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Abstract

This is an investigation of whether a group epimorphism maps the maximal perfect subgroup of its
domain onto that of its image. It is shown how the question arises naturally from considerations of
algebraic ^-theory and Quillen's plus-construction. Some sufficient conditions are obtained; these
relate to the upper central series, or alternatively the derived series, of the domain. By means of
topological/homological techniques, the results are then sharpened to provide, in certain circum-
stances, conditions which are necessary as well as sufficient.
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The purpose of this note is to draw attention to a class of group homomorphisms

which has gained prominence from recent developments in algebraic A"-theory [2],

[5].

1. Definition

To define the class, recall that a group P is perfect if equal to its commutator

subgroup [P, P], which is to say that it has trivial abelianization HX(P) = 0

(trivial integer coefficients).

1.1. The homomorphic image of a perfect group is again perfect.

The class of perfect subgroups of a given group G is therefore closed under

automorphisms of G. It is also evidently closed under group union, because if
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each subgroup Ha is generated by its commutators, then so is the subgroup the
Ha's generate. Thus the class admits a maximal element, the perfect radial tyG of
G, which must be a characteristic subgroup. The construction is functorial
because, from 1.1,

1.2. If<j>: G ^ H is a homomorphism, then ${®G) *£ 6>(</>G) < WH.

We inquire under what conditions equality holds in (1.2). Since it is to the
image <f>G which we wish to restrict consideration, suppose <J> to be an epimor-
phism. We seek hypotheses to ensure that tyi^G) = ^(^G), in other words, that
<J> is EP2R—an Epimorphism Preserving Perfect Radicals.

For an extreme example of an epimorphism which is not EP2R, let the exact
<t>

sequence R>-*F-*R correspond to a free presentation of a perfect group P. Thus

F, being free, has only free non-trivial subgroups, and no free group can be
perfect. So although <$F=\, making <j>^F = 1, we have 9P = P. On the other
hand, there are no examples from finite group theory: we shall see that any
surjection of finite groups is EP2R.

Note that solubility of G forces triviality of tfG, since among nth derived
groups we must have (?PG)(n) < G{n\ In fact,

1.3. The following three conditions are equivalent:
(i) G is soluble;
(ii) "5PG = 1 and, for some i, G(/> is finite;
(in) <3>G = 1 and, for somej, Gu)/Z(Gij)) is finite.

The proof is an easy exercise, save for a lemma of Schur to the effect that
GU)/Z(G(J)) finite implies Go+1> finite.

2. Motivation

The preeminent example of a perfect radical is offered by the Whitehead
lemma on the general linear group over a ring A. This identifies ^PGLA as EA, the
subgroup generated by elementary matrices. Moreover, EA — [GLA, GLA] with
the quotient GLA/^PGLA = KXA. This fact prompted Quillen's definition of
KtA (i > 1) as w,(5GLA+ ). Here B is a classifying space functor Group -» Top
and the plus-construction is a functor from Top to itself such that, for any space X,
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there is a cofibration qx: X -» X+ which is character ized by its inducing
(a) an isomorphism on all homology groups (with local, abel ian coeffi-

cients) and
(b) an epimorphism irx{qx): "'i(^) -* "'i(-^+) of fundamental groups

whose kernel is 9w,( X).
Clearly it is important to know how the plus-construction behaves in familiar

topological situations. Here are two examples. (Recall that a map / is said to be
O-connected if its homotopy fibre Ff is, or equivalently, if w,(/) is onto. In both
examples below we assume that /: X -* Y satisfies this condition.)

2.1. The commuting diagram

X 1 X+

QY

Y Z Y+

is co-Cartesian (Y+ = Y UXX+) if and only / / w , ( / ) is E P 2 R .

PROOF. We have to demonstrate that the cofibration q'x: Y -> YUXX+ de-
termined by pushing-out under qx satisfies both (a) and (b). For the former, let 6B
be a local coefficient system of abelian groups on Y UXX+ . Let / ' : X+ -»
Y UXX+ be the push-out of/. The maps /, / ' induce a homomorphism between
the homology exact sequences of the pairs (X+ , qx(X)) and (Y UXX+ , q'x{Y)).

•••-#„(X; qxr&)"^Hn(X+ ;/'*&) - Hn(X+ , qx{X);f'*&)

if, u: i

• • • - Hn{Y; q'$ & ) " 5 H n ( Y UXX+ ; & ) - H n ( Y UXX+ , q ' x ( Y ) ; & ) - * • • •

By construction, the right-hand vertical homomorphism is an excision isomor-
phism. On the other hand qx» is an isomorphism because qx is acyclic. So q'x.
must indeed be an isomorphism.

To check (b), argue via the Steifert-van Kampen theorem. Thus

making Tx{q'x) an epimorphism with kernel wl
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It should be remarked that there are important examples where the diagram of
(2.1) is co-Cartesian yet w,(/) fails to be surjective, notably the inclusion-induced
maps / : BGL3Z -> BGLA [6] and /: B%5 -> BGLA [7] (where 215 denotes the
alternating group).

2.2. Given a plus-constructive homotopy fibration

(in the sense that the induced map (iy)+ -» ŷ+ is a homotopy equivalence), then
is EP2R.

PROOF. After (1.2), 7r,(/)(<3V,( *)) < ^\{Y). So there is a commuting diagram
arising from the homotopy exact sequences of Ff -> X -» Y" and iy+ -» ^ + -» y+ .
From (b) above the vertical sequences are also exact.

lir,(qY)

By assumption the left-hand vertical homomorphism is (up to isomorphism)
irx(qF) and thereby onto, as is w,(/). A diagram chase is now all that is needed.

This simple result is crucial to (3.4) below and to [4], where it is used to create
fibrations which are not plus-constructive.

In view of the fact that (2.2) makes only mild use of the plus-construction
characterization (with property (a) quite ignored), it is not surprising to learn that
the necessary condition, that irx{f) be EP2R, is far from sufficient. For example,
let M be the Poincare homology 3-sphere 5O(3)/3t5 contained in another space
M', constructed in [2] so as to have the same fundamental group and homology
(but only when coefficients are trivial) as M. So the inclusion /: M =• M' certainly
has 7r,(0 EP2R. Moreover, from the homotopy exact sequence

TT2(M') - *,(F,) - ^(M) * »,(M'),

7r,(.Fj) is seen to be abelian, making <3V,(/;-) = 1 and (/j)+ = Ft. However both
M+ and M'+ are (standard) 3-spheres, leaving Fi+ as a contractible space. Yet Ft

cannot be contractible since M and M' are by no means homotopy equivalent.
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Another example is due to Quillen [10], who showed that for any ring A the

ring projection homomorphism

A A A 0\
Ai

induces an integral homology equivalence on general linear groups. Now, by the
Whitehead Lemma, GLR(1) = "5PGLR, so that general linear groups satisfy hy-
potheses (iii) of (3.1) below, and GLp is therefore EP2R. Moreover, BGLp+ is a
homotopy equivalence [2]. On the other hand, the fibre of BGLp is BMA, where
MA is the additive group of all finite matrices over A. Because MA is abelian,
BMA+ = BMA and hence cannot be the (contractible) fibre of BGL/?+ .

3. Results

Let N>-+ G ->-> Q be a group extension. We now present conditions on G, N
sufficient to ensure that <f> is EP2R. In (3.1, ii) below, Zn(G) is the nth center of G
defined by the upper central series Z0(G) = 1, Z,+ 1(G)/Z,(G) = Z(G/Z,(G)).
Hence, if H < G, then

[HZl+l(G), HZI+](G)] < [H, H]Z,{G),

which leads to (HZj(G))u) = Hu\ theyth derived group. On the other hand, if
P < G is perfect, then [HP, HP] = [H, H]P.

3.1. <f>: G -> Q is EP2R if either
(i) <j> is a split extension,
(ii) the kernel N satisfies, for some n,

or
(iii) Gin) < N.^Gfor some n.

Of course, after (1.2) in order to prove these results one has only to verify that
4>9G. In case (i), let \j/: g ^ G be a section for <j>; then by (1.2) again

®G. Therefore 9Q = Q^Q < <t><3>G.
It is convenient to look at (3.1, ii) first when n — 0, which is to say N < tyG. On

setting/ = <t>~1($Q, we have

J = [J, J]N^[J, J]<$G,
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whence

J.<$G < [J, J\<$G = [J.9G, J.9G].

So J.9G is perfect and hence a subgroup of <$G. This forces J < 9G too, and thus
<3>Q = </>/ < Q^G, as required.

An immediate consequence of this case is that any perfect extension is EP2R.
(Such extensions are discussed in [1, Section 11]; however, note the falsity of
Lemma 11.2 there, for example, 3l3^->@3 ->-> Z / 2 satisfies the homology condi-
tions because 213 = [9t3, @3], but is evidently not a perfect extension.) The
extreme example of a perfect extension is when TV = tyG. It follows that
^(G/tyG) = 1. Armed with this fact we may continue the proof of (3.1, ii). We

_ _ * _
pass to the reduced extension TV -̂» G -** Q obtained as the push-out of <}> by

G -•* G = G/<$G. Thus N = N.^G/^G and Q = Q/<j>^G = G/N.^G. Our
justification for this step i s . . .

3.2. <f>: G -** Q is EP2R if and only iffr.G-* Q is EP2R.

The proof is a simple exercise, using the triviality of ^{G/^G) and
Moreover, since tfG = 1, </> is EP2R precisely when tyQ = 1. Given this, we now
complete the proof for (3.1, ii), reformulated as TV < Zn(G). Like before, write
J-<f^Q; then, for all i > 0, J = J(i)N. In particular, taking i= 1 gives
/ < Jw.Zn(G), whence J(n) < / ( n + °. In other words J(n) is perfect, hence trivial;
this means that / = 7(B).TV = TV. So <3>Q = </>/ is trivial after all. It is worth
remarking that this result yields that any central extension is EP2R.

Finally, when expressed in these terms, condition (3.1, iii) implies that Q is
soluble, whence (1.3) applies. This situation obtains whenever the derived se-
quence of G terminates (after finitely many steps). In particular all finite groups
are covered by this condition, as are knot groups with Alexander polynomial 1,
and the general linear group GLA referred to in Section 2 above.

Before progressing to a strengthening of (3.1), we note some equivalent versions
of (3.1, ii).

3.3. Suppose that N is nilpotent. Then the following statements are equivalent:
(a) TV < Zn(G)for some n\
(b) Q acts nilpotently on the abelianization Nah;
(c) Q acts nilpotently on TV;
(d) Q acts nilpotently on the homology groups
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Here, homology is taken with trivial integer coefficients; nilpotent actions are
analysed in, for example, [9]. The result would be no less valid with all bars
deleted; the above format is for purposes of comparison with (3.4) to come. Since
(a) is conveniently taken as the definition for (c) (in the special context of an
extension), only the equivalence of (b) and (d) with (c) ought to be checked. This
is an immediate application of [8, Theorem 2.1] to the nilpotent classifying space
BN. For it is shown there that Q acts nilpotently on ir^BN) for all / *£ k if and
only if on Ht(BN) for the same values of /. Meanwhile, one knows that
TT.(BN) = N in case i = 1, and 0 otherwise, while Ht(BN) = Ht(N) with HX(N)
— Nab. So the two cases k = \ and k infinite give the two equivalences.

The key observation leading to our final result involves (2.2) above. For,
conditions guaranteeing that the classifying space fibration

BN -> BF^ BQ

induces another

BN+ -> BG+ Bt BQ+

further ensure that <J> = w,(2ty) is EP2R. (Of course we may equally well discuss
instead the reduced epimorphism 4>.) Such conditions are given in [2], [3].
However, as the examples following (2.2) are intended to suggest, they can be
weakened considerably and yet still force the EP2R conclusion.

3.4. Suppose that N is nilpotent. Then the following statements are equivalent:
(a)<j>:G -«• Q is EP2R;_
(b) 9Q acts trivially on Nab;
(c) <$Q acts trivially on N;
(d) ®Qacts trivially on Hm(N).

Observe that the conditions of (3.4) are weaker than those of (3.3). In the case
of statements (a), this is precisely the content of (3.1, ii) (Zn(G), and hence its
subgroups, being nilpotent). For the other statements this is a direct consequence
of the following fact [3 (1.2)].

3.5. A perfect group acts nilpotently on a group if and only if the action is trivial.

Combination of (3.5) with our proof of (3.3) establishes the equivalence of (b),
(c) and (d) above. Given (3.2) and the triviality of 9Q when <j> is EP2R, these
conditions are evidently consequences of condition (a). So it remains to confirm
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that (d) in turn implies (a). However, this is an application of (2.2) above, for by
[3(l.l)]thefibration

BN -> BG ->BQ

is plus-constructive; so (3.2) again clinches the result. (Note here that B(j>
plus-constructive need not mean that B<j> is.)
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