New precipitation and accumulation maps for Greenland

ATSUMU OHMURA

Geographisches Institut, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland

NIELS REEH

Alfred-Wegener-Institut für Polar- und Meeresforschung, D-2850 Bremerhaven, Germany

ABSTRACT. Annual total precipitation and the annual accumulation on the Greenland ice sheet are evaluated and presented in two maps. The maps are based on accumulation measurements of 251 pits and cores obtained from the upper accumulation zone and precipitation measurements made at 35 meteorological stations in the coastal region. To construct the accumulation map, the annual precipitation was split into solid and liquid precipitation components. Annual total precipitation exceeding 2500 mm w.e. occurs on the southeastern tip of Greenland, while the minimum precipitation is estimated to occur on the northeastern slope of the ice sheet. The mean annual precipitation for all of Greenland is 340 mm w.e. The largest annual accumulation of about 1500 mm w.e. is found on the glaciers in the southeastern corner of Greenland, while the smallest accumulation is found on the northeastern slope of the ice sheet west of Danmarkshavn. The mean accumulation on the Greenland ice sheet is estimated at 310 mm w.e. The regional difference in accumulation is examined with respect to the 850 hPa (mbar) level circulation. The present surface topography is found to play an important role in determining regional accumulation on the ice sheet.

INTRODUCTION

Accurate information on precipitation and accumulation is an essential prerequisite for understanding the hydrological cycle as well as glacier dynamics. These are also important quantities for estimating future changes of the ice sheet and the sea level, as the greenhouse-induced climatic change takes place. There have already been several attempts to chart the distribution of the annual accumulation of the Greenland ice sheet (Diamond, 1958; Bader, 1961; Benson, 1962; Mock, 1967). It is, however, worthwhile constructing a new map, because of the recent increase in information from ice cores on the ice sheet and the meteorological data in the coastal regions. For constructing the accumulation map, a special effort was made to obtain solid precipitation data for the coastal stations, which are necessary for calculating the winter accumulation for the lower regions of the ice sheet and glaciers. To assist in the use of the maps, digital information is provided in tables. The present results will be used for estimating the mass balance of the Greenland ice sheet, which will be reported in the near future.

GLACIOLOGICAL AND METEOROLOGICAL DATA

The basic information on the pits and cores is presented in Table 1. Altogether, 251 pits and cores are used to calculate the distribution of the annual accumulation on the ice sheet. There are more accumulation data, especially from earlier expeditions, but they are considered to be either too short in terms of the time duration or contaminated by the melt, and thus have been excluded from the present analysis. The period for which the data are used encompasses 77 years from 1913 (de Quervain and Mercanton, 1920; Koch and Wegener, 1930) to 1989 (personal communication from F. Nishio). The precipitation data at coastal sites were collected at 35 meteorological stations and are presented in Table 2. The meteorological data are from the following sources: the Danish Meteorological Institute (1954-62, 1969, 1969-82), ESSA (1968), NOAA (1987), and unpublished precipitation data in the archives of the Danish Meteorological Institute. The Canadian meteorological data were obtained from Hare and Thomas (1974) and Ohmura (1977). The data for Søndre Strømfjord were obtained

Table 1. Annual accumulation at Greenland ice-sheet stations

					stations	GISP MILCENT GISP SITE DIVIDE GISP OHIO 1001 GISP OHIO 1002	70 19 65 03 65 24 65 24	44 35 44 00 47 41 47 15	24 26 19 21
Reference	Station	Coord	inates	Altitude	Accumu-	GISP OHIO 1005 GISP OHIO 2001	65 24 65 07	48 07 45 42	18
					lation	GISP OHIO 2002	65 05	45 18	254
						GISP OHIO 2005	65 09	46 07	240
		°'N,	°'W	m	mm w.e.	GISP OHIO 3005	65 08	44 12	255
		,		***	mm w.c.	GISP OHIO 3007	65 01	44 39	262
						GISP A/1985	70 39	35 50	309
	0.0000000		1,000,000	120 (2012)		GISP B/1985	70 40	37 29	313
	CARREFOUR	69 50	47 26	1849	570	GISP C/1985	7041	38 48	307
enson	00-10	76 25	67 44	864	300	GISP D/1985	70 39	39 38	301
Benson	0-60 1-0	76 44	65 24	1310	650	GISP E/1985	71 46	35 52	308
Benson	1-10	76 49	64 54	1418	400	GISP F/1985	71 30	35 53	309
Benson	1-20	76 54	64 24	1486	330	GISP G/1985	71 10	35 51	309
enson	1-30	76 59	63 54	1519	250	GISP H/1985	70 52	35 51	310
enson	1-40	77 04	63 23	1570	230	GISP A1-S2	67 49	42 55	246
Benson	1-50	77 09	62 54	1630	230	GISP A1	67 28	41 59	254
Benson	1A-10	77 02	62 22	1720	350	GISP A1-S1	67 00	41 39	247
Benson	1A-20	76 56	62 00	1660	450	GISP DYE-2	66 29	46 20	210
enson	1-60 2-0	77 15	62 20	1704	210	GISP SNS-1	66 29	44 50	234
enson	2-10	77 14	61 38	1788	250	GISP SN	66 12	43 40	250
enson	2-20	77 14	61 02	1834	300	GISP SNS-2	65 55	42 44	230
enson	2-30	77 12	60 24	1887	380	GISP SDS-3	65 51	44 07	2510
enson	2-40	77 11	59 45	1885	400	GISP SDS-1	65 42	44 46	2480
enson	2-50	77 10	59 05	1877	405	GISP SAS	65 41	44 19	2507
Benson	2-60	77 09	58 27	1905	390	GISP SDS-2	65 32	44 07	2490
enson	2-70	77 07	57 50	1919	400	GISP P36	64 57	45 04	2630
Benson	2-80	77 04	57 13	1944	400	GISP P20	65 05	44 26	2610
Benson	2-90	77 02	56 54	1959	410	GISP D2	65 10	43 49	2516
Benson	2-100	7704	5607	1992	400	GISP D3	65 11	43 49	2499
Benson	2-120	77 12	55 46	2140	320	GISP D4	65 11	43 49	2495
Benson	2-125	77 03	5431	2152	320	GISP D5	65 11	43 49	2502
Benson	2-150	7704	52 56	2273	270	GISP D6	65 11	43 50	2499
Benson	2-175	7704	51 20	2392	240	GISP ST1	65 11	43 50	2484
Benson	2-200	77 11	49 47	2458	220	GISP BDS	6431	44 20	2730
Benson	2-225	77 04	48 0 1	2536	185	GISP DS-3	63 43	44 32	2820
Benson	2-250 4-0	76 58	46 60	2616	165	GISP DS-2	63 33	44 57	2800
Benson	4-25	76 39	45 43	2674	175	GISP SD	63 33	44 36	2831
Benson	4-50	76 19	45 06	2720	175	GISP DS-1	63 36	44 16	2820
Benson	4-75	75 60	44 35	2749	185	Hamilton Northice	78 04	38 29	2345
Benson	4-100	75 39	43 58	2778	190	Hendrickson 66 17	47 46	1792	317
enson	4-125	75 18	43 26	2821	205	Koch-Wegener	75 59	30 43	2310
lenson	4-150	74 57	42 59	2851	210	Koch-Wegener	75 46	32 44	2241
lenson	4-175	74 36	4233	2873	220	Koch-Wegener	75 42	33 18	2513
enson	4-200	74 14	4211	2918	230	Koch-Wegener	75 34	34 05	2570
enson	4-225	73 53	41 48	2940	230	Koch-Wegener	75 31	3433	2582
enson	4-250	73 32	41 26	2972	230	Koch-Wegener	75 27	35 06	2606
enson	4-275	73 10	41 06	3003	250	Koch-Wegener	75 21	35 29	2629
enson	4-300	72 49	40 46	3046	270	Koch-Wegener	75 17	35 52	2653
enson	4-325	72 29	40 20	3104	285	Koch-Wegener	75 06	3705	2705
enson	4-350	72 08	39 57	3128	290	Koch-Wegener	75 02	3730	2712
enson	4-375	7147	39 36	3131	295	Koch-Wegener	74 59	3751	2722
enson	4-400	71 26	39 20	3126	305	Koch-Wegener	74 55	38 12	2737
enson	4-425 5-0	7106	38 59	3123	305	Koch-Wegener	74 44	39 28	2807
enson	5-20	71 00	39 4 1	3072	335	Koch-Wegener	74 40	3951	2847
enson	5-40	70 55	40 39	3005	355	Koch-Wegener	7434	40 31	2890
enson	5-65	70 47	41 39	2882	400	Koch-Wegener	74 27	4111	2918
enson	5-90	70 38	42 37	2763	450	Koch-Wegener	74 23	4125	2924
enson	5-115	70 28	43 35	2646	470	Koch-Wegener	74 19	4159	2935
enson	5-140	70 19	44 33	2466	510	Koch-Wegener	74 12	4232	2933
enson	5-150	70 16	44 59	2407	540	Koch-Wegener	74 08	43 03	2928
enson	5-160	70 11	45 22	2342	530	Koch-Wegener	74 02	4331	2920
enson	5 - 170	7007	45 45	2283	550	Koch-Wegener	73 59	44 16	2909
enson	5-180	7003	46 09	2206	550	Koch-Wegener	73 53	44 56	2881
enson	5-190	69 59	4631	2146	550	Koch-Wegener	73 49	45 30	2811
enson	5-200	69 55	46 57	2012	600	Koch-Wegener	73 46	45 48	2752
enson	5-210	69 53	47 18	1963	580	Koch-Wegener	73 44	46 37	2681
enson	5-220	69 49	4741	1861	560	Koch-Wegener	73 36	47 02	2636
enson	5-230	69 44	48 03	1746	540	Koch-Wegener	73 27	47 40	2547
ISP DY		65 12	43 47	2465	541	Koch-Wegener	73 19	4807	2496
ISP OH		65 06	44 14	2560	440	Koch-Wegener	73 13	4837	2496
	UPSTREAM	7714	60 49	1910	348	Koch-Wegener	73 02	49 18	2284
	DRILLCMP	77 12	61 05	1880	348	Koch-Wegener	72 55	49 18	2284
	RTH CENTRL	74 38	39 37	2931	132	Koch-Wegener	72 51	50 16	
ISP SUN		72 18	37 59	3214	240	Koch-Wegener	72 49	50 20	(2120
	ETE T43	71 08	37 19	3172	273	Koch-Wegener	72 42		2100
	RTH SITE	75 47	42 27	31/4	151	och riegener	1444	5119	1850

	7714	CO 00	1710	0.5.6
Langway 1	7714	62 20	1718	256
Langway 2	7744	59 34	2025	202
Langway 3	78 12	56 19	2068	224
Langway 4	78 38	53 00	2096	168
Langway 5	79 02	49 09	2147	159
Langway 6	7944	51 26	1843	199
Langway 7	8023	54 03	1524	248
Langway 8	8046	55 20	1420	265
Langway 9	7929	44 19	2215	139
Langway 10	8000	3939	2071	131
Langway 11	80 40	3939	1960	174
Langway 12	8119	39 45	1803	196
Langway	7759	5231	2296	159
Langway	78 55	48 13	2205	138
Langway	79 55	43 02	2145	135
Lead dog 0.0	80 00	39 39	2071	115
Lead dog 4	80 02	38 26	2028	120
Lead dog 11	80 02	35 34	1924	139
	80 00	31 16	1690	201
Lead dog 21	68 57	46 45	1831	350
Merc-Quer 11				335
Merc-Quer 12	68 50	46 13	1888	
Merc-Quer 13	68 42	45 45	1936	265
Merc-Quer 14	68 35	45 17	2046	250
Merc-Quer 15	68 27	44 47	2176	342
Merc-Quer 16	68 16	44 16	2243	524
Merc-Quer 17	68 06	43 49	2318	440
Merc-Quer 18	6755	43 16	2399	395
Merc-Quer 23	6704	4114	2258	201
Merc-Quer 24	66 59	4053	2254	336
Mock P42-7	7703	6124	1819	365
Mock CENTURYASTRO	7711	6109	1885	318
Mock P42-11	7718	6111	1886	214
Mock P42-13	77 24	61 19	1877	182
Mock P42-15	7732	61 29	1868	162
Mock P42-17	7734	6111	1760	182
Mock P42-19	7736	62 45	1654	225
Mock P42-21	77 38	63 28	1510	243
Mock S-40	76 40	62 10	1262	603
Mock S-30	76 47	61 54	1553	548
	76 55	6141	1728	468
Mock S-20		36 21	2925	230
Mock-Alf HIRAN 26	68 19		3138	230
Mock-Alf HIRAN 28	70 38	36 11		460
Mock-Alf HIRAN 29	68 04	42 20	2594	
Mock-Ragle 59-0	66 35	47 13	1953	300
Mock-Ragle 59-26	66 28	46 15	2150	320
Mock-Ragle 59-46	66 25	45 31	2280	330
Mock-Ragle 59-66	66 19	44 48	2366	330
Mock-Ragle 59-86	66 14	44 09	2460	370
Mock-Ragle 59-190	65 12	4337	2476	460
Mock-Ragle 59-250	64 29	4258	2489	770
Mock-Ragle 59-275	64 30	43 50	2700	570
Mock-Ragle 59-300	6430	44 42	2722	300
Mock-Ragle 59-325	64 29	4537	2536	320
Mock-Ragle 59-350	64 28	4635	2373	390
Mock-Ragle 59-375	64 26	4731	2189	470
Mock-Ragle 59-425	63 44	4720	2241	410
Mock-Ragle 59-475	63 12	4619	2598	560
Mock-Ragle 59-525	6231	4600	2426	660
Mock-Ragle 59-550	62 13	45 40	2461	720
Mock-Ragle 59-575	62 01	45 02	2435	800
Mock-Ragle 59-600	61 50	44 25	2210	900
				560
Mock-Ragle 60-75	62 31	45 15	2624	
Mock-Ragle 60-127	63 14	45 04	2759	430
Mock-Ragle 60-270	65 12	43 47	2476	460
Mock-Ragle 60-1-139	66 28	46 15	2142	320
Mock-Ragle 60-1-117	66 17	45 43	2258	390
Mock-Ragle 60-1-96	66 04	45 10	2370	370
Mock-Ragle 60-1-75	65 51	44 37	2473	640
Mock-Ragle 60-1-50	65 34	44 09	2479	770
Mock-Ragle 60-1-00	65 14	43 00	2252	970
Muller D	78 12	71 45	1080	300
Muller F	78 08	7110	1500	148
Muller V	7704	70 25	1100	463
Muller VI	76 46	6435	1560	713
Nishio PRT-1	66 52	4616	2000	300
Paterson A16	77 29	29 28	1859	130
Paterson A31	7740	33 15	2096	100
Paterson A58	78 44	40 44	2442	120
Paterson B64	78 02	4246	2512	150
Paterson A73	78 02	45 37	2516	110

Paterson B9	77 20	2756	1713	110
Paterson B77	7714	25 22	1270	140
Paterson B81	77 16	24 28	940	250
Paterson B107	7740	4757	2526	120
Paterson A	77 10	4851	2547	130
Paterson B	76 57	48 05	2603	180
Paterson C	76 44	47 20	2671	140
Paterson D	7627	4631	2689	170
Paterson E	76 12	45 46	2742	160
Paterson F	75 59	45 00	2774	200
Paterson H	7627	43 36	2771	170
Paterson DE 76 34	45 19	2733	180	
Paterson C1	7653	4613	2695	170
Paterson C2	7702	45 09	2664	150
Paterson C3	77 12	4402	2652	170
Paterson C4	7723	4301	2616	160
Quervain K 3	69 40	49 15	1217	220
Quervain CAMP VI	69 45	48 05	1674	266
Quervain MILCENT	7019	44 35	2448	426
Quervain CENTRAL	7055	4039	2960	371
Quervain CRETE	71 08	3720	3171	289
Quervain J-JOSET	71 22	33 29	2863	258
Quervain DEP420	72 14	32 20	2808	274
Quervain DEP480	7231	29 59	2371	284

Sources: Ambach Carrefour: Ambach (1977); Benson: Benson (1962); GISP D2-6: Dansgaard and others (1985); GISP OHIO: Whillans (1987); GISP A-H/1985: Clausen and others (1988); all other GISP sites: Radok and others (1982); Hamilton Northice: Hamilton and others (1956); Hendrickson: Schuster (1954); Koch-Wegener: Koch and Wegener (1930); Langway: Langway (1961); Lead dog: U.S. Army Transportation Board (1960); Merc-Quer: de Quervain and Mercanton (1920); Mock: Mock (1965); Mock-Alf: Mock and Alford (1964); Mock: Mock and Ragle (1963) and Ragle and Davis (1962); Müller D. F., V and VI: Müller and others (1977); Paterson: Paterson (1955); Quervain: de Quervain (1969); Nishio: personal communication.

Table 2. Annual total precipitation at meteorological stations in Greenland

Station	Coordinates		Altitude	Precipit- ation	Period	
	N,	W	m	mm		
Thule (Kanak)	77 29	6912	15	104(54)	1956-78 (61,62,63,65, 77 missing)	
Dundas	7634	68 48	21	114(82)	1960-80 (79 missing)	
Thule AFB	7631	68 50	59	113(82)	1951-73 (61, 62,63,65 missing)	
Upernavik	7247	5610	63	238(162)	1951-80	
Umanak	7040	5200	40	167(147)	1951-80	
Qutdligssat	7003	52 51	3	202(136)	1961-71	
Jakobshavn	69 13	5103	40	252(142)	1961-80	

Christianshåb	68 49	51 05	77	261 (149)	1962-79
Godhavn	69 14	53 31	25	420(255)	1931-45, 50-79
Egedesminde	68 42	52 45	47	300(175)	1951-80
Søndre Strømfjord	6701	50 48	55	151(77)	1941-65
Holsteinsborg	6655	53 40	9	358(208)	1961-80
Sukkertoppen	65 24	52 52	24	671 (327)	1961-80
Neriunaq	64 28	5024	7	255(130)	1938-60
Godthåb	64 10	5145	27	734(432)	1951-80
Faeringehavn	63 42	5133	7	739(421)	1961-72
Frederikshåb	62 00	49 43	16	812(410)	1951-80
Ivigtut	6112	48 10	30	1282(637)	1931-65
Narssarssuaq	6111	45 25	26	607(283)	1961-80
Igaliko	60 59	45 30	7	816(410)	1935-46
Julianehåb	6043	46 03	29	847(405)	1961-80
Narssaq	60 54	45 58	31	880(401)	1961-69
Grønnedal	6113	48 07	27	1027(502)	1951-70
Nanortalik	60 08	45 13	21	847(419)	1932–46, 64–80
Nord	8136	1640	35	184(140)	1953-80 (72,73,74,75, 77 missing)
Danmarkshavn	7646	1846	12	139(123)	1951-80
Daneborg	74 18	2013	13	214(180)	1961-74
Myggbukta	73 29	21 34	2	300(246)	1931-39, 46-58
Mesters Vig	72 15	23 54	10	288(225)	1961-74
Kap Tobin	7025	21 58	41	458(379)	1951-80
Aputetiq	6747	32 18	19	806(590)	1951-78
Angmagssalik	65 36	3734	35	961(731)	1951-79
Tingmiarmiut	6232	42 08	10	1477(956)	1951-78
Torgilsbu	6032	43 11	24	1930(1255)	1932-40
Prins Christian Sund	60 02	43 07	76	2471(1480)	1951-79

Values in brackets are solid precipitation.

from the Data Processing Division, ETAC, USAF. The base topographic map is based on the new map of the Greenland ice sheet by Ohmura (1987).

Because the glacier accumulation is used for estimating annual precipitation, it is in order to discuss the difference between the two quantities. The accumulation is the result of precipitation, drifting, and evaporation. Although accumulation and precipitation are different processes, the numerical values are similar for a number of glaciers (Ohmura and others, in press). While the

evaporative and drifting loss is often considered to yield an underestimation of precipitation, the measured precipitation is more often smaller than accumulation. One of the reasons for a smaller value of meteorologically measured precipitation is, no doubt, the failure to capture snowflakes by the snow gauge. After investigating the annual precipitation and accumulation for 12 glaciers, for which relatively long-term observations of both quantities are available, Ohmura and others (in press) found that the meteorological precipitation is on average 17% smaller than the glaciologically determined accumulation. Therefore, uncertainty of the order of 20% must be considered inherent in the present results.

COMPARISON WITH PREVIOUS MAPS

The present result for the distribution of accumulation is compared with previously published works which are often quoted in the literature (Fig. 1). They are Bader (1961), Benson (1962), and Mock (1967). The oldest work on this topic by Diamond (1958) is not used in the present comparison as its content is taken into account by Bader (1961), and the mapping therein does not cover the entire ice sheet. In general, qualitative similarities are found between the present work and that of Benson (1961) for southern Greenland and with that of Mock (1967) for northern Greenland. Major improvements in the present work include depicting the belt of higher accumulation at 1500 m a.s.l. on the northwest slope facing Nares Strait; more realistic accumulation data in the ice-cap area south of Inglefield Land; providing the accumulation for the ice cap in Steensby Land; presentation of a more accurate picture of the entire west slope of the ice sheet and the southern ice cap; and especially the correction of previous overestimates for the area of the ice sheet below 2000 m a.s.l. These improvements can mainly be traced to the use of data provided by de Quervain and Mercanton (1920), Langway (1961), de Quervain (1969), Müller and others (1977), Ohmura (1977), and Whillans (1987). For calculating more realistic accumulation for altitudes below 2000 m a.s.l., the separation of the annual precipitation into solid and liquid precipitation for the coastal meteorological data played an important role. Overall, the present work also provides the distribution of precipitation and accumulation in high areal resolution which makes it possible to interpret the precipitation distribution for the Greenland ice sheet from a climatological viewpoint, as is presented in the following section.

RESULTS AND DISCUSSION

The distribution of annual precipitation is shown in Figure 2. The main features of the distribution are summarized as follows: a strong longitudinal gradient exists in southern Greenland, south of 65°N on the west and south of 70°N on the east slopes; within this region the east coast receives considerably more precipitation than the west coast; the largest precipitation is observed in the southernmost region of the east coast; an extensive area with extremely small precipitation is expected on the north-eastern slope of the ice sheet; there are some local peculiarities, such as

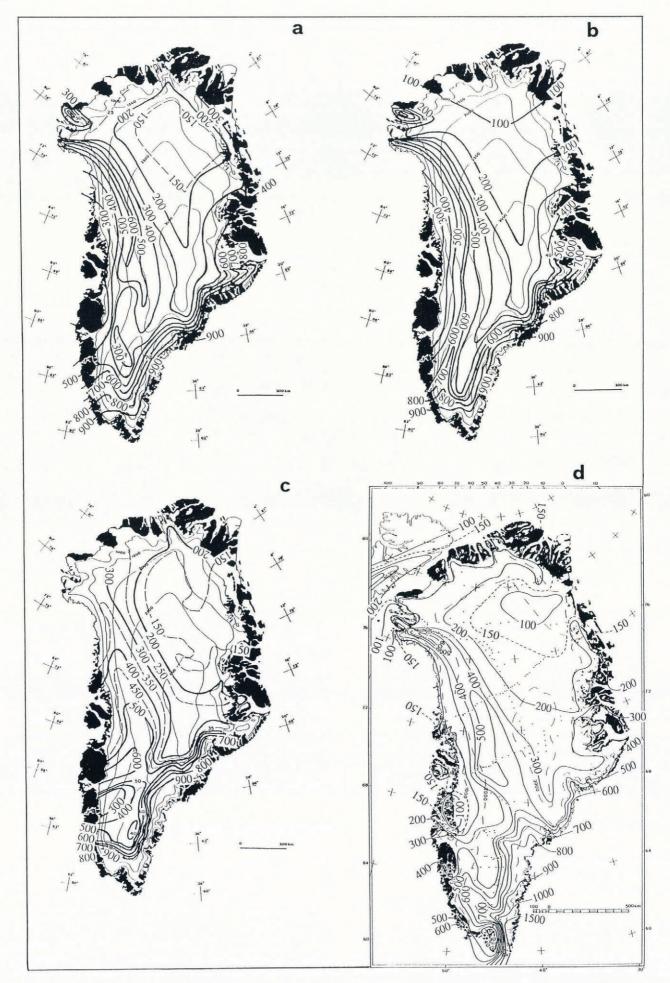


Fig. 1. Comparison of various accumulation maps for the Greenland ice sheet; a. Bader (1961); b. Benson (1962); c. Mock (1967); d. present work.

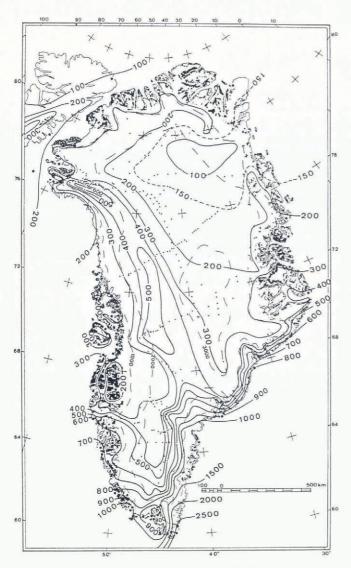


Fig. 2. Annual total precipitation in mm for Greenland. Dots on glaciers are locations of cores and pits. Solid circles are meteorological stations.

the belt of higher precipitation on the middle west slope extending from 69° N at 2400 m a.s.l. to the area north of Melville Bay, where it descends to 1500 m a.s.l.; there are very dry patches around Søndre Strømfjord on the west coast and also around Narssarssuaq in southern Greenland. The mean annual precipitation for all Greenland is 340 mm w.e.

The amount of precipitation is regulated primarily by atmospheric conditions, such as stability, water-vapour content, and circulation, often combined with topography. Climatologically important features of the atmospheric circulation, leading to the regional variation in precipitation, are more clearly depicted in the interplay between the topography and the monthly resultant wind field, rather than on daily synoptic maps. The resultant wind is a vector mean of instantaneous wind over a certain period. Resultant wind calculated thus becomes mathematically identical to the geostrophic wind computed on the time-mean pressure field. The resultant wind is a convenient concept to use to trace the transport of atmospheric constituents, such as water vapour and pollutants.

Monthly resultant wind is calculated for January and

July for the level of 850 hPa (mbar) over Greenland. The 850 hPa level is chosen because it is very close to the mean altitude of the Greenland ice sheet of about 1500 m a.s.l. The resultant wind field is calculated with the geostrophic approximation based on the monthly 850 hPa charts by Scherhag (1969) modified with additional radiosonde data provided by the National Climatic Center, NOAA, and by the data archives of the North Water Project at the Eidgenössische Technische Hochschule. The January and July resultant wind fields are expressed in terms of streamlines and are shown in Figures 3 and 4, respectively. The concentration of streamlines is expressed as being proportional to the wind speed.

The winter circulation is strongly dominated by two semi-permanent cyclones, the Baffin Bay low to the west and the larger Icelandic low to the southeast. The Greenland ice sheet is located under a weak saddle between the two depressions. This setting determines the main route of water-vapour flow. The southeast coast is directly hit by the onshore flow from the northern flank of the Icelandic low, with relatively high water-vapour content of 2.1 g m⁻³ from the Atlantic Ocean. This flow causes heavy precipitation on the southeast slope so long as the air mass is forced to ascend along the surface of the ice

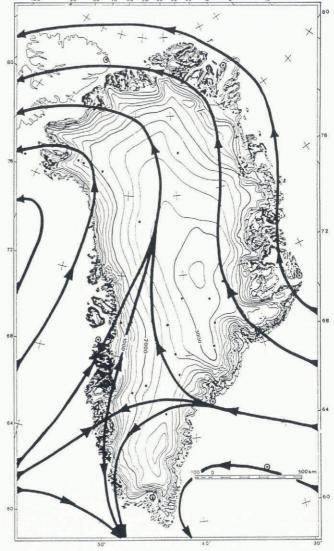


Fig. 3. Monthly resultant wind stream lines at 850 hPa (mbar) for January.

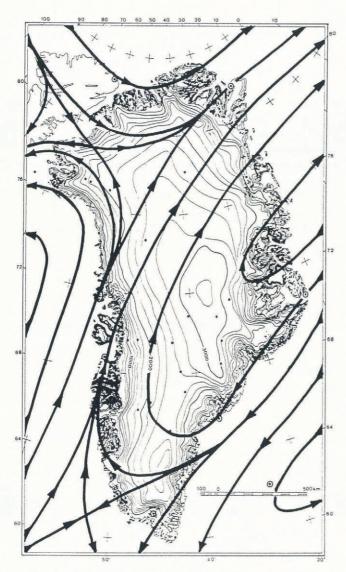


Fig. 4. Monthly resultant wind stream lines at 850 hPa (mbar) for July.

sheet. Once it starts to descend on the vast area north of Summit and on the west slope of the south cap, precipitation will be terminated. The illustration shows that the crest area of the ice sheet is under the influence of the Atlantic Ocean rather than the continental air mass from North America. The area of the west coast, north of 65° N also receives the onshore wind from the southwest. The air mass is originally continental, though modified slightly over Davis Strait and Baffin Bay, and is very dry, i.e. 0.7 g m⁻³ water-vapour concentration, and incapable of causing high precipitation. The winter precipitation on the west coast is caused primarily by migrating cyclones entering Baffin Bay from the Atlantic Ocean through Davis Strait.

The summer ciculation over Greenland is dominated by the pressure ridge extending from the northeast towards the centre of the ice sheet. Both Baffin Bay and Icelandic lows remain in their locations. The Polar basin to the north is covered by another low. On the southeast coast, the precipitation decreases somewhat compared with winter, owing to the shift of the streamlines which now run parallel to the slope. On the other hand, the onshore flow on the west coast is loaded with high water-

vapour content (4.5 g m⁻³) and causes the summer peak of precipitation. The air mass (temperature 3°C, and dew point -l°C) reaches condensation level at an altitude of about 2200 m a.s.l. on the mid-west slope, causing major precipitation above this altitude. During the summer, the northwest slope of the ice sheet, facing Nares Strait, also receives up-slope advection from the west and receives some precipitation. These westerlies are the result of the appearance of the low over the Polar basin. The northeast slope of the ice sheet also remains during the summer in the precipitation shadow, both with respect to the southwesterlies and the westerlies, thus receiving the lowest precipitation on the ice sheet. Likewise, Narssarssuaq receives only one-quarter of the annual precipitation of Prince Christian Sund, 150 km to the southeast but on the other side of the ridge extending from the south ice cap. The region around Søndre Strømfjord is located to the north of a weak ridge on the ice sheet which leads to Sukkertopen Ice Cap to the west. The ridge blocks the southwesterlies year round.

The belt of higher preciptiation half-way on the west slope is a natural consequence of the condensation level, as explained in the preceding paragraph and the depletion of water vapour at higher altitude. This is also a common feature in the vertical distribution of precipitation in mountainous regions. This phenomenon is not limited to the area surrounded by 500 mm isolines on the west slope. A close examination of the illustration shows the existence of a maximum precipitation belt all along the northwest to northeast slopes down to Kap Tobin on the mid-east coast. A tendency of the higher precipitation belt to appear is also seen on the west side of the south ice cap. A similar high-precipitation zone does not show up on the southeast slope. This is probably due to the lack of accumulation data between sea level and 2200 ma.s.l. Some pit observations by de Quervain (de Quervain and Mercanton, 1920) above Angmasalik suggest the existence of higher precipitation below 2000 m a.s.l. Owing to partial melt in the snow profile, his data for this altitude are not taken into account. In addition, a steep surface gradient of the ice sheet on the southeast side makes the occurrence of such a phenomenon less conspicuous.

The streamlines in Figures 3 and 4 also suggest that the sites of the deep ice coring, Dye 3 and Summit, are under the influence of the Atlantic air mass during the entire year, while Camp Century is located more under the effect of the continental air mass from North America, modified by Baffin Bay.

Important topographic barriers are shown in Figure 5, together with geographical names used in the present work. These barriers are not necessarily major ridges in terms of altitude, but they play an important role in dividing ice-sheet surfaces, simply due to the way the relative direction of the barrier is directed with respect to the major stream lines of high water-vapour content.

The distribution of the annual accumulation is given in Figure 6. The overall pattern of the accumulation distribution resembles that for annual precipitation, the main difference being the liquid precipitation subtracted from the annual precipitation for the coastal stations. The greatest accumulation, exceeding 1500 mm w.e., is estimated to occur on the east-facing slope of the south ice cap between Kap Cort Adelaer and Prince Christian Sund.

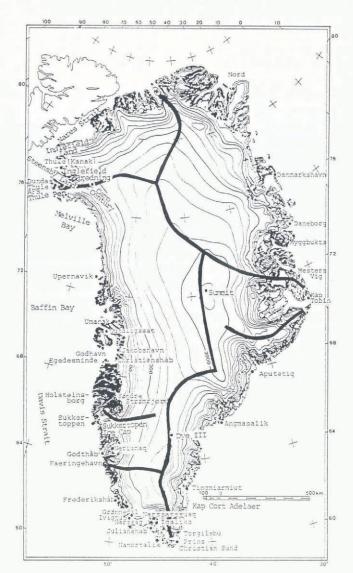


Fig. 5. Important topographic barriers influencing the accumulation on the Greenland ice sheet: geographical names used in the present work are indicated.

The zone of relatively high accumulation sweeps from the east slope to the west slope along the south slope of the south ice cap at around 2000 ma.s.l. Another zone of higher accumulation is located from the col between the south ice cap and the main ice cap on the west slope towards Thule Peninsula. Within this zone, several locations with especially high accumulation are observed: 550 mm w.e. at 2200 m a.s.l. east of Jakobshavn, 650-700 mm w.e. at 1700 m a.s.l. on the slope facing Melville Bay, 200 km east of Thule AFB. Very low accumulation of less than 100 mm w.e. is found on the northeast slope of the ice sheet and at the lower altitudes less than 800 ma.s.l. east of Søndre Strømfjord. The ablation area of the outlet glaciers around Inglefield Bredning in northwest Greenland is also estimated to have accumulation of less than 100 m.

The mean annual accumulation on the Greenland ice sheet based on the results given in Figure 2, is 310 mm w.e. for the ice-sheet area of $1.676 \times 10^6 \text{ km}^2$. Within this definition of the ice sheet, the ice surfaces included are that of the main ice sheet and those of the ice caps which are connected to the main ice sheet through the accumulation

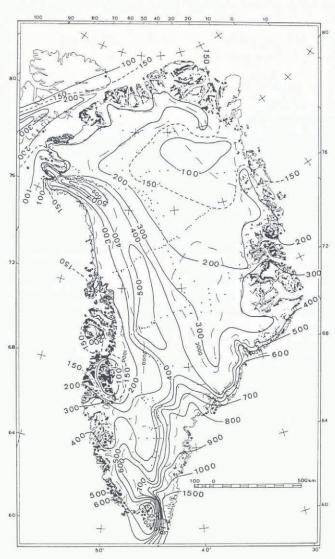


Fig. 6. Annual accumulation and solid precipitation in mm w.e. for Greenland. Dots on glaciers are locations of cores and pits. Solid circles are meteorological stations.

areas. Valley glaciers, isolated ice caps, and the ice caps connected to the main ice sheet only through their ablation areas are excluded. The mean annual accumulation on all glacier surfaces in Greenland (1.75 \times 10⁶ km²) is estimated at 317 mm w.e.

ACKNOWLEDGEMENTS

We thank Professor M. de Quervain for providing useful information concerning the loss of mass at several locations in East Greenland. Professor de Quervain took great pains to go through his father's field book from the Swiss Greenland Expedition, 1912–13. Unpublished meteorological data were made available by the Danish Meteorological Institute. We are indebted to Dr A. Wiin-Nielsen and Mr G. Nielsen. The present work was made possible by financial support from Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung research grant No. 21-27'449.89 and Eidgenössische Technische Hochschule Zürich research grant No. 41-1010.5 for the Greenland Project.

REFERENCES

- Ambach, W. 1963. Untersuchungen zum Energieumsatz in der Ablationszone des grönländischen Inlandeises (Camp IV-EGIG, 69°40′05″N, 49°37′58″W). Medd. Grønl., 174(4).
- Ambach, W. 1977. Untersuchungen zum Energieumsatz in der Akkumulationszone des grönländischen Inlandeises. Medd. Grønl., 187(7).
- Bader, H. 1961. The Greenland ice sheet. CRREL Monogr. I-B2.
- Benson, C. S. 1962. Stratigraphic studies in the snow and firn of the Greenland ice sheet. SIPRE Res. Rep. 70.
- Clausen, H.B., N.S. Gundestrup, S.J. Johnsen, R. Bindschadler and J. Zwally. 1988. Glaciological investigations in the Crête area, central Greenland: a search for a near deep-drilling site. *Ann. Glaciol.*, 10, 10-15.
- Danish Meteorological Institute. 1954-62. Meteorologisk Årbog. 2den Del: Grønland 1951-60. Copenhagen, Danish Meteorological Institute.
- Danish Meteorological Institute. 1969. Provisional total amount of precipitation in mm, Greenland 1961-1965. Copenhagen, Danish Meteorological Institute.
- Danish Meteorological Institute. 1969–82. Provisional mean temperatures and total amount of precipitation in mm, Greenland 1966–1981. Copenhagen, Danish Meteorological Institute.
- Dansgaard, W., H.B. Clausen, D. Dahl-Jensen, N. Gundestrup and C. U. Hammer. 1985. Climatic history from ice core studies in Greenland data correction procedures. In Ghazi, A. and R. Fantechi, eds. Current issues in climatic research. Proceedings of the EC Climatology Programme Symposium, Sophia Antipolis, France, 2-5 October 1984. Dordrecht, D. Reidel Publishing Company, 45-60.
- Diamond, M. 1958. Air temperature and precipitation on the Greenland ice cap. SIPRE Res. Rep. 43.
- ESSA. 1968. World weather records 1951-60. Vol. 6. Washington, DC, U.S. Department of Commerce.
- Hamilton, R. A. and 6 others. 1956. British North Greenland Expedition 1952-4: scientific results. Geogr. J., 122(2), 203-240.
- Hare, F.K. and M.K. Thomas. 1974. Climate Canada. Toronto, John Wiley and Sons.
- Koch, J. P. and A. Wegener. 1930. Wissenschaftliche Ergebnisse der dänischen Expedition nach Dronning Louises-Land und quer über das Inlandeis von Nordgrönland 1912–13. Medd. Grønl., 75.
- Langway, C. C., Jr. 1961. Accumulation and temperature on the inland ice of north Greenland, 1959. J. Glaciol., 3(30), 1017–1044.
- Mock, S.J. 1965. Glaciological studies in the vicinity of Camp Century, Greenland. CRREL Res. Rep. 157.
- Mock, S.J. 1967. Accumulation patterns on the Greenland ice sheet. CRREL Res. Rep. 233.

- Mock, S.J. and D.L. Alford. 1964. Installation of ice movement poles in Greenland. CRREL Spec. Rep. 67.
- Mock, S.J. and R.H. Ragle. 1963. Elevations on the ice sheet of southern Greenland. CRREL Tech. Rep. 124.
- Müller, F., B. Stauffer and G. Schriber. 1977. Isotope measurements and firn stratigraphy on ice caps surrounding the North Water polynya. International Association of Hydrological Sciences Publication 118 (Symposium at Grenoble 1975 Isotopes and Impurities in Snow and Ice), 188-196.
- National Oceanographic and Atmospheric Administration. 1987. World weather records 1961-1970. Vol. 6. Washington, DC, U.S. Department of Commerce.
- Ohmura, A. 1977. The climate of North Water 1972-76. Part II. In Müller, F., ed. North Water Project. Progress report 1. Oct. 1975-30 Sept. 1976. Zürich, Eidgenössische Technische Hochschule, 9-40.
- Ohmura, A. 1987. New temperature distribution maps for Greenland. Z. Gletscherkd. Glazialgeol., 23(1), 1-45.
- Ohmura, A., P. Kasser and M. Funk. In press. Climate at the equilibrium line of glaciers. J. Glaciol.
- Paterson, W.S.B. 1955. Altitudes on the inland ice in northern Greenland. *Medd. Grønl.*, 137(1).
- Quervain, A. de and P. L. Mercanton. 1920. Ergebnisse der schweizerischen Grönlandexpedition 1912–1913. Denksch. Schweiz. Naturforsch. Ges., 53.
- Quervain, M. de. 1969. Schneekundliche Arbeiten der Interna-tionalen glaziologischen Grönlandexpedition (Nivologie). Medd. Grønl., 177(4).
- Radok, U., R. G. Barry, D. Jenssen, R. A. Keen, G. N. Kiladis and B. McInnes. 1982. Climatic and physical characteristics of the Greenland ice sheet. Boulder, CO, University of Colorado. Cooperative Institute for Research in Environmental Sciences.
- Ragle, R. H. and T. C. Davis, Jr. 1962. Correspondence. South Greenland traverses. J. Glaciol., 4(31), 129-131.
- Scherhag, R. 1969. Klimatologische Karten der Nordhemisphäre. Berlin, Institut für Meteorologie und Geophysik der Freien Universität Berlin. (Meteorologische Abhandlungen, 100(1).)
- Schuster, R. L. 1954. Project Mint Julep: investigation of a smooth ice area of the Greenland ice cap. Part 3. Snow studies. SIPRE Rep. 19.
- U.S. Army Transportation Board. 1960. Report of environmental operation Lead Dog, 1960. Final report. Project Lead Dog. Fort Eustis, VA, U.S. Army Transportation Board. (TCB-60-023-EO.)
- Whillans, I.M. and 6 others. 1987. Glaciological transect in southern Greenland: 1980 and 1981 GISP-1 data. Columbus, OH, Ohio State University. Byrd Polar Research Center. (Report 2.)

The accuracy of references in the text and in this list is the responsibility of the authors, to whom queries should be addressed.