired node will be inserted into the tree (and

then possibly removed), making it possible to go both right (‘yes’ during algorithmic

debugging, or stepping over a function call) and down (‘no’, or stepping into a

function call) from the node.

4.2.4 Traced application nodes

A normal application node contains two fields (in addition to a tag): the function

being applied and the argument it is applied to. A traced application node contains

two extra fields: pid, the id of the parent; and qd, the estimated query distance.

Figure 9 shows the two kinds of application node. A redex where the redex root is

a traced application node is called a traced redex.

Note that the parent is referred to via its id rather than via a pointer. This is

because the parent might be removed due to pruning. Had pointers been used, this

would result in dangling pointers from the heap into the memory area used for

storing the EDT nodes. In general it would then be impossible to determine whether

the parent of a redex is present or not. The id, on the other hand, is always a valid

reference, and the aforementioned hash table which maps ids to EDT nodes can be

used to find out whether a node is still present.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

650 H. Nilsson

Fig. 9. The layout of untraced and traced application nodes. AP and TAP are the node tags.

The fields fun and arg are pointers to the applied function and the argument, respectively.

The field pid is the identity of the parent, and qd, finally, is the estimated query distance.

Fig. 10. The reduction of a traced redex f 1 2. The figure illustrates the situation just before

the code for f is entered. It is assumed that the arity of f is two. Hence only the redex root

is a traced redex.

Figure 10 puts the two types of application nodes into context. It depicts the

situation when a traced redex f 1 2 is being reduced, just before entering the code

for f. Note the reference from the traced application node (TAP) to its parent (the

EDT node A), and the estimated query distance which in this case happens to be

1. We are assuming that the function f has arity 2. Thus f 1 is not a redex and

the other application node is therefore untraced (AP). The box obj. info represents

the object information record for f. Also note the spine stack which at this stage

contains pointers to the redex root and the two arguments.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 651

Fig. 11. The reduction of a traced redex f 1 2. The figure illustrates the situation just

before Trace is called from the code for f.

4.2.5 The Trace algorithm

Now let us consider the algorithm for constructing (a suitable portion of) the EDT.

The construction process relies on a subtle interplay between instrumented code,

generated by the compiler for each (traced) function, and the EDT construction

routines. The scheme has been designed in such a way that instrumented and unin-

strumented code (i.e. code for traced functions and untraced functions, respectively)

is interoperable. Entering uninstrumented code disables EDT construction below

that point. This is exactly what we want for trusted, first-order functions not calling

functions which need tracing. On the other hand, whenever EDT construction is

desired, the involved function must be traced (even if trusted; see Section 3.8). The

complete EDT only contains nodes for calls to traced functions.

The following main steps are performed when a traced function is invoked:

1. Call Trace, the main EDT construction routine, with the following arguments:

• A pointer to a record containing the pid and qd from the redex root. NULL

if the redex root is untraced.

• A pointer to the object information record.

• A pointer to the argument vector on the spine stack.

• A pointer to where the result will be located, i.e. the redex root.

Figure 11 illustrates how Trace is invoked. It shows the reduction of a traced

redex f 1 2, just before calling Trace. Compare Figure 10.

2. Trace now determines whether or not to build an EDT node (see below). If

a node is built, the id of that node is returned along with an initial estimate

of qd for constructing traced redexes. Otherwise, a special value nt (‘no tree’)

is returned. This signals that no traced redexes are to be constructed, causing

the code to behave exactly as if it had not been instrumented. The effect of

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

652 H. Nilsson

this is to disable EDT construction below this point (unless Trace overrides,

see below).
3. Whenever a (potential) redex is built and tree construction is enabled, it is

made a traced redex where id is set to the id returned from Trace, and qd is set

to the initial qd plus an offset. This offset reflects the desired innermost-first

ordering of child redexes and could be computed statically at compile time.

However, in our case it was easier to use a counter, initialized to the initial qd

estimate, which is incremented by one each time a traced redex is built. This

works since redexes are constructed in a suitable order.

Trace has two modes. It starts in waiting mode where it stays until the reduction

which corresponds to the root of the desired EDT part (the current root) takes place.

Then it enters construction mode in which the actual tree building is performed. In

waiting mode, Trace performs the following steps:

1. Increment the reduction counter.
2. Decide whether it is time to enter construction mode. This is just a matter of

comparing the reduction count with the id of the current root. If it is not yet

time, return nt to the caller.
3. Create the root node. Its id is set to the current value of the reduction counter,

which is also returned to the caller along with the initial qd.

Note that instrumented functions always call Trace. Thus Trace can initiate tree

construction whenever that is appropriate. Traced redexes are not constructed from

the top down to the current root (which would be expensive).

In construction mode, Trace behaves as follows:

1. Increment the reduction counter.
2. Check whether the redex root is a traced application node. If not, tree con-

struction is disabled below this point and nt is returned to the caller.
3. Get pid from the redex root and check if node pid is still present. If not, return

nt to caller.
4. Get qd from the redex root and check if it is small enough. If not, return nt to

the caller.
5. Prune the tree if necessary in order to insert a new node. This must be done

since the EDT nodes are allocated from a pool whose size is determined at

the start of a debugging session. Thus it may be the case that there are no

free EDT nodes, and if the node which is about to be inserted is closer to the

current root than the most distant node in the tree, then the tree should be

pruned to make room for the new node. This should not be confused with the

pruning performed by the garbage collector.
6. Create and insert a new EDT node among the children of node pid at the

correct place as indicated by qd (children are sorted by qd). The field id is set

to the current value of the reduction counter, which is also returned as id to

the caller along with qd from the redex root. The fields fun info, args, and

result are set from the corresponding actual arguments supplied to Trace.

For further details, including the source code for Trace with explanations, see

Nilsson (1998).

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 653

4.2.6 Integration into the G-machine

To accommodate the tracing machinery within the G-machine framework (Augusts-

son, 1984; Johnsson, 1984; Peyton Jones, 1987), two small modifications of the

machine were made. First, the instruction FUNSTART was changed so that Trace is

called for traced functions as explained earlier. It also allocates two variables (on the

dump) where it stores the returned id and the initial qd. Secondly, a new instruction

MKTAP was introduced to build traced application nodes. It behaves as follows:

1. Check id (stored on the dump by FUNSTART). If it is the special value nt (‘no

tree’), build a normal application node (i.e. behave as the instruction MKAP).

2. Otherwise, build a traced application node. The pid field is set to id (the EDT

node id is the parent of the redex), and the qd field is set to the current value

of the variable qd (on the dump).

3. Increment the variable qd by one. This ensures that traced redexes are assigned

increasing estimated query distances as they are built.

To avoid complicating the translation of supercombinators into G-code by making

it dependent on whether a supercombinator is traced or not, the instruction MKTAP

is introduced by a subsequent peep-hole optimization pass.

4.3 EDT generation and the STG machine

The Spineless Tagless G-machine (Peyton Jones, 1992) as used in the Glasgow

Haskell Compiler is the other popular abstract machine for compiled graph reduc-

tion. In principle, it is possible to integrate EDT-generating mechanisms as described

in this section into the STG machine. An EDT-generating version of the operational

semantics of the STG machine has been developed to verify this. We will not go

into detail here, but the key points are as follows:

• The STG language needs to be extended with versions of let and letrec

(called letT and letrecT) which conditionally build traced, updatable (po-

tential) redexes, much like MKTAP does.

• Lambda forms need to be annotated with a flag indicating whether or not the

tracer should be called when a closure for that lambda form is entered.

• Pieces of trace-related information need to be stored on the update and return

stacks.

• When compiling for debugging, a special translation into the STG language

must be used, employing letT and letrecT to build traced redexes on the

heap.

5 Performance evaluation

5.1 Benchmarks and symbols

All measurements were performed on a 430 MHz Sun UltraSPARC equipped with

256 Mbyte of primary memory running Solaris. Six different benchmark programs

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

654 H. Nilsson

were used, see below. All except Mini-Freja are from the NoFib suite (Partain, 1993).

Due to the restrictions of the Haskell subset supported by the Freja compiler, the

benchmarks from the NoFib suite had to be adapted (removal of user-defined class

instances etc.). The benchmarks range from small to fairly large in terms of lines

of source code (from 100 to 5800 lines, excluding comments and blanks), but all of

them result in substantial computations (the execution times for non-debugged code

ranged from 1.2 to 13 seconds, and between 1.2 and 16 million traced reductions

were performed during tracing). Note that the size of the computation rather than

the size of the source is what is most important here.

• Anna. Strictness analyser. 5800 lines.

• Cichelli. Uses a brute-force search to construct a perfect hash function for a

set of 16 keywords. 150 lines.

• Clausify. Transforms a proposition to an equivalent in clausal form. 100 lines.

• Infer. Type checker. 800 lines.

• Parser. Scans and parses 1760 lines of Haskell (the code for the parser itself

repeated four times) and prints the resulting abstract syntax tree. 1200 lines.

• Mini-Freja. This is an interpreter for a small non-strict functional language. It

interprets a program computing a list of the first 500 prime numbers using the

sieve of Eratosthenes. 240 lines.

Table 1 lists and explains the symbols used to denote the various parameters and

measured quantities in this chapter. The overall performance is given by relating

the total execution time during tracing (ttot) to the corresponding execution time

without tracing (t0). The time for garbage collection makes up a significant part of

the execution time during tracing and is thus included in ttot, even though garbage

collection times are very sensitive to the amount of memory available and the type

of garbage collector used. The other parts of the total execution time are the time

spent on performing reductions (tred) and the time spent on constructing the tree

(tEC). All of these are accounted for separately in the tables to show where the time

is spent and to make it possible to see what would happen if, for example, garbage

collection times were reduced.

Table 2 gives a breakdown of the execution time when the benchmark programs

are compiled for ordinary execution with our system. To put the performance of

our system into perspective, the column tHBC gives the execution times for the

benchmarks when compiled with HBC (Augustsson, 1997). Note that the garbage

collection times in most cases are small as a result of having a heap which is much

larger than the size of the live data. This was done to reduce the impact of the

chosen garbage collection strategy for the base line cases and to make it possible to

understand t0 more or less as pure reduction time.

5.2 Debugging cost

This section evaluates the performance of our system when performing debugging.

The six benchmark programs have been compiled with debugging support and the

execution time when building the initial part of the EDT has then been measured

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 655

Table 1. Parameters and measured quantities

Symbol Parameter or measured quantity

T The number of traced reductions. This is a rough measure of the size of

a computation. It is also an upper bound of the number of nodes in the

complete EDT.

N The number of nodes in the stored part of the EDT at the end of the

execution.

Nmax User-definable upper bound on the number of nodes in the stored part of

the EDT.

RG Total size of the pieces of graph retained solely by the EDT. Observe that

this is the size towards the end of the execution, as measured during the

last garbage collection. This does not necessarily reflect the average size

of the retained pieces of graph during the execution, or the effort spent on

garbage collecting them (i.e. tGC). Moreover, it is not exactly synchronized

with N.

RGmax User-definable (soft) upper bound on RG.

ttot Total execution time; ttot = tred + tGC + tEC.

t0 Total execution time for the baseline case (no debugging).

tHBC Total execution time when compiled with HBC to put the baseline case

into perspective.

tred Reduction time. Time spent performing graph reduction.

tGC Garbage collection time. Time spent on garbage collection.

tEC EDT construction time. Time spent building and pruning the EDT.

QDmax The maximal QD estimate of a node in the stored part of the EDT. This

is a rough indication of the number of questions that can be answered

before the target program is re-executed.

Table 2. Breakdown of the execution time for the benchmark programs when

compiled for ordinary execution. Average times over five runs

Benchmark t0 [s] tred [s] tGC
a [s] tGC/t0 tHBC [s] tHBC/t0

Anna 2.5 2.4 0.1 0.03 2.7 1.1

Cichelli 4.1 3.7 0.4 0.09 3.4 0.8

Clausify 1.4 1.3 0.1 0.05 1.2 0.8

Infer 1.6 1.4 0.2 0.10 2.8 1.8

Parser 1.1 1.0 0.1 0.09 1.0 0.9

Mini-Freja 13.1 12.0 1.1 0.09 16.3 1.2

a The (initial) heap size was 16 Mbyte, except for Mini-Freja where 64 Mbyte was used.

for various settings of the parameters Nmax and RGmax. Table 3 gives the number

of traced reductions for each benchmark.

The target may have to be re-executed several times during a debugging session.

Thus, if the debugging cost were to be measured as the total time for all re-

executions, it would be much larger than shown here. However, debugging is an

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

656 H. Nilsson

Table 3. The number of traced reductions for each benchmark

Benchmark T

Anna 3 194 501

Cichelli 5 550 908

Clausify 3 095 548

Infer 1 372 261

Parser 1 217 834

Mini-Freja 16 471 363

interactive activity, so what really matters is response time. The time needed for a

single re-execution is therefore more interesting than the total overhead since the

former gives an indication of the worst-case response time.

The re-execution frequency should also be taken into account when judging the

debugging cost. Provided re-executions do not occur too often, relatively long re-

execution times can probably be tolerated since the average response time still would

be low. The tables in this section therefore include a column giving the estimated

query distance of the nodes furthest from the root of the stored EDT portion

(QDmax). This gives a (very) rough indication of the number of questions that can

be answered before the target program is re-executed.

Of course, if the EDT nodes are not visited in an orderly way, the average response

time will increase and approach the worst-case response time. Only extensive real

use can determine how much of a problem this is in practice. The inconvenience of

a possibly sluggish response also ought to be weighed against the inconvenience of

not having a debugger at all.

Table 4 shows the performance for different values of RGmax, the maximal size

of the graph retained by the EDT. In each case, the bound on the number of EDT

nodes, Nmax, has been set to a large value10 in order that the tree size should be

bounded by RGmax only. This is successful in most cases, even if Nmax tends to be

the limiting factor when RGmax gets large.

Table 4 shows that the time spent on garbage collection increases with increasing

RGmax. In most cases it quickly becomes the dominating part of the total execution

time. The time for building the tree is typically small in comparison, but also tends

to grow as the size of the stored part of the tree grows and sometimes account for

a significant part of the execution time.

Clausify is somewhat problematic since there are very large nodes (nodes which

retain a lot of heap) close to the root of the EDT. When the debugger tries to keep

the size of the tree below RGmax, the result is that it sometimes throws away almost

the entire tree. However, this is not a global property: when starting tracing further

down in the tree, it is often possible to store much larger subtrees. The peculiar

10 The EDT nodes proper are stored in a table with Nmax entries. The memory needed for this table plus
the peak heap size must be small enough to avoid excessive paging.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 657

Table 4. Performance for different values of RGmax; Nmax = 1 000 000

RGmax N RG QDmax ttot ttot

t0

tred

t0

tGC

t0

tEC

t0[Mbyte] [nodes] [Mbyte] [s]

Anna

1 37 0.0 78 10 4.0 1.3 2.0 0.7
2 37 0.0 78 12 4.6 1.3 2.5 0.8
4 11627 2.4 156 18 7.4 1.3 4.7 1.4
8 97437 2.9 205 27 10.8 1.3 7.1 2.4

16 996498 8.9 405 28 11.0 1.3 7.8 1.9

Cichelli

1 6471 0.1 116 13 3.2 1.2 1.5 0.5
2 6936 0.2 117 17 4.0 1.2 2.0 0.8
4 259777 3.0 156 36 8.8 1.2 6.2 1.4
8 993945 5.4 215 66 16.2 1.2 13.0 2.0

16 993945 5.4 215 66 16.2 1.2 13.0 2.0

Clausify

1 87 0.6 28 10 7.5 1.4 3.6 2.5
2 7 0.0 21 12 8.7 1.4 4.4 2.9
4 185 1.9 30 18 13.0 1.4 7.7 3.9
8 988201 5.8 59 24 17.4 1.4 12.8 3.2

16 988201 5.8 59 24 17.4 1.4 12.8 3.2

Infer

1 43765 0.8 149 5.7 3.6 1.1 1.8 0.7
2 43765 0.8 149 6.5 4.2 1.1 2.2 0.9
4 43765 0.8 149 9.6 6.2 1.1 3.9 1.2
8 678815 8.9 596 13 8.3 1.1 5.4 1.8

16 999162 9.5 721 13 8.1 1.1 5.5 1.5

Parser

1 201 2.2 98 5.5 5.2 1.2 2.9 1.1
2 224 2.2 99 8.3 7.9 1.2 5.1 1.6
4 79400 1.6 310 9.3 8.7 1.2 5.4 2.1
8 489836 9.9 624 15 14.6 1.2 10.2 3.2

16 979622 12.0 9999 15 14.2 1.2 10.2 2.8

Mini-Freja

1 58542 0.7 418 31 2.3 1.3 0.6 0.4
2 58542 0.7 418 33 2.5 1.3 0.8 0.4
4 245107 2.0 836 33 2.5 1.3 0.8 0.4
8 999353 7.2 1669 48 3.7 1.3 2.1 0.3

16 999353 7.2 1669 48 3.7 1.3 2.1 0.3

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

658 H. Nilsson

entries for N and RG in the first three rows for Parser, are due to N and RG not

being exactly synchronized; see table 1.

Table 5 shows the performance for different values of Nmax, the maximal number

of stored EDT nodes. The bound on the size of the retained pieces of graph, RGmax,

has been set to 64 Mbyte which means that it does not interfere (see column RG).

As the number of nodes in the stored portions of the trees grows, the size of the

retained graph grows and so do the garbage collection times. The EDT construction

times also grow, but again not as quickly.

Table 6 shows the result when Nmax and RGmax interact. The bounds have been set

to 10 000 nodes and 4 Mbyte respectively. The increase in execution time is around

a factor of 2 or better in all cases, while N and QDmax indicates that a reasonably

large portion of the tree has been stored. The exception is again Clausify, where a

somewhat overly aggressive pruning heuristic (see Section 4.2.1) in this case made

matters even worse. (4 Mbyte should have allowed at least 185 nodes to be kept;

see table 4.) In fact, Nmax was the limiting factor in all cases but the Clausify case.

In conclusion, these benchmarks show that the instrumentation overhead and the

cost of building the EDT are reasonably low. (The true instrumentation overhead,

i.e. when garbage collection is considered separately, was between 19 % and 46 %

for these benchmarks.) The costly part of tracing, both in terms of time and space,

lies in retaining pieces of graph which otherwise would have been discarded. As the

tables show, the time spent on garbage collection can account for 70 % or more of

the execution time when the retained graph is getting large. This and the fact that

memory resources are limited demonstrate the importance of bounding the amount

of graph retained by the EDT.

The large overhead for garbage collection is partly due to the use of a simple

two-space copying garbage collector. A generational garbage collector would almost

certainly be beneficial since it is likely that a large part of the graph retained by the

EDT quickly would be moved to an old generation. Earlier experiments carried out

in the context of HBC, which has a generational collector, indicate that this indeed

is the case (Nilsson & Sparud, 1997). However, even for a generational collector the

garbage collection time increases with the size of the live data.

Furthermore, the results in Table 4 and, in particular, Table 5 hint at an interesting

fact: due to the increasing cost of garbage collection as the size of the stored portion

of the EDT grows, it may well be cheaper overall to execute a target program a few

times with a low bound on the size than to execute the same target only once with

bounds set sufficiently high to allow the entire tree to be stored. The reason is that

only a fraction of the nodes in an EDT typically are visited during debugging, so the

re-execution cost is offset by the cost of maintaining irrelevant nodes. If the latter

is higher than the former, the piecemeal scheme wins. Had a generational collector

been used, the effect might not have been so marked, but it would still be there.

Another interesting fact is that re-execution of the entire target program is not

as wasteful as it first may seem: garbage collection and construction of the desired

portion of the EDT often constitute the dominating parts of the execution cost.

Naish & Barbour (1995) propose a partial re-execution scheme based on inferring

the demand context from the stored result of the application which is re-evaluated.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 659

Table 5. Performance for different values of Nmax; RGmax = 64 Mbyte

Nmax N RG QDmax ttot ttot

t0

tred

t0

tGC

t0

tEC

t0[nodes] [nodes] [Mbyte] [s]

Anna

5000 4513 1.8 148 4.2 1.7 1.3 0.3 0.1
10000 9841 2.3 154 4.4 1.8 1.3 0.3 0.2
50000 49957 2.7 182 5.8 2.3 1.3 0.7 0.3

100000 99640 3.1 206 7.0 2.8 1.3 1.2 0.3
500000 497714 5.8 321 30 11.8 1.3 9.2 1.3

Cichelli

5000 4978 0.1 111 6.3 1.5 1.2 0.2 0.1
10000 9878 0.6 121 7.0 1.7 1.2 0.3 0.2
50000 46185 2.1 134 10 2.5 1.2 1.0 0.3

100000 92839 2.4 141 14 3.3 1.2 1.6 0.5
500000 497673 3.8 180 44 10.9 1.2 8.4 1.3

Clausify

5000 4530 4.7 40 3.4 2.5 1.4 0.9 0.2
10000 7796 4.8 42 3.5 2.6 1.4 0.9 0.3
50000 36803 4.9 47 4.6 3.3 1.4 1.3 0.6

100000 96841 5.1 50 5.9 4.3 1.4 2.0 0.9
500000 430422 5.7 55 14 9.8 1.4 6.1 2.3

Infer

5000 4852 0.1 71 2.0 1.3 1.1 0.1 0.1
10000 9868 0.2 82 2.0 1.3 1.1 0.1 0.1
50000 49622 1.4 163 3.1 2.0 1.1 0.5 0.4

100000 99626 3.6 248 6.4 4.1 1.1 2.0 1.0
500000 498621 7.9 519 10 6.7 1.1 4.0 1.6

Parser

5000 4967 1.7 141 1.7 1.6 1.2 0.3 0.1
10000 9732 1.4 158 1.9 1.7 1.2 0.3 0.2
50000 49806 5.0 259 3.1 2.9 1.2 1.2 0.5

100000 99425 4.9 342 4.5 4.2 1.2 2.2 0.8
500000 499482 9.7 630 11 10.2 1.2 7.0 2.0

Mini-Freja

5000 4930 0.4 135 21 1.6 1.3 0.1 0.2
10000 9952 0.4 183 21 1.6 1.3 0.1 0.2
50000 49841 0.7 387 22 1.7 1.3 0.2 0.2

100000 99710 1.0 540 23 1.7 1.3 0.3 0.1
500000 499217 3.8 1185 33 2.5 1.3 1.0 0.2

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

660 H. Nilsson

Table 6. Performance for Nmax = 10 000 and RGmax = 4 Mbyte.

Benchmark N RG QDmax ttot ttot

t0

tred

t0

tGC

t0

tEC

t0[nodes] [Mbyte] [s]

Anna 9481 2.3 154 4.4 1.8 1.3 0.3 0.2

Cichelli 9878 0.6 121 7.0 1.7 1.2 0.3 0.2

Clausify 7 0.0 21 3.1 2.3 1.4 0.6 0.3

Infer 9868 0.2 82 2.0 1.3 1.1 0.1 0.1

Parser 9732 1.4 158 1.9 1.8 1.2 0.4 0.2

Mini-Freja 9952 0.4 183 21 1.6 1.3 0.1 0.2

While such a scheme would be beneficial (as long as the gains are not offset by hidden

implementation costs), the overhead of garbage collection and tree construction puts

an upper bound on the obtainable speedup. For instance, if the combined overhead

of garbage collection and tree construction is roughly equal to the execution time

of the target, then the speedup would be at most two.

Nevertheless, when debugging computationally intensive targets, re-execution is

at some point going to be tedious. Unless the problem size can be made smaller, the

only recourse would be to try to trace very selectively (using the trust and starting-

point facilities) into a large trace store. However, it is worth keeping in mind that

the problem of debugging computationally intensive applications is not unique to

our setting. For instance, manual re-execution of a target is often necessary also

during conventional debugging.

6 Related work

Until recently, the only readily available debugging tools for lazy functional lan-

guages were either low-level operational tracers (such as the tracing facilities offered

by HBC (Augustsson, 1993)), or specialized tools with a limited scope (for example,

Hazan’s & Morgan’s (1993) tool for finding the call path which led to a run-time

error, or Sparud’s (1996) stream programming debugger). This may now be about

to change.

To construct general debuggers dealing with the intrinsic difficulties related to

lazy evaluation, a number of researchers have proposed that some form of trace

reflecting the logical structure of the computation should be constructed, thus

allowing debugging to take place at an appropriate level (e.g. see O’Donnell & Hall,

1988, and Kamin, 1990). However, what were proposed were in most cases complete

traces, requiring storage in proportion to the size of the computation. The result is

severe performance problems as soon as realistic programs are being traced.

Sparud (1994, 1996) takes a transformational approach to debugging lazy func-

tional programs. The idea is to transform all functions so that they return an

execution record in addition to their normal result. Sparud’s aim is to provide a

debugging tool which is as portable as possible. However, in order to avoid changing

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 661

the semantics of the target, a few impure primitives are used. The memory consump-

tion problem is not addressed, and the approach also results in code that runs 8–25

times slower than normal (not counting the extra garbage collection time) (Nilsson

& Sparud, 1997).

The work by Naish & Barbour (1995) is closely related to Sparud’s, and there

are also similarities to the work presented in this article. Naish and Barbour use

a source-to-source transformation, similar to Sparud’s, which transform the target

into a program that generates a tree representing a suitable view of the execution

in addition to its normal output. A key difference between their transformation and

Sparud’s is that they rely on an impure function dirt (Display Intermediate Reduced

Term) which is more complicated to implement than the impure primitives Sparud

uses, but which simplifies the transformations. Unfortunately, no performance figures

are given.

Naish and Barbour also consider the memory consumption problem and suggest

generating parts of the tree on demand. Unlike our piecemeal scheme, they do not

require the entire program to be re-executed each time a new part of the tree is

needed. Instead, once a node at the fringe of the stored portion of the tree is reached,

they re-apply the function of that node to its arguments, and then compare this

application to the evaluated parts of the result of the previous application of the

functions, which is also stored in the node. This will drive the computation exactly

the right amount for constructing the tree below the node in question. Note that

dirt plays a crucial role since comparing against unevaluated parts of the result

would drive the computation beyond what was originally computed which is unsafe.

As to how much of a tree to store, Naish and Barbour suggest building nodes

down to a certain, predetermined, depth. (Then the normal, untransformed, versions

of the functions can be called to obtain better performance.) As discussed in Section

3.4, this does not give a good handle on how much space the stored portion of the

tree really occupies, so in general only a few nodes would probably be stored. This

in turn could lead to frequent, partial, re-executions, which are not necessarily much

cheaper than a complete re-execution.

A prototype debugger based on the ideas of Naish and Barbour, and to some

extent Sparud (1996), has been implemented and integrated into the Hugs interpreter

(Pope, 1998). It uses a version of dirt which only makes use of features provided

as standard with Hugs, thus avoiding any modifications of the underlying language

implementation and making it portable across Hugs implementations. However, this

debugger does not construct partial traces.

Recently, Sparud and Runciman (1997) (Sparud, 1999) proposed an alternative

debugging method based on maintaining complete computational histories, redex

trails , for all values. The system is known as Hat, the Haskell Abstract Tracer. The

idea is that it should be possible to single out an erroneous value and follow its

history backwards until the bug is found. Other erroneous values may be encountered

during this process, but since all values are associated with a trail, it is then just a

matter of following one of the other trails instead. In many ways, a redex trail can

be seen as an EDT with the edges reversed, except that it is much more detailed

since every value (and not only redexes) is associated with its history.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

662 H. Nilsson

Like Sparud’s earlier work, Hat is based on transformations with some support

from the compiler. The transformations currently handle most of Haskell. To address

the memory consumption problem, Sparud & Runciman (1998) proposed pruning

the redex trails by a modified garbage collector. The employed scheme limits the

length of redex trails by truncating trails at some fixed distance from a live piece

of data or output fragment. In EDT terms, this is roughly as if pruning were to be

done at some fixed distance above leaf nodes rather than at some distance below

the root, reflecting the ‘reversed’ nature of a redex trail w.r.t. an EDT. The pruning

risks loosing information important for debugging, but some experiments indicate

that this might not be a severe problem in practice. However, the time costs are

still too high: executing a traced program takes about 15 times longer than normal.

As an alternative to pruning, they also experiment with storing the trace in a file.

This would eliminate the risk of loosing important information. The direction of

the redex trail edges makes storing a trail on file fairly straightforward, whereas

re-execution for filling in missing parts of a trail seems difficult. This is the opposite

to what is the case for an EDT.

An even more recent development is Hood, the Haskell Object Observation

Debugger (Gill, 2000). Hood basically allows values (including functions, represented

as partial mappings) to be observed by inserting what effectively amounts to print-

statements in a target. However, the lazy evaluation order is unaffected, and it is even

possible to observe how a value gradually becomes evaluated over the course of a

computation. Like the other systems discussed here, Hood relies on tracing (to a file),

and the size of the trace can cause performance problems. Hood is implemented as

a Haskell library which only makes use of a few commonly implemented extensions

of Haskell 98. Thus Hood is very portable across implementations, and it handles

full Haskell to the extent that useful points for observation can be found in a target.

Chitil, Runciman and Wallace have performed an interesting comparison of Hat,

Hood, & Freja (2001).

7 Conclusions and future work

This paper has described the implementation of a debugger for lazy functional

languages like Haskell. The central idea is the piecemeal construction of a declarative

trace, the EDT, by repeated automatic re-execution of the target, the size of the

pieces being determined by the amount of memory made available for debugging

purposes. Given a few megabytes of trace storage and a reasonable limit on the

number of stored EDT nodes, a traced program typically takes two to three times

longer to execute than normal, while the stored portion of the trace is usually large

enough to make re-execution a not too frequent event. The efficiency could probably

be increased further by using a generational garbage collector instead of a copying

one. One outstanding performance problem concerns the case when there are very

large nodes close to the current EDT root. A solution might be pruning of argument

and result values as a last resort.

The article also described what is needed to integrate our trace mechanisms into

a language implementation based on graph reduction. Since substantial support

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 663

from the compiler and run-time system is required, retrofitting a tracer as described

herein to an existing system may not be trivial. On the other hand, it is not

infeasible either, since the basic implementation principles assumed by the tracer

are completely standard. In particular, as outlined in Section 4.3, it is possible to

integrate the trace mechanisms into the STG machine.

Some methods for reducing the size of the trace (trusted functions and starting

points) were also outlined. There are room for further improvements in this respect.

For instance, when a program terminates abnormally, it is often useful to start

debugging ‘close’ to the error, just as one would do in a debugger for an imperative

language. This could be achieved by recording the complete child-parent relation,

i.e. the skeleton of an inverted EDT, which seems easy since the needed information,

the parent identity, is available in traced application nodes. The resulting structure

would be similar to what Hazan & Morgan proposed (1993), or to a heavily pruned

redex trail (Sparud & Runciman, 1998), allowing debugging to be started anywhere

along the syntactic call chain.

Having some form of support for monadic programming, and maybe also for

various forms of combinator style programming, would be very desirable. The

problem is that monad/combinator structured code currently only can be debugged

at the implementation level of the abstraction in question. This is often inconvenient.

Unfortunately it is not clear how to address this problem. Some kind of user-

extensible mechanisms are probably called for.

It might also be useful to have the option of tracing at a more fine-grained level,

e.g. local variable bindings, guards, and case-expressions. Note that redex-trails

provide tracing at that level of granularity (Sparud & Runciman, 1997). This can be

achieved by making the complier insert extra lambda-abstractions at suitable points.

We have already described how to handle list comprehensions in that way (Nilsson,

1998).

Finally, the techniques need to be extended to handle full Haskell (at least

adequate support for I/O) as well as commonly implemented extensions such as

unsafe execution of I/O computations, concurrency, and imperative state. It might

be that a more traditional type of debugging would be appropriate at this level,

and thus one would have to find ways of integrating such functionality into our

declarative debugging framework. In a way, this would just reflect the architecture

of a language like Haskell, with its imperative-looking, top-level I/O layer on the

one hand, and the purely functional foundation on the other.

Appendix: Debugging a small program

In this section, we will demonstrate how our debugger can be used to debug a small

but not completely unrealistic lazy functional program. The example is adapted from

Johnsson (1987), and makes use of a ‘circular’ programming style which is typical of

many lazy programs. Unfortunately, a bug has crept into the adapted code, leading

to a black hole.

The Freja debugger is basically an algorithmic debugger, even though it is easy

enough to use it more or less as a conventional debugger to explore a computation,

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

664 H. Nilsson

Fig. 12. Algorithmic debugging illustrated.

should that be desired. Algorithmic debugging (Shapiro, 1982), originally developed

for logic programming, is a semi-automatic debugging technique where the debugger

tries to locate the node which is ultimately responsible for a visible bug symptom in

an execution tree such as an EDT. In a functional setting, this is done by checking

whether the recorded reductions are correct or not, typically in a top-down order,

by asking the user or by referring to some formal specification (Nilsson & Fritzson,

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 665

Fig. 13. Attribute grammar for transforming a binary tree into a binary tree with the same

shape where the tip values are sorted according to some order. S is the start symbol. ↓
indicates an inherited attribute, ↑ a synthesized one

1994). The search ends once a node is found which itself represents an erroneous

reduction but whose children all represent correct computations. It can then be

concluded that the function being applied in the located node contains at least one

bug. The process is illustrated in Figure 12.

The purpose of the program which we are going to debug is to take a binary

tree where the tips contain elements of a type on which a total order is defined

(in our case integers), and return a structurally identical tree where the tips have

been sorted according to the total order. However, we wish to do so using only

one traversal of the tree using circular programming. The basic idea is that the tree

traversal function in addition to the sorted tree returns a list containing the tip

values. This list is then sorted and fed back into the tree traversal at the top level.

This works fine in a lazy language as long as the traversal is not control-dependent

on the sorted list.

As Johnsson shows, starting the development from an attribute grammar can be

helpful. The grammar can be transliterated into a lazy functional program, where

the laziness ensures proper propagation of inherited and synthesized attributes. An

attribute grammar for our problem is given in Figure 13. Figure 14 illustrates the

attribute propagation for a small tree.

To transliterate this grammar into a lazy functional program, one function is

introduced for each non-terminal. The functions are defined by pattern-matching

over the tree type. There is one case for each of the non-terminals’ productions,

where the patterns are given by the right-hand sides of the productions in an obvious

way. The inherited attributes become additional arguments of the function, and the

synthesized attributes are returned as the result, packed into a tuple in case there are

two or more. The result of transliterating into Freja is shown in Figure 15. However,

the transliteration was performed rather carelessly, resulting in a mistake.

When the program is executed, it immediately stops with an error message saying

that a black hole has been encountered: [Fatal error] Black hole! Since this

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

666 H. Nilsson

Fig. 14. Attribute propagation for a small tree.

Fig. 15. A Freja program for solving the tip sorting problem using only one tree traversal.

The program is a transliteration of the attribute grammar of Figure 13, but contains a bug.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 667

does not offer any particularly good lead as to what the problem might be, we

recompile the program with debugging support and start it in debug mode. Below,

the user’s input is typeset in italics:

FREJA DEBUGGER

[no tree]> debug

(((Tip

[Fatal error] Black hole!

aTree

=> (:^:) ((:^:) (Tip 7) ((:^:) (Tip 2) (Tip 5)))

((:^:) (Tip 3) (Tip 1))

1> yes

We use the command debug to start a debugging session. The target is then executed,

but the execution stops almost immediately with the same error message as before.

However, we note that a small part of the result actually has been printed ((((Tip).

The debugger now proceeds to ask the first question. The question concerns the

value of the CAF aTree: is it correct or not? Since the value of aTree looks

perfectly fine, we answer yes.

main => "(((Tip :_|_"

2> no

sortTree

((:^:) ((:^:) (Tip 7) ((:^:) (Tip 2) (Tip 5)))

((:^:) (Tip 3) (Tip 1)))

=> (:^:) ((:^:) (Tip _|_) ?) ?

3> no

The next question concerns main which evaluated to a string which ends in ⊥. This

is not what we expected, so the answer is no. Now the debugger asks about an

application of sortTree. The argument is OK, but in the result we find ⊥ in a tip.

So again the answer is no. We also note that two parts of the result were never

evaluated, indicated by the two question marks.

sortTree’

((:^:) ((:^:) (Tip 7) ((:^:) (Tip 2) (Tip 5)))

((:^:) (Tip 3) (Tip 1)))

[]

?

=> (?, ?, ((:^:) ((:^:) (Tip _|_) ?) ?))

4> no

We are now faced with an application of sortTree’. We immediately notice one

interesting detail: the third argument (t isorted) was never evaluated. However,

this is an operational observation. What does it mean declaratively? Well, we know

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

668 H. Nilsson

for sure that an expression which is not evaluated cannot possibly have influenced

the computation in any way. In particular, it cannot have caused our black hole.

Thus, for the purpose of declarative debugging, we should assume (see Section 2.1)

that an unevaluated expression represents a correct value!

Continuing with our example, we see, by the same reasoning, that the result as far

as we are concerned is mostly correct. However, ⊥ does occur in the result which is

not intended. This reduction is therefore incorrect.

sortTree’ ((:^:) (Tip 7) ((:^:) (Tip 2) (Tip 5))) ? ?

=> (?, _|_, ((:^:) (Tip _|_) ?))

5> no

The next question is again a call to sortTree’. Reasoning as above, we see that

the arguments are correct, and we would thus expect the answer to be completely

defined. But since ⊥ occurs in the result, this is not the case, and the reduction is

again wrong.

sortTree’ (Tip 7) ? _|_ => ([7:?], _|_, (Tip _|_))

6> yes

Once again we encounter a call to sortTree’. This time we have to think more

carefully about our answer since ⊥ occurs as one of the arguments. The argument in

question is t isorted. Looking at the attribute equations for the tip case, we would

then expect the returned tip value to be ⊥ (since head ⊥ = ⊥) and t ssorted to be

⊥ (since tail ⊥ = ⊥). Moreover, we would expect t stips to be a list whose first

element is 7. Thus, given the arguments above, all three components of the result

are correct.

sortTree’ ((:^:) (Tip 2) (Tip 5)) ? ?

=> (?, _|_, ((:^:) ? ?))

7> no

Question 7 is similar to question 5. The answer is again no.

sortTree’ (Tip 2) ? _|_ => ([2:?], _|_, (Tip ?))

8> yes

sortTree’ (Tip 5) ? _|_ => ([5:?], _|_, (Tip ?))

9> yes

Questions 8 and 9 are both similar to question 6, even if the tip values in the results

are unevaluated. Both reductions are thus correct.

Bug located! Erroneous reduction:

sortTree’ ((:^:) (Tip 2) (Tip 5)) ? ?

=> (?, _|_, ((:^:) ? ?))

[no] 7>

The debugger has now collected enough information to locate the erroneous function

and exhibit a particular application of it which manifests the bug symptom. The

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 669

bug evidently occurs in the clause for (:^:). Furthermore, we find that the second

and third arguments are unevaluated. From an operational point of view, this is

strange. Why are these arguments not used? A quick inspection of the source code

reveals that t isorted actually does not occur in the body of the second clause of

the function. This must be wrong. Looking back at the attribute equations, we spot

the mistake and correct the equation for l isorted:

l_isorted = t_isorted

An alternative approach would have been to inspect the equations in order to find

the cause of the black hole, here shown as ⊥. The black hole appears as the second

component of the returned tuple, i.e. t ssorted is bound to ⊥. t ssorted is equal

to r ssorted which depends on r isorted via the definition of (sortTree’ (Tip

5)) (instantiation of the definition gives r ssorted = tail r isorted). In turn,

r isorted is equal to l ssorted which depends on l isorted via the definition of

(sortTree’ (Tip 2)). But l isorted had by mistake been defined as t ssorted.

The definition was thus circular in a self-dependent way, hence the black hole.

References

Augustsson, L. (1984) A compiler for Lazy ML. Proceedings 1984 ACM Conference on LISP

and Functional Programming, pp. 218–227.

Augustsson, L. (1993) HBC User’s Manual. Department of Computing Science, Chalmers

University of Technology, S-412 96, Göteborg, Sweden. (Distributed with the HBC Haskell

compiler.)

Augustsson, L. (1997) The HBC compiler.

http://www.cs.chalmers.se/~augustss/hbc/hbc.html

Chitil, O., Runciman, C. & Wallace, M. (2001) Freja, Hat and Hood – a comparative eval-

uation of three systems for tracing and debugging lazy functional programs. In: Mohnen,

M. & Koopman, P. (editors), Proceedings 12th International Workshop on Implementation

of Functional Languages (IFL 2000), pp. 176–193. Aachen, Germany. (Lecture Notes in

Computer Science 2011. Springer-Verlag.

Gill, A. (2000) Debugging Haskell by observing intermediate data structures. Proceedings

2000 ACM SIGPLAN Haskell Workshop, Montreal, Canada.

Hazan, J. E. & Morgan, R. G. (1993) The location of errors in functional programs. In:

Fritzson, P. (editor), Automated and Algorithmic Debugging, pp. 135–152. (Lecture Notes in

Computer Science 749. Springer-Verlag.

Johnsson, T. (1984) Efficient compilation of lazy evaluation. Proceedings 1984 ACM SIGPLAN

Symposium on Compiler Construction, pp. 58–69. (ACM SIGPLAN Notices, 19(6).)

Johnsson, T. (1987) Attribute grammars as a functional programming paradigm. Functional

Programming Languages and Computer Architecture: Lecture Notes in Computer Science

274, pp. 154–173. Springer-Verlag.

Kamin, S. (1990) A debugging environment for functional programming in Centaur. Research

report, Institut National de Recherche en Informatique et en Automatique (INRIA),

Domaine de Voluceau, Rocquencourt, B.P.105, 78153 Le Chesnay Cedex, France.

Morris, J. H. (1982) Real programming in functional languages. In: Darlington, J., Henderson,

P. & Turner, D. A. (editors), Functional Programming and its Applications. Cambridge

University Press.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

670 H. Nilsson

Naish, L. & Barbour, T. (1995) Towards a portable lazy functional declarative debugger.

Technical Report 95/27, Department of Computer Science, University of Melbourne,

Australia.

Nilsson, H. (1998) Declarative debugging for lazy functional languages. PhD thesis, Depart-

ment of Computer and Information Science, Linköpings universitet, S-581 83, Linköping,

Sweden.

http://www.ida.liu.se/~henni/thesis.ps

Nilsson, H. (1999) Tracing piece by piece: affordable debugging for lazy functional languages.

Proceedings 1999 ACM SIGPLAN International Conference on Functional Programming,

pp. 36–47. Paris, France: ACM Press.

Nilsson, H. & Fritzson, P. (1994) Algorithmic debugging for lazy functional languages. J.

Functional Programming, 4(3), 337–370.

Nilsson, H. & Sparud, J. (1996) The evaluation dependence tree: an execution record for lazy

functional debugging. Research Report LiTH-IDA-R-96-23, Department of Computer and

Information Science, Linköpings universitet, S-581 83, Linköping, Sweden.

Nilsson, H. & Sparud, J. (1997) The evaluation dependence tree as a basis for lazy functional

debugging. Automated Software Eng. 4(2), 121–150.

O’Donnell, J. T. & Hall, C. V. (1988) Debugging in applicative languages. Lisp and Symbolic

Computation, 1(2), 113–145.

Partain, W. (1993) The NoFib benchmark suite of Haskell programs. In: Launchbury, J.

& Sansom, P. (editors), Proceedings 1992 Glasgow Workshop on Functional Programming,

pp. 195–202. Springer-Verlag.

Peyton Jones, S. L. (1987) The Implementation of Functional Programming Languages. Prentice

Hall.

Peyton Jones, S. L. (1992) Implementing lazy functional languages on stock hardware: the

Spineless Tagless G-machine. J. Functional Programming, 2(2), 127–202.

Pope, B. (1998) Buddha: A declarative debugger for Haskell. Honours thesis, Department of

Computer Science, University of Melbourne, Australia.

Runciman, C. & Röjemo, N. (1996) New dimensions in heap profiling. J. Functional

Programming, 6(4), 587–620.

Runciman, C. & Wakeling, D. (1993) Heap profiling of lazy functional programs. J. Functional

Programming, 3(2), 217–245.

Sansom, P. M. & Peyton Jones, S. L. (1995) Time and space profiling for non-strict higher-order

functional languages. Principles of Programming Languages (POPL ’95), pp. 355–366.

Shapiro, E. Y. (1982) Algorithmic Program Debugging. MIT Press.

Sparud, J. (1994) An embryo to a debugger for Haskell. Presented at the Annual Internal

Workshop “Wintermötet”, Department of Computing Science, Chalmers University of

Technology, Göteborg, Sweden.

Sparud, J. (1996) A transformational approach to debugging lazy functional programs. Licentiate

thesis, Department of Computing Science, Chalmers University of Technology, Göteborg,

Sweden.

Sparud, J. (1999) Tracing and debugging lazy functional computations. PhD thesis, Department

of Computing Science, Chalmers University of Technology, Göteborg, Sweden.

Sparud, J. & Runciman, C. (1997) Tracing lazy functional computations using redex trails.

Proceedings 9th International Symposium on Programming Languages, Implementations, Log-

ics and Programs (PLILP ’97).

Sparud, J. & Runciman, C. (1998) Complete and partial redex trails of functional compu-

tations. In: Clack, C., Hammond, K. & Davie, T. (editors), Proceedings 9th International

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

How to look busy while being as lazy as ever 671

Workshop on Implementation of Functional Languages (IFL ’97), pp. 160–177. St. Andrews,

Scotland. (Lecture Notes in Computer Science 1467. Springer-Verlag.

Wadler, P. (1998) Why no one uses functional languages. ACM SIGPLAN Notices, 33(8),

23–27.

https://doi.org/10.1017/S095679680100418X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680100418X

