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Abstract. Thepaper extends the rigidityof themixing expanding repellers theoremofD. Sullivan
announced at the1986 IMC.We show that, for a regular conformal, satisfying the ‘Open Set Con-
dition’, iterated function system of countably many holomorphic contractions of an open con-
nected subset of a complex plane, the Radon^Nikodym derivative dm=dm has a real-analytic
extension on an open neighbourhood of the limit set of this system, where m is the conformal
measure and m is the unique probability invariant measure equivalent withm. Next, we introduce
the concept of nonlinearity for iterated function systems of countably many holomorphic con-
tractions. Several necessary and suf¢cient conditions for nonlinearity are established.We prove
the following rigidity result: If h, the topological conjugacy between two nonlinear systems F
and G, transports the conformal measure mF to the equivalence class of the conformal measure
mG, then h has a conformal extension on an open neighbourhood of the limit set of the system
F . Finally, we prove that thehyperbolic system associated to agiven parabolic systemof countably
many holomorphic contractions is nonlinear, which allows us to extend our rigidity result to the
case of parabolic systems.
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1. Introduction, Preliminaries

In [MU1] we provided the framework for studying in¢nite conformal iterated func-
tion systems. We shall ¢rst recall this notion and some of its basic properties.
Let I be a countable index set with at least two elements and let S ¼ ffi:X !

X : i 2 Ig be a collection of injective contractions from a compact metric space X
into X for which there exists 0 < s < 1 such that rðfiðxÞ;fiðyÞÞW srðx; yÞ for every
i 2 I and for every pair of points x; y 2 X . Thus, the system S is uniformly con-
tractive. Any such collection S of contractions is called an iterated function system.
We are particularly interested in the properties of the limit set de¢ned by such a
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system.We can de¢ne this set as the image of the coding space under a coding map as
follows. Let In denote the space of words of length n, I1 the space of in¢nite
sequences of symbols in I , I	 ¼

S
nX 1 I

n and for o 2 In, nX 1, let fo ¼

fo1 
 fo2 
 � � � 
 fon
. If o 2 I	 [ I1 and nX 1 does not exceed the length of o,

we denote by ojn the word o1o2 . . .on. Since given o 2 I1, the diameters of the
compact sets fojn ðX Þ, nX 1, converge to zero and since they form a decreasing
family, the set

T1

n¼0 fojn ðX Þ is a singleton and, therefore, denoting its only element
by pðoÞ, de¢nes the coding map p: I1 ! X . The main object of our interest will
be the limit set

J ¼ pðI1Þ ¼
[
o2I1

\1
n¼1

fojnðX Þ;

Observe that J satis¢es the natural invariance equality, J ¼
S

i2I fiðJÞ. Notice that if
I is ¢nite, then J is compact and this property fails for in¢nite systems.
An iterated function system S ¼ ffi:X ! X : i 2 Ig is said to satisfy the Open Set

Condition if there exists a nonempty open set U � X (in the topology of X) such
that fiðUÞ � U for every i 2 I and fiðUÞ \ fjðUÞ ¼ ; for every pair i; j 2 I ,
i 6¼ j. (We do not exclude clfiðUÞ \ clfjðUÞ 6¼ ;.)
An iterated function system S satisfying the Open Set Condition is said to be

conformal if X � Rd for some dX 1 and the following conditions are satis¢ed.

(1a) U ¼ IntRd ðX Þ.
(1b) There exists an open connected set V such that X � V � Rd such that all maps

fi, i 2 I, extend to C1 orientation preserving conformal di¡eomorphisms of
V into V. (Note that for d ¼ 1 this just means that all the maps fi, i � I,
are C1 increasing di¡eomorphisms, for dX 2 the words orientation preserving
conformal mean holomorphic, and for d > 2 the maps fi, i � I are orientation
preserving Mo« bius transformations.The proof of the last statement can be found
in [BP] for example, where it is called Liouville’s theorem.)

(1c) There exist g; l > 0 such that for every x 2 @X � Rd there exists an open cone
Conðx; g; lÞ � IntðX Þ with vertex x, central angle of Lebesgue measure g, and
altitude l.

(1d) Bounded Distortion Property (BDP). There exists KX 1 such that

jf0oðyÞjWK jf0oðxÞj

for every o 2 I	 and every pair of points x; y 2 V, where jf0oðxÞjmeans the norm
of the derivative.

In fact, throughout the whole paper we will need one more condition which (comp
are [MU1]) can be considered as a strengthening of (BDP).
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(1e) There are two constants LX 1 and a > 0 such that��jf0iðyÞj � jf0iðxÞj��WLjjf0ijjjy� xja:

for every i 2 I and every pair of points x; y 2 V.

Remark 1.1. Note that for d ¼ 2, decreasing V if necessary, conditions (1e) and
(1d) are satis¢ed due to Koebe’s distortion theorem.
Let us now collect some geometric consequences of (BDP). We have for all words

o 2 I	 and all convex subsets C of V

ðBDP1Þ diamðfoðCÞÞW jjf0ojjdiamðCÞ

and, for an appropriate V ,

ðBDP2Þ diamðfoðV ÞÞWDjjf0ojj;

where the norm jj � jj is the supremum norm taken over V and DX 1 is a constant
depending only on V . Moreover,

ðBDP3Þ diamðfoðX ÞÞXD�1jjf0ojj

and

ðBDP4Þ foðBðx; rÞÞ � BðfoðxÞ;K
�1jjf0ojjrÞ;

for every x 2 X , every 0 < rW distðX ; @V Þ, and every word o 2 I	.
Frequently, refering to (BDP) we will mean either (BDP) itself or one of the

properties (BDP1)^(BDP4). Notice that for simplicity and clarity of our exposition
we assumed the open set U appearing in the open set condition to be IntðX Þ.
As was demonstrated in [MU1], conformal iterated function systems naturally

break into two main classes, irregular and regular. This dichotomy can be deter-
mined from either the existence of a zero of a natural pressure function or,
equivalently, the existence of a conformal measure. The topological pressure
function, P is de¢ned as follows. For every integer nX 1 de¢ne

cnðtÞ ¼
X
o2In

jjf0ojj
t and PðtÞ ¼ lim

n!1

1
n

logcnðtÞ:

For a conformal system S, we sometimes set cS ¼ c1 ¼ c: The ¢niteness
parameter, yS; of the system S is de¢ned by infft:cðtÞ <1g ¼ yS. In [MU1], it
was shown that the topological pressure function PðtÞ is nonincreasing on
½0;1Þ, strictly decreasing, continuous and convex on ½y;1Þ and PðdÞW 0. Of
course, Pð0Þ ¼ 1 if and only if I is in¢nite. In [MU1] (see Theorem 3.15) we have
proved the following characterization of the Hausdorff dimension of the limit
set J, which will be denoted by HDðJÞ ¼ hS.
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THEOREM 1.2. HDðJÞ ¼ supfHDðJF Þ:F � I is finiteg ¼ infft: PðtÞW 0g. If PðtÞ ¼
0, then t ¼ HDðJÞ.

We call the system S regular if there is t such that PðtÞ ¼ 0. It follows from [MU1]
that t is unique. Also, the system is regular if and only if there is a t-conformal
measure. Recall that a Borel probability measure m is said to be t-conformal pro-
vided mðJÞ ¼ 1 and for every Borel set A � X and every i 2 I

mðfiðAÞÞ ¼
Z
A
jf0ij

t dm and mðfiðX Þ \ fjðX ÞÞ ¼ 0;

for every pair i; j 2 I , i 6¼ j. From now on we assume that the system S is regular and
we denote by d the Hausdorff dimension of its limit set. We now de¢ne the associated
Perron^Frobenius operator acting on CðX Þ as follows

Lðf ÞðxÞ ¼
X
i2I

jf0iðxÞj
df ðfiðxÞÞ:

Notice that the norm of L is equal to jjLð11ÞjjWcðdÞ and the nth iterate of L is given
by the formula

L
n
ðf ÞðxÞ ¼

X
joj¼n

jf0oðxÞj
df ðfoðxÞÞ:

Theorem 1.3 below explains what we really need this operator for. The conformal
measure m is a ¢xed point of the operator conjugate to L. We recall also (see [MU1,
Theorem 3.8]) that there exists an invariant measure m in the sense that for every
measurable set A,

m
[
i2I

fiðAÞ

 !
¼ mðAÞ

equivalent to m and the Radon^Nikodym derivative dm=dm is bounded away from
zero and in¢nity. In Sections 2 and 4 we will need better knowledge about this deriva-
tive and in particular we will need to know how it is computed. The approriate in-
formation is contained in the following (see [MU3]).

THEOREM 1.3. The Radon^Nikodym derivative dm=dmhas a version which continu-
ously extends to a function r:X ! ð0;1Þ and which is a unique ¢xed point of the
Perron^Frobenius operator L whose integral with respect to the conformal measure
m is equal to 1. Moreover, the iterates Ln

ð11Þ converge uniformly on X to r.

We call two iterated function systems F ¼ ffi:X ! X ; i 2 Ig and G ¼ fgi:Y ! Y ;

i 2 Ig topologically conjugate if and only if there exists a homeomorphism
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h: JF ! JG such that

h 
 fi ¼ gi 
 h

for all i 2 I . Then by induction we easily get that h 
 fo ¼ go 
 h for every ¢nite word
o. Section 2 of the paper [HU] contains the proof of the following theorem:

THEOREM 1.4. Suppose that F ¼ ffi:X ! X ; i 2 IÞ and G ¼ fgi:Y ! Y ; i 2 Ig are
two topologically conjugate conformal iterated function systems. Then the following
four conditions are equivalent.

(1) 9CX 1 8o 2 I	

C�1W
diamðgoðY ÞÞ
diamðfoðX ÞÞ

WC:

(2) jg0oðyoÞj ¼ jf
0
oðxoÞj for all o 2 I	, where xo and yo are the only ¢xed points of

fo:X ! X and go:Y ! Y respectively.
(3) 9EX 1 8o 2 I	

E�1W
jjg0ojj
jjf 0ojj

WE:

(4) For every ¢nite subset T of I, HDðJG;T Þ ¼ HDðJF ;T Þ and the conformal measures
mG;T and mF ;T 
 h�1 are equivalent.

Suppose additionally that both systems F and G are regular. Then the following
condition is also equivalent to the four conditions above.

(5) HDðJGÞ ¼ HDðJF Þ and the conformal measures mG and mF 
 h�1 are equivalent.

Since [HU] deals only with real-analytic one-dimensional systems, for completeness
we provide the proof in Appendix 1.

Our main goal in this paper is to prove the rigidity theorem, ð1Þ � ð5Þ ) the con-
jugacy has a conformal extension. For ¢nite systems arising from inverse branches
of a holomorphic expanding map on a mixing repeller a suf¢cient condition for this
implication is that the systems are nonlinear, [Su, Pr]. Here we shall prove this
rigidity for in¢nite systems. An example in which this is applicable, complex con-
tinued fractions, was considered in [MU1].
As a by-product we see that the nonlinearity implies the rigidity: ð1Þ � ð5Þ ) the

conjugacy is Lipschitz continuous. For in¢nite systems without the nonlinearity
assumption this is false, see Appendix 1. A positive result on this rigidity was
obtained in [HU]. Instead of the nonlinearity a so-called bounded geometry property
was assumed and the preservation of the ‘scaling’ of ‘gaps’ under the conjugacy. For
completeness we provide a precise statement of this theorem in Appendix 1.
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We postpone the formulation of our main rigidity theorem to Section 4 where all
ingredients needed to state it and to prove it will be ready. In Section 2 generalizing
the approach from [PU] we prove the main technical result, the real analyticity
of the Radon^Nikodym derivative dm=dm of invariant measure m with respect to
conformal measure m. In Section 3 we deal with various equivalent conditions
of nonlinearity, in Section 4 we prove our main result, Theorem 4.1, and in
Section 5 we extend the results of Section 4 to the case of parabolic iterated function
systems. The Appendix 1 contains the proof of Theorem 1.4 taken from [HU] and
counterexamples concerning Lipschitz continuity of the conjugacy. Appendix 2
is devoted to the proof of the continuity of the Radon^Nikodym derivative of
the invariant measure with respect to the conformal measure in the parabolic case.

2. The Radon^Nikodym Derivative r is Real-Analytic

From now on, throughout the whole paper we assume that d ¼ 2 and ffigi2I is an
Open Set Condition conformal regular iterated function system.
We call the system S ¼ ffigi2I one-dimensional if there exists a set D: J � D � V

composed of ¢nitely many real-analytic curves with pairwise disjoint closures such
that fiðDÞ � D for all i 2 I .

LEMMA 2.1. If a nonempty open subset of J is contained in a one-dimensional
real-analytic curve, then the system S is one-dimensional.

Proof. Since J is compact it suf¢ces to show that each point in J has a neighbour-
hood contained in a real-analytic curve. The assumptions of the lemma state that
there exists a point x 2 J, an open ball BðxÞ centered at x and M, a real-analytic
curve, open-ended, containing J \ BðxÞ. Fix now an arbitrary point z 2 J. Since
x 2 J, there exists o 2 I	 such that foðzÞ 2 J \ BðxÞ, moreover foðV Þ � BðxÞ. Then
the set foðV Þ \M contains foðV Þ \ J, an open neighbourhood of foðzÞ in J
and consists of countably many real-analytic curves. Let G be one of them, the con-
nected component of foðV Þ \M containing foðzÞ. It contains an open neighbour-
hood of foðzÞ in J. Then f�1ðGÞ contains an open neighbourhood of z in J. &

Our main goal in this section is to prove the following theorem:

THEOREM 2.2. The Radon^Nikodym derivative r has a real-analytic extension on
an open connected neighbourhood U of X in V.

Proof. In view of the result obtained when proving the implication ðgÞ ) ðaÞ of
Theorem 3.1 of [HU], we may assume that our system is not one-dimensional. First
de¢ne the sequence of functions bn:V ! ð0;1Þ by setting

bnðzÞ ¼
X
joj¼n

jf0oðzÞj
d; ð2:1Þ

where, let us recall, d ¼ HDðJÞ is the Hausdorff dimension of the limit set. In view of
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(2.15), in [MU1] jbnðzÞj ¼ bnðzÞWKd for all z 2 X and all nX 1. Hence, applying the
Koebe distortion theorem we conclude that there exists T > 0 such that for each
point w 2 X there exists a radius r ¼ rðwÞ > 0 such that Bðw; 2rÞ � V and for all
z 2 Bðw; 2rÞ and all nX 1

jbnðzÞj ¼ bnðzÞWT : ð2:2Þ

Identify nowC, where our contractions fi, i 2 I , act, toR2 with coordinates x; y, the
real and complex part of z. Embed this into C2 with x; y complex. Denote the above
C ¼ R2 by C0. We may assume that w ¼ 0 in C0. Given o 2 I	 de¢ne the function
ro:BC0ð0; 2rÞ ! C by setting

roðzÞ ¼
f0oðzÞ
f0oð0Þ

:

Since BC0ð0; 2rÞ � C0 is simply connected and ro nowhere vanishes, all the branches
of the log ro are well de¢ned on BC0 ð0; 2rÞ. Choose this branch that maps 0 to 0 and
denote it also by log ro. By Koebe’s Distortion Theorem jroj and jargroj are
bounded on Bð0; rÞ by universal constants K1;K2 respectively. Hence j log rojW
K ¼ logK1 þ K2. We write

log ro ¼
X1
m¼0

amzm

and note that by Cauchy’s inequalities

jamjWK=rm: ð2:3Þ

We can write for z ¼ xþ iy in C0

Re log ro ¼ Re
X1
m¼0

amðxþ iyÞm ¼
X1
p;q¼0

Re apþq
pþ q
q


 �
iq


 �
xpyq:

¼
X

cp;qxpyq:

In view of (2.3) we can estimate

jcp;qjW japþqj2pþq WKr�ðpþqÞ2pþq:

Hence, Re logro extends, by the same power series expansion
P

cp;qxpyq, to a
complex-valued function on the polydisk D

C
2ð0; r=2Þ and

jRe logrojW 4K on D
C
2ð0; r=4Þ: ð2:4Þ

Now each function bn, nX 1, extends to the function

BnðzÞ ¼
X
joj¼n

jf0oð0Þj
dedRe logroðzÞ: ð2:5Þ

whose domain, similarly as the domains of the functions Re log ro, contains the
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polydisk D
C
2 ð0; r=2Þ. Finally, using (2.2) and (2.4) we get for all nX 0 and all

z 2D
C
2 ð0; r=4Þ

jBnðzÞjW
X
joj¼n

jf0oð0Þj
deReðdRe log roðzÞÞ

W
X
joj¼n

jf0oð0Þj
dedjRe log roðzÞj

W eKd
X
joj¼n

jf0oð0Þj
d W eKdT

Now by Cauchy’s integral formula (in D
C
2ð0; r=4Þ) for the second derivatives we

prove that the family Bn is equicontinuous on, say, DC
2 ð0; r=5Þ. Hence, we can

choose a uniformly convergent subsequence and the limit function G is complex
analytic and extends r on J \ Bð0; r=5Þ, in the manner described in Theorem 1.3.
Thus we have proved that r extends to a complex analytic function in a neighbour-
hood of every point w 2 J in C

2, i.e. real-analytic in C0. These extensions coincide
on the intersections of the neighbourhoods, otherwise J is real-analytic and we
are in the [HU] case, referred to at the beginning of the proof. &

For every o 2 I	 denote by Dfo
¼ dm 
 fo=dm the Jacobian of the map fo: J ! J

with respect to the measure m. As an immediate consequence of Theorem 2.2, the
following computation

dm 
 fo

dm
¼

dm 
 fo

dm 
 fo

dm 
 fo

dm
dm
dm

¼
dm
dm


 fo


 �
jf0oj

d dm
dm

and the observation that jf0oj
d is real-analytic on V , we get the following corollary:

COROLLARY 2.3. For every i 2 I the Jacobian Dfi
has a real-analytic extension ~DDfi

on the neighbourhood U of X produced in Theorem 2.1.

3. Nonlinearity

The main goal of this section is to prove the following theorem:

THEOREM 3.1. Suppose that the system S ¼ ffigi2I is regular and denote the cor-
responding conformal measure by m. Then the following conditions are equivalent.

(a) For each i 2 I the extended Jacobian ~DDfi
:U ! R is constant, where U is the neigh-

bourhood of X produced in Corollary 2.3.
(b) There exist a continuous function u:X ! R and constants ci 2 R, i 2 I, such that

log jf0ij ¼ u� u 
 fi þ ci

for all i 2 I.
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(c) There exist a continuous function u: J ! R and constants ci 2 R, i 2 I, such that

log jf0ij ¼ u� u 
 fi þ ci

for all i 2 I.
(d1) The conformal structure on J admits a Euclidean isometries re¢nement so that all

maps fi, i 2 I, become a⁄ne conformal, more precisely there exists an atlas
fct:Ut ! Cg with open disks Ut, consisting of conformal injections such thatS

t Ut � J, all Ut \Us and Ut \ fiðUsÞ are connected and the compositions
ct 
 c

�1
s and ct 
 fi 
 c

�1
s , respectively on csðUt \UsÞ and cs 
 f

�1
i ðUt\

fiðUsÞÞ, are conformal a⁄ne with jðct 
 c
�1
s Þ

0
j � 1.

(d2) As (d1) but no assumptions on jðct 
 c
�1
s Þ

0
j (i.e. the atlas is only conformal a⁄ne).

(eh) There exist a cover fBlgl2L of J consisting of open disks and a family of harmonic
functions gl:Bl ! R, l 2 L, such that for all l; l0 2 L and all i 2 I

gl � gl0 ¼ const ð3:1Þ

on Bl \ Bl0 and

arglf
0
i � gl þ gl0 
 fi ¼ const ð3:2Þ

on f�1i ðB
0
l \ fiðBlÞÞ, where arglf

0
i:Bl ! R is a continuous branch of argument of

f0i de¢ned on the simply connected set Bl. All the sets Bl \ Bl0 and f�1i ðB
0
l\

fiðBlÞÞ are connected.
(er) As (eh) but harmonic replaced by real-analytic.
(ec) As (eh) but harmonic replaced by continuous.
(f) r ~DDfiðzÞ ¼ 0 for all z 2 J and all i 2 I if S is one-dimensional. If S is not

one-dimensional then

detðr ~DDfi 
 foðzÞ;r ~DDfiðzÞÞ ¼ 0

for all z 2 J and all i 2 I ;o 2 I	.

Proof. We shall prove the following implications ðaÞ ) ðbÞ ) ðcÞ ) ðd1Þ )
ðd2Þ ) ðaÞ, ðd2Þ ) ðehÞ ) ðerÞ ) ðecÞ ) ðd2Þ, ðaÞ ) ðf Þ and ðf Þ ) ðerÞ.

. ðaÞ ) ðbÞ. Since for every i 2 I , ~DDfi
¼ ðr 
 fiÞ � jf

0
ij
d � r�1, we have

logðj ~DDfi
jÞ ¼ logðjrj 
 fiÞ þ d log jf0ij � log jrj:

Thus to ¢nish the proof of the implication ðaÞ ) ðbÞ it suf¢ces to set
ci ¼ ð1=dÞ logð ~DDfi

Þ and u ¼ ð1=dÞ log jrj.
. The implication ðbÞ ) ðcÞ is obvious.

ðcÞ ) ðd1Þ. Fix an element v 2 J and an element t 2 I1. Given nX 1 and a word
o 2 In we denote by o the £ipped word onon�1 . . .o1. Our ¢rst aim is to show that
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the seriesX
nX 1

log jf0tn ðftjn�1
ðzÞÞj � log jf0tn ðftjn�1

ðvÞÞj
 �

ð3:3Þ

converges absolutely uniformly on V , where for n ¼ 1 we set ftjn�1
¼ IdV. Indeed, it

follows from (1d) and (1e), compare (4.2) of [HU], that

log jf0tnðftjn�1
ðzÞÞj � log jf0tn ðftjn�1

ðvÞÞj
��� ���

WKL ftjn�1
ðzÞ � ftjn�1

ðvÞ
��� ���a

WKLsðn�1Þajz� vja

WKLdiama
ðV Þsðn�1Þa:

ð3:4Þ

SinceX
nX 1

KL diama
ðV Þsðn�1Þa W

KL diama
ðV Þ

1� sa
<1;

the proof of the absolute uniform convergence of the series de¢ned by (3.3) is com-
plete. We now can de¢ne the function uv:V ! R by setting

uvðzÞ ¼ uðvÞ þ
X
nX 1

log jf0tn ðftjn�1
ðzÞÞj � log jf0tnðftjn�1

ðvÞÞj
 �

: ð3:5Þ

The function uv:V ! R as the sum of an absolutely convergent series of harmonic
functions, is harmonic. Iterating the formula appearing in Theorem 3.1(c), we obtain
for every nX 1 and every z 2 J

uðzÞ � uðvÞ ¼
Xn
k¼1

log jf0tk ðftjk�1
ðzÞÞj � log jf0tk ðftjk�1

ðvÞÞj
 �

þ

þ uðftjn
ðzÞÞ � uðftjn

ðvÞÞ

Since, by (BDP), jftjn
ðzÞ � ftjn

ðvÞjW sn and since the function u: J ! R as continu-
ous on a compact set is uniformly continuous, it follows from the last display that
uvðzÞ ¼ uðzÞ for all z 2 J, i.e. uv is a harmonic extension of u on V . From now
on we will drop the subscript v writing simply u:V ! R. Since all the functions
log jf0ij and u� u 
 fi þ ci, i 2 I , are harmonic on V , each set

Zi ¼ fz 2 V : log jf0iðzÞj ¼ uðzÞ � u 
 fiðzÞ þ cig;

i 2 I , is either equal to V or is a real-analytic set.
Suppose ¢rst that Zi ¼ V for all i 2 I . For every w 2 J consider a ball BðwÞ � V

centered at w. Let lw:BðwÞ ! R be a harmonic conjugate function to the harmonic
function u:BðwÞ ! R so that uþ ilw:BðwÞ ! C is holomorphic. Write Gw ¼

expðuþ ilwÞ and denote by cw:BðwÞ ! C a primitive function of Gw. Since
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c0wðwÞ ¼ GwðwÞ 6¼ 0, there exists a diskUw � BðwÞ centered at w and such that cwjUw
is

injective. Using Koebe’s distortion theorem for arguments (see [Hi]) we may assume
that in addition all the sets Uw to be so small that all the images fiðUwÞ, i 2 I , w 2 J,
are convex. We claim that the family fcw:Uw ! Cgw2J forms an atlas demanded in
(d1). Indeed, ¢x w; v 2 J and consider an arbitrary point z 2 Uw \Uv. Then

ðcw 
 c
�1
v Þ

0
ðcvðzÞÞ ¼ c0wðzÞ � ðc

0
vðzÞÞ

�1
¼ GwðzÞ � G�1v ðzÞ ¼ exp iðlwðzÞ � lvðzÞÞ

and therefore ðcw 
 c
�1
v Þ

0 is constant with absolute value 1 on cvðUv \UwÞ, since hw
and hv differ by an additive constant on the connected set Uw \Uv as harmonic
conjugates to the same harmonic function u.
To discuss cv 
 fi 
 c

�1
w

� �0
¢x again arbitrary w; v 2 J and for every i 2 I consider

the intersectionUv \ fiðUwÞ. As the intersection of two convex sets, this set is convex,
and consequently connected. Take now an arbitrary point z 2 f�1i ðUv \ fiðUwÞÞ.
Since Zi ¼ V , we therefore have

jcv 
 fi 
 c
�1
w ðcwðzÞÞj

¼ jc0fiðwÞ
ðfiðzÞÞ � f

0
iðzÞ � ðc

0
wðzÞÞ

�1
j ¼ jGvðfiðzÞÞ � f

0
iðzÞ � G

�1
w ðzÞj

¼ j exp uðfiðzÞ þ ilvðfiðzÞÞ � uðzÞ � ilwðzÞj � jf
0
iðzÞj

¼ expðuðfiðzÞ � uðzÞÞjf0iðzÞj

¼ eci

Hence the function cv 
 fi 
 c
�1
w

� �0
as holomorphic and having constant absolute

value, is constant on the connected set cw 
 f
�1
i ðUv \ fiðUwÞÞ.

Suppose in turn that Zi 6¼ V for some i 2 I . Since the equation (c) of Theorem 3.1
is satis¢ed on compact J, then J � Zi. Since J is in¢nite its non-empty open part is
contained in a real analytic curve, so the system is one-dimensional. Hence by
Lemma 2.1 there are ¢nitely many real-analytic pairwise disjoint curves whose union
M contains J. Since fiðJÞ � J for all i 2 I , decreasingM if necessary, we may assume
that fiðMÞ �M for all i 2 I .
Change coordinates holomorphically on a neighbourhood of M so that M � R.

(This uses the consequence of our assumptions that there is no closed curve among
the components of M, with relaxed assumptions allowing the existence of such a
curve we would change it to the unit circle and then use charts being branches
of z 7! log iz.)
Since the function u:M ! R is real-analytic, it uniquely extends to a complex-

analytic function ûu on an open neighbourhood ofM in V . Now we proceed similarly
as in the previous case; we de¢ne cw, w 2 J, to be a primitive of eûu on a suf¢ciently
small neighbourhood of w 2 V and we check that ðc� w 
 c�1v Þ

0
¼ 1 on

cvðUv \UwÞ. Now note that ûu� ûu 
 fi þ ci ¼ glog jf0ijlog jf0ij, where the latter expression
is a holomorphic extension of log jf0ij, which extends the equality (c). Note thatglog jf0ijlog jf0ij ¼ log�f0i, where � depends as f

0
i is positive or negative. We use the fact

it is real! The equality extends the equality on J because the functions on both sides
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are holomorphic. We conclude with

jðcfiðwÞ

 fi 
 c

�1
w Þ

0
ðcwðzÞÞj ¼ eci

for all z 2 f�1i ðUv \ fiðUwÞÞ, hence
�
cfiðwÞ


 fi 
 c
�1
w

�0 is constant on the connected
set cw 
 f

�1
i ðUv \ fiðUwÞÞ. The proof of the implication ðcÞ ) ðd1Þ is complete.

Remark 1. As an intermediate step in the proof of the implication ðcÞ ) ðd1Þ we
proved (bh) (compare later (eh)), namely the property (b) with u harmonic on a
neighbourhood of J, here V , in case of the system S not one-dimensional
(Zi ¼ V for all i). For S one-dimensional we also can prove (bh) but indirectly,
via (d1). Indeed assuming (d1) and M in R we set the harmonic extension
u ¼ log jc0vj independent of v.

. The implication ðd1Þ ) ðd2Þ is obvious.

. ðd2Þ ) ðaÞ. Let fcl:Ul ! Cgl2L be a ¢nite conformal af¢ne atlas for the system
S. Fix b 2 L, take a number n0X 1 so large that diamðV Þsn0 is less than a
Lebesgue number of the cover fUlgl2L of J, consider any number nX n0
and for every o 2 In choose one element lðoÞ 2 L such that foðV Þ � UlðoÞ.
Next, given nX n0 and o 2 In consider the map

clðoÞ 
 fo 
 c
�1
b

 �0

cb

de¢ned on Ub. Since our atlas is af¢ne, this function is constant on every suf-
¢ciently small neighbourhood of every point in J \Ub and therefore, as real
analytic, it is constant on Ub. Denote its value there by cb;o. Since for every
z 2 UbX

joj¼n

cdb;ojc
0
bðzÞj

d � jc0lðoÞðfoðzÞÞj
�d ¼

X
joj¼n

jf0oðzÞj
d ¼ L

n
ð11Þ; ð3:6Þ

since by Theorem 1.3

lim
n!1

L
n
ð11ÞðzÞ ¼ rðzÞ ð3:7Þ

and since the product jc0bðzÞj
d � jc0lðoÞðfoðzÞÞj

�d is uniformly bounded away from
zero and in¢nity, we conclude that there exists a constantMX 1 such that for
all z 2 Ub and all nX 1

M�1W
X
joj¼n

cdb;o WM: ð3:8Þ

Fix now an e > 0 and n1X n0 so large that for all nX n1 and all o 2 In

supfjc0lðoÞ 
 foj
�dg � inffjc0lðoÞ 
 foj

�dg < e=M:
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Then, using (3.6), we conclude that for all nX n1 and all z1; z2 2 Ub

X
joj¼n

cdb;ojc
0
lðoÞðfoðz2ÞÞj

�d � cdb;ojc
0
lðoÞðfoðz1ÞÞj

�d

�����
�����W e

and therefore

lim
n!1

X
joj¼n

cdb;oc
0
lðoÞðfoðz2ÞÞj

�d � cdb;oc
0
lðoÞðfoðz1ÞÞj

�d

�����
����� ¼ 0:

Combining this, (3.6) and (3.7) we conclude that there exists a constant cb X 0
such that for all z 2 Ub

lim
n!1

X
joj¼n

cdb;ojc
0
lðoÞðfoðzÞÞj

�d ¼ cb:

Combining in turn this, (3.6) and (3.7) we conclude that for all z 2 Ub

rðzÞ ¼ cbjc
0
bðzÞj

d: ð3:9Þ

Fix now i 2 I , w 2 Ub \ J, and choose l 2 L such that fiðwÞ 2 Ul and a con-
nected neighbourhood Vw � Ub of w such that fiðVwÞ � Ul. Then for every
z 2 Vw

~DDfi
ðzÞ ¼ r 
 fiðzÞjf

0
iðzÞj

drðzÞ�1 ¼ cljc
0
lðfiðzÞÞj

d � jf0iðzÞj
d � c�1b jc

0
bðzÞj

�d

¼ clc�1b jc
0
lðfiðzÞÞj � jf

0
iðzÞj � jc

0
bðzÞj

�1d

and therefore, since our system S is af¢ne, ~DDfi
is constant on Vw. Since, by

Theorem 2.2, ~DDfi
is real-analytic on U , we thus conclude that ~DDfi

is constant
on U . The proof of the implication ðd2Þ ) ðaÞ is ¢nished.

. ðd2Þ ) ðehÞ. We can assume the sets Ut appearing in condition ðd2Þ are open
balls. Since J is compact, we may choose from the family fUtg a ¢nite subcover
fBlgl2L of J. De¢ne then for every l 2 L the map gl:Bl ! R to be a continuous
branch of argc0l and additionally for every i 2 I , arglf

0
i:Bl ! R to be a con-

tinuous branch of argument of f0i. These branches exist since Bl is simply con-
nected and c0l and f0i nowhere vanish. Of course all the maps gl, l 2 L, are
harmonic. Consider now two indices l; l0 2 L such that Bl \ Bl0 6¼ ;. Since
our atlas is af¢ne, clðzÞ ¼ cl 
 c

�1
l0 ðcl0 ðzÞÞ ¼ aðcl0 ðzÞÞ þ b for all z 2 Bl \ Bl0

and some a; b 2 C. We conclude that gl � gl0 is on Bl \ Bl0 equal to argðaÞ
up to an integer multiple of 2p. This means that (3.1) is satis¢ed. Since all
the contractions ffigi2I are af¢ne in the atlas cl:Bl ! C, we conclude that
given l; l0 2 L, i 2 I there exist constants d; c 2 C such that for every
z 2 f�1i ðBl0 \ fiðBlÞÞ

cl0 
 fiðzÞ ¼ cl0 
 fi 
 c
�1
l ðclðzÞÞ ¼ dclðzÞ þ c:
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We conclude that arglf
0
i � gl þ gl0 
 fi is equal to argðdÞ up to an integer mul-

tiple of 2p on the connected set f�1i ðBl0 \ fiðBlÞÞ. This means that (3.2) is
satis¢ed. Thus the proof of the implication ðd2Þ ) ðehÞ is complete.

. The implications ðehÞ ) ðerÞ ) ðecÞ are obvious.

. ðecÞ ) ðd2Þ. The general idea is here the same as in the proof of the implication
ðcÞ ) ðd1Þ. Surprisingly, we do not get directly ðcÞ ) ðd1Þ. For this we need to
go via ðd2Þ ) ðaÞ ) ðd1Þ.

Let 4d > 0 be a Lebesgue number of the cover fBlgl2L of J. By compactness of J
there exists a ¢nite set T and points vt 2 J, t 2 T , such that the family
fBðvt; dÞgt2T is a cover of J. Since 4d is a Lebesgue number of the cover fBlgl2L,
for every t 2 T there exists at least one element lðtÞ 2 L such that Bðvt; 2dÞ �
BlðtÞ. Fix now t0 2 T , t 2 I1, that is similarly as in the implication ðcÞ ) ðd1Þ. Then
for each integer nX 1 choose tn 2 T such that ftjn

ðvt0Þ 2 Bðvtn ; dÞ. Since ftjn
on Bðvt0 ; dÞ shrinks distances by factor at least s < 1 for nX 1, we get
ftjn

ðBðvt0 ; dÞÞ � Bðvtn ; ð1þ sÞdÞ. Now, for every i 2 I and every l 2 L let arglf
0
i:

Bl ! R be a continuous branch of argument of f0i. It follows from Koebe’s theorem
for argument (see [Hi]), that for arguments arglf

0
i an analogous inequality as (1e) for

log jf0ij is satis¢ed. Namely, with L suf¢ciently large and a > 0 suf¢ciently small

jarglf
0
iðyÞ � arglf

0
iðxÞjWLjy� xja

for all l 2 L, all i 2 I and all x; y 2 Bl. Hence for all z 2 Bðvt0 ; dÞX
nX 1

jarglðtn�1Þf
0
tnðftjn�1

ðzÞÞ � arglðtn�1Þf
0
tnðftjn�1

ðvt0 ÞÞj

W
X
nX 1

Lsaðn�1Þjz� vt0 j
a

WLdiama
ðV Þ

1
1� sa

<1

ð3:10Þ

Iterating formula (3.2) we obtain for every nX 1 and every z 2 Bðvt0 ; dÞ

glðt0ÞðzÞ � glt0 Þ ðvt0 Þ

¼
Xn
k¼1

arglðtk�1Þðf
0
tkðftjk�1

ðzÞÞ � arglðtk�1Þf
0
tkðftjk�1

ðvt0 ÞÞ

þ glðtnÞðftjn
ðzÞÞ � glðtnÞðftjn

ðvt0ÞÞ:

Since for all t 2 T , Bðvt; ð1þ sÞdÞ � Bðvt; 2dÞ � BlðtÞ, all the functions glðtÞjBðvt;ð1þsÞdÞ
are uniformly continuous. Therefore, since the set T is ¢nite, since ftjn

ðzÞ;
ftjn

ðvt0 Þ 2 Bðvtn ; ð1þ sÞdÞ and since jftjn
ðzÞ � ftjn

ðvt0 ÞjW dsn, applying (3.10) we con-
clude that for all z 2 Bðvt0 ; dÞ

glðt0ÞðzÞ ¼ glðt0Þðvt0 Þ þ
X1
k¼1

arglðtkÞðf
0
tk ðftjk�1

ðzÞÞ � arglðtkÞf
0
tkðftjk�1

ðvt0ÞÞ:
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Thus the function glðt0ÞjBðvt0 ;dÞ as the sum of an absolutely uniformly convergent series
of harmonic functions is harmonic. So, all the functions glðtÞ:Bðvt; dÞ ! R. t 2 T , are
harmonic.

Remark 2. In case S is not one-dimensional the equation (ec) assumed only on J
(analogously to (c)) would be suf¢cient for gl extended by the formula above to
satisfy (ec) on V , in particular (eh) would be proved.
However, if S is one-dimensional the existence of gl satisfying (ec) on J is always

true. Just take for g an argument of the direction tangent to M, the union of a
¢nite family of real-analytic curves containing J.
Now, for every t 2 T by lt:Bðvt; dÞ ! R denote the harmonic conjugate to glðtÞ.

Thus the function Gt ¼ expðlt þ iglðtÞÞ:Bðvt; dÞ ! C is holomorphic and denote by
ct:Bðvt; dÞ ! C a primitive of Gt. Fix w 2 J and choose t 2 T such that w 2
Bðvt; dÞ. Since c0tðwÞ ¼ expðltðwÞ þ iglðtÞðwÞÞ 6¼ 0, there exists a disk Uw � Bðvt; dÞ such
that ctjUw

is injective. Applying, as before Koebe’s distortion theorem for arguments
(see [Hi]) we may assume the disks Uw to be so small that all the sets fiðUwÞ are
convex. We claim that the family fcw:Uw ! Cgw2J forms an af¢ne atlas for the
iterated function system S. Indeed, ¢x w; v 2 J and consider t; t0 2 T such that
Uw � Bðvt; dÞ � BlðtÞ and Uv � Bðvt0 ; dÞ � Blðt0Þ. Then for every z 2 Uw \Uv we get

ðcw 
 c
�1
v Þ

0
ðcvðzÞÞ

¼ c0wðzÞðc
0
vðzÞÞ

�1
¼ GlðtÞðzÞG�1lðt0ÞðzÞ

¼ expðltðzÞ þ iglðtÞðzÞ � lt0 ðzÞ � iglðt0ÞðzÞÞ

¼ expðiðglðtÞðzÞ � glðt0ÞðzÞ exp ltðzÞ � lt0 ðzÞÞ:

Since by (3.1) glðtÞ � glðt0Þ is constant on z 2 Uw \Uv � UlðtÞ \Ulðt0Þ and since lt and lt0
differ on UlðtÞ \Ulðt0Þ by an additive constant as harmonic conjugates to harmonic
functions glðtÞ and glðt0Þ respectively, we conclude that ðcw 
 c

�1
v Þ

0 is constant on
cvðUw \UvÞ.
Now ¢x w; v 2 J, i 2 I , and write C ¼ f�1i ðfiðUwÞ \UvÞÞ. Since fiðUwÞ \UvÞÞ is a

convex set and therefore connected, its continuous image C is also connected. Then
there are t; t0 2 T such that Uw � Bðvt; dÞ � BlðtÞ, Uv � Bðvt0 ; dÞ � Blðt0Þ and C is con-
tained in a connected component of BlðtÞ\ f�1i ðBl0ðtÞÞ. Using the chain rule we then
get for all z 2 C

ðcv 
 fi 
 c
�1
w Þ

0
ðcvðzÞÞ

¼ c0vðfiðzÞÞf
0
iðzÞðc

0
wðzÞÞ

�1
¼ Gt0 ðfiðzÞÞf

0
iðzÞG

�1
t ðzÞ

¼ expðiðglðt0ÞðfiðzÞÞÞ þ lt0 ðfiðzÞÞ þ log jf0iðzÞj þ iarglðtÞf
0
iðzÞ � iglðtÞðzÞ � ltðzÞÞ

¼ expðlt0 ðfiðzÞÞ þ log jf0iðzÞj � ltðzÞÞ expðiðarglðtÞf
0
iðzÞ � glðtÞðzÞ þ glðt0ÞðfiðzÞÞÞÞ:

Hence, using (3.2) we conclude that the derivative ðcv 
 fi 
 c
�1
w Þ

0 has a constant
argument on cvðCÞ and, consequently, ðcv 
 fi 
 c

�1
w Þ

0 is constant on cvðCÞ. The
proof of the implication ðecÞ ) ðd2Þ is complete.
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. The implication ðaÞ ) ðf Þ is obvious.

. ðf Þ ) ðerÞ. Suppose ¢rst that the system S is one-dimensional. Then the con-
dition r ~DDfi

� 0 on J is similar (formally weaker) to ~DDfi
constant in ðaÞ.

We prove ðerÞ similarly, via ðcÞ ) ðd1Þ ) ðehÞ.

Assume now that S is not one-dimensional. Suppose that r ~DDfi
¼ 0 on J for all

i 2 I . Since S is not one-dimensional, it implies that rDfi
¼ 0 on U for all i 2 I .

Thus ~DDfi
¼ 0 is constant on U for all i 2 I , since U is connected. So, the item

(a) is proved in this case and therefore, in view of what we have already proved,
also (er2).
So, we may assume that there exists j 2 I and w 2 J such that rDfj

ðwÞ 6¼ 0. By
continuity of the function r ~DDfj

there thus exists a neighbourhood W � V of
w 2 C on which r ~DDfj

nowhere vanishes. Let us consider onW the line ¢eld l orthog-
onal tor ~DDfj

. By the de¢nition of the limit set J for every z 2 J there exists t 2 I	 such
that ftðzÞ 2 J \W . Then de¢ne

lðzÞ ¼ ðf�1t Þ
0
ftðzÞ

ðlðftðzÞÞÞ; ð3:11Þ

where, changing temporarily notation, ðf�1t Þ
0
ftðzÞ

denotes the derivative of the map
f�1t evaluated at the point ftðzÞ and the display above expresses its action on a line
element. We want to show ¢rst that in this manner we de¢ne a line ¢eld on J.
So, we need to show that if ftðzÞ;fZðzÞ 2 J \W , then

ðf�1t Þ
0
ftðzÞ

ðlðftðzÞÞÞ ¼ ðf
�1
Z Þ

0
fZðzÞ

ðlðfZðzÞÞÞ: ð3:12Þ

Suppose on the contrary that (3.12) fails with some z; t; Z as required above. Then
there exists a point x 2W \ J and g 2 I	 (in fact for every x 2W there exists g)
such that fgðxÞ is so close to z that

ðf�1t Þ
0
ftðfgðxÞÞ

ðlðftðfgðxÞÞÞÞ 6¼ ðf
�1
Z Þ

0
fZðfgðxÞÞ

ðlðfZðfgðxÞÞÞÞ:

Hence

ðf�1tg Þ
0
ftgðxÞ

lðftgðxÞÞ 6¼ ðf
�1
Zg Þ

0
fZgðxÞ

lðfZgðxÞÞ:

So, either

ðf�1tg Þ
0
ftgðxÞ

lðftgðxÞÞ 6¼ lðxÞ

or

ðf�1Zg Þ
0
fZgðxÞ

lðfZgðxÞÞ 6¼ lðxÞ:

Suppose, for example, the ¢rst incompatibility of l’s holds. Then

detðr ~DDfj

 ftgðxÞ;r ~DDfj

ðxÞÞ 6¼ 0

contrary to our assumption. Thus the line ¢eld l is well-de¢ned on J and it imme-
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diately follows from the method this ¢eld is constructed that it is invariant with
respect to all the contractions fi, i 2 I .
Notice that formula (3.11) de¢nes an invariant line ¢eld on V . We can use any

t 2 I	 such that ftðV Þ �W . The resulting l does not depend on t because for
any other such Z (3.12) holds for z 2 J, so it holds on entire V . Otherwise the system
would be one-dimensional because l is real-analytic so the equation holds on a
real-analytic set.
The argument arg l is of course de¢ned up to integer multiplicity of p.
Using again Koebe’s distortion theorem for arguments (see [Hi]), one can ¢nd

fBlg, a ¢nite cover of J by disks contained in V , small enough that all the images
fiðBlÞ, i 2 I , are convex. Then all the intersections Bl \ Bl0 and Bl \ fiðBl0 Þ are con-
nected.
De¢ne gl as an arbitrary branch of arg l on Bl. Then (3.1) and (3.2) follow from the

invariance of l by S, with constants cðl; l0 and cðl; l0; iÞ being multiplicities of p. Thus
(er) is proved.

Remark 3. This is even stronger than (er) where the constants are any real
numbers. Indeed the existence of an analytic invariant line ¢eld is a strictly stronger
condition then others in Theorem 3.1. See [Pr] for an example. &

DEFINITION 3.2. We call the iterated function system S linear if one (or
equivalently all) conditions of Theorem 3.1 is satis¢ed. Otherwise we call this system
nonlinear.

4. Rigidity

We begin this section with the following.

PROPOSITION 4.1. Suppose that F ¼ ffi:X ! Xgi2I and G ¼ fgi:Y ! Y gi2I are
two nonlinear topologically conjugate systems. Suppose also that the measures
mG and mF 
 h�1 are equivalent. If one of these systems is one-dimensional, then
so is the other one.

Proof. Suppose on the contrary that G is not one-dimensional. Then it follows
from Theorem 3.1 that there exist y 2 JG, j 2 I , o 2 I	 and a neighbourhood
W2 � C of y such that the map

G ¼ ð ~DDgj 
 go; ~DDgj Þ

is invertible on W2. Since the measures mG and mF 
 h�1 are equivalent, after an
appropriate normalization mF ¼ mG 
 h meaning that Dh ¼ ðdmG 
 h=dmF Þ ¼ 1. Since
h 
 ft ¼ gt 
 h for all t 2 I	 and since Dh ¼ 1,

G 
 h ¼ F

on J, where F ¼ ð ~DDfj 
 fo; ~DDfj Þ. Write x ¼ h�1ðyÞ. Then h ¼ G�1 
 F on W1 \ JF for
some open neighbourhood W1 of x in C such that FðW1Þ � GðW2Þ. Since F ;G�1
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are real-analytic, the image G�1 
 FðW1 \MF Þ for an adequateW1 small enough is a
real-analytic curve and G�1 
 FðW1 \MF Þ \ JG contains an open neighbourhood of
y in JG. Now using Lemma 2.1 we conclude that G is one-dimensional. &

The main result of this paper is contained in the following.

THEOREM 4.2. If two Open Set Condition conformal regular iterated function sys-
tems F ¼ ffi:X ! X : i 2 Ig and G ¼ fgi:Y ! Y : i 2 Ig are nonlinear and conjugate
by a homeomorphism h: JF ! JG, then the following conditions are equivalent.

(a) The conjugacy between the systems F ¼ ffi:X ! X : i 2 Ig and G ¼ fgi:Y !

Y : i 2 Ig extends in a conformal fashion to an open neighbourhood of JF.
(b) The conjugacy between the systems F ¼ ffi:X ! X : i 2 Ig and fgi:Y ! Y : i 2 Ig

extends in a real-analytic fashion to an open neighbourhood of JF.
(c) The conjugacy h: JF ! JG between the systems F ¼ ffi:X ! X : i 2 Ig and

G ¼ fgi:Y ! Y : i 2 Ig is bi-Lipschitz continuous.
(d) jg0oðyoÞj ¼ jf

0
oðxoÞj for all o 2 I	, where xo and yo are the only ¢xed points of

fo:X ! X and go:Y ! Y respectively.
(e) 9SX 1 8o 2 I	

S�1W
diamðgoðY ÞÞ
diamðfoðX ÞÞ

WS:

(f) 9EX 1 8o 2 I	

E�1W
jjg0ojj
jjf 0ojj

WE:

(g) HDðJGÞ ¼ HDðJF Þ and the measures mG and mF 
 h�1 are equivalent.
(h) The measures mG and mF 
 h�1 are equivalent.

Proof. The implications ðaÞ ) ðbÞ and ðbÞ ) ðcÞ are obvious. That ðcÞ ) ðdÞ results
from the fact that (c) implies condition (1) of Theorem 1.4 which in view of this
theorem is equivalent with condition (2) of Theorem 1.4 which ¢nally is the same
as condition (d) of Theorem 4.2. The implications ðdÞ ) ðeÞ ) ðf Þ ) ðgÞ have been
proved in Theorem 1.4. The implication ðgÞ ) ðhÞ is again obvious. We are left
to prove that ðhÞ ) ðaÞ. We shall ¢rst prove that ðhÞ ) ðbÞ. So, suppose that ðhÞ holds.
Then, after an appropriate normalization mF ¼ mG 
 h meaning that Dh ¼

ðdmG 
 h=dÞmF ¼ 1. If F is one-dimensional, then by Proposition 4.1, so is G and
the implication ðhÞ ) ðbÞ follows from Theorem 3.1 of [HU]. Hence, we may assume
that neither system F or G is one-dimensional. Therefore, since G is nonlinear, there
exist y 2 JG, j 2 I , o 2 I	 and a neighbourhood W2 � C of y such that the map
G ¼ ð ~DDgj 
 go; ~DDgj Þ is invertible on W2. Since h 
 ft ¼ gt 
 h for all t 2 I	 and since
Dh ¼ 1, G 
 h ¼ F onW1 \ Jf , where F ¼ ð ~DDfj 
 go; ~DDfj Þ andW1 is a neighbourhood
of x ¼ h�1ðyÞ � C. Since G is invertible on W2, GðyÞ ¼ FðxÞ and F is continuous,
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we may assume that FðW1Þ � GðW2Þ. Hence G�1 
 F is well-de¢ned on W1 and
G
�1

 FjW1\JF ¼ h. Consider now o 2 I	 such that foðJF Þ �W1. Since

G
�1

 FðfoðJF ÞÞ ¼ h 
 foðJF Þ ¼ go 
 hðJF Þ ¼ goðJGÞ � goðVGÞ;

since goðW2Þ is open, since fo and G�1 
 F are continuous, there exists an open neigh-
bourhood V1 � VF of JF such that foðV1Þ �W1 and G�1 
 FðfoðV1ÞÞ � goðW2Þ.
Hence, the map

g�1o 
 ðG
�1

 FÞ 
 fo:V1 ! C

is well-de¢ned, by Corollary 2.3 is real-analytic, and g�1o 
 ðG
�1

 FÞ 
 fojJF ¼ h.

Thus, the property (b) is proved. The last step of the proof of Theorem 4.2, that
is the implication ðbÞ ) ðaÞ can be carried out similarly as the proof of Lemma 7.2.7
in [Pr]. &

5. Rigidity of Parabolic Systems

We ¢rst recall from [MU2] the concept of conformal parabolic iterated function
systems. Let X be a compact connected subset of a Euclidean space Rd . Suppose
that we have countably many conformal maps fi:X ! X , i 2 I , where I has at least
two elements and the following conditions are satis¢ed.

(5a) (Open Set Condition) fiðIntðX ÞÞ \ fjðIntðX ÞÞ ¼ ; for all i 6¼ j.
(5b) jf0iðxÞj < 1 everywhere except for ¢nitely many pairs ði; xiÞ, i 2 I, for which xi is

the unique ¢xed point of fi and jf
0
iðxiÞj ¼ 1. Such pairs and indices i will be

called parabolic and the set of parabolic indices will be denoted by O . All other
indices will be called hyperbolic.

(5c) 8nX 1 8o ¼ ðo1; :::;onÞ 2 In if on is a hyperbolic index or on�1 6¼ on, then fo

extends conformally to an open connected set V � Rd and maps V into itself.
(5d) If i is a parabolic index, then

T
nX 0 finðX Þ ¼ fxig and the diameters of the sets

fin ðX Þ converge to 0.
(5e) (Bounded Distortion Property) 9KX 1 8nX 1 8o ¼ ðo1; :::;onÞ 2 In 8x; y 2 V

if on is a hyperbolic index or on�1 6¼ on, then

jf0oðyÞj
jf0oðxÞj

WK :

(5f) 9s < 1 8nX 1 8o 2 In if on is a hyperbolic index or on�1 6¼ on, then jjf0ojjW s.
(5g) (Cone Condition) There exist a; l > 0 such that for every x 2 @X � Rd there

exists an open cone Conðx; a; lÞ � IntðX Þwith vertex x, central angle of Lebesgue
measure a, and altitude l.
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(5h) There are two constants LX 1 and a > 0 such that��jf0iðyÞj � jf0iðxÞj��WLjjf0ijjjy� xja;

for every i 2 I and every pair of points x; y 2 V.

We call such a system of maps S ¼ ffi: i 2 Ig a subparabolic iterated function
system. Let us note that conditions (5a),(5c),(5e)^(5g) are modeled on similar con-
ditions which were used to examine hyperbolic conformal systems in Section 1. Con-
dition (5h) also held for many of the systems studied in [MU2] but was not a general
requirement. We need this condition in the sequel. If O 6¼ ; we call the system
ffi: i 2 Ig parabolic. As declared in (5b) the elements of the set I n O are called
hyperbolic. We extend this name to all the words appearing in (5e) and (5f). Fix
a ¢nite set ~OO � O. For every i 2 ~OO denote

Xi ¼
[

j2Infig

fjðX Þ:

In this paper we also need the following technical condition whose meaning will be
explained by Theorem 5.2 below. For all i 2 ~OOX

nX 0

jjf0in jj
a
Xi

<1: ð5:iÞ

Since the set ~OO is ¢nite, the number

T ¼ max
i2 ~OO

X
nX 0

jjf0in jj
a
Xi

8<:
9=; ð5:1Þ

is ¢nite. We would also like to recall that in [MU2] the main construction was to
associate to a parabolic system S an in¢nite but hyperbolic conformal iterated func-
tion system. Generalizing it a little bit, i.e. working with ~OO instead of O, this con-
struction goes as follows. The system S	~OO is generated by I	, the set of maps of
the form finj, where nX 1, i 2 ~OO, i 6¼ j, and the maps fk, where k 2 I n ~OO. Note that
JS	

~OO
¼ JS n ffoðxiÞ: i 2 ~OO;o 2 I	g.

It immediately follows from our assumptions that the following is true (comp.
Theorem 5.2 from [MU2]).

THEOREM 5.1. If the system S satis¢es all the conditions (5a)^(5h), then the sys-
tem S	~OO satis¢es the conditions (1a)^(1d).

As a complement to this theorem we shall prove the following.

THEOREM 5.10. If the system S satis¢es all the conditions (5a)^(5i), then the sys-
tem S	~OO satis¢es the conditions (1a)^(1e).
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Proof. In view of Theorem 5.1 we only need to prove condition (1e). So, ¢x i 2 ~OO
and j 2 I n fig. Consider arbitrary nX 1 and x; y 2 X . Write t ¼ minfjf0iðxÞj: i 2
~OO; x 2 Xg > 0. We then have, assuming for example jf0injðyÞjW jf0injðxÞj,����jf0injðyÞj � jf0injðxÞj����

¼ jf0injðxÞj 1�
jf0injðyÞj

jf0injðxÞj

�����
�����W jjf0injjj log

jf0injðyÞj

jf0injðxÞj

�����
�����

W log jf0jðyÞj � log jf0jðxÞj
��� ���þXn�1

k¼0

log jf0iðfikjðyÞj � log jf0iðfikjðxÞj
��� ���

W
K
jjf0jjj

jjf0jðyÞj � jf
0
jðxÞjj þ

Xn�1
k¼0

1
t
jf0iðfikjðyÞj � jf

0
iðfikjðxÞj

��� ��� !

W KLjy� xja þ
1
t

Xn�1
k¼0

LjfikjðyÞ � fikjðxÞj
a

 !

W KLjy� xja þ
L
t

Xn�1
k¼0

jjf0ik jj
a
Xi
jfjðyÞ � fjðxÞj

a

 !

W KLþ
L
t

X1
k¼0

jjf0ik jj
a
Xi

 !
jy� xja

WL K þ
T
t


 �
jy� xja:

The proof is complete. &

From now on we assume that the system S satis¢es all the conditions (5a)^(5i). We
shall prove the following.

PROPOSITION 5.3. If the system S is regular and parabolic (O 6¼ ;), then the
associated hyperbolic system S	 ¼ S	O is nonlinear.

Proof.We keep for the hyperbolic system S	 the same notation and terminology as
for the hyperbolic system S in Sections 1^4. Theorem 5.7 from [MU2] says that the
system S	 is regular and the d-conformal measure for S	 is also conformal for
S. This permits us to extend for every k 2 I (even for parabolic k) the Jacobian

Dfk
ðzÞ ¼

rðfkðzÞÞ
rðzÞ

jf0kðzÞj
d:

In view of Theorem 2.1 all these functions Dfk
have a real-analytic extensions on U .

Suppose now on the contrary that the system S	 is linear. Fix i 2 O and j 2 I n fig.
There then exist two numbers Dij and Di2j such that Dfij

ðzÞ ¼ Dij and
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Dfi2 j
ðzÞ ¼ Di2j for all z 2 U . Now, for every z 2 X

Dfi
ðfijðzÞÞ ¼

rðfi2jðzÞÞ

rðfijðzÞ
jf0ifijðzÞÞjd

¼
rðfi2jðzÞÞ

rðzÞ
jf0i2jðzÞj

d rðzÞ
rðfijðzÞ

1
jf0ijðzÞj

d

¼
Dfi2 j

ðzÞ

Dfij
ðzÞ

¼
Di2j

Dij
:

Since Dfi
is real-analytic on U and since fijðX Þ � fijðIntðX ÞÞ, an open subset of U ,

we therefore conclude that Dfi
ðzÞ ¼ Di2j=Dij:¼ Di for every z 2 U . Hence, for every

z 2 X

rðfinðzÞÞ
rðzÞ

jf0inðzÞj
d ¼ Dn

i : ð5:2Þ

Applying this equality with n ¼ 1 and z ¼ xi we obtain

Di ¼
rðxiÞ
rðxiÞ

jf0iðxiÞj ¼ jf
0
iðxiÞj ¼ 1:

Thus, it follows from (5.2) and (5.d) that for every z 2 X

lim
n!1

jf0inðzÞj ¼
rðzÞ

rðfin ðzÞÞ


 �1=d
¼ rðzÞ1=d ð5:3Þ

Now, on one hand, in view of Theorem 3.8 in [MU1], rðzÞ > 0 for all z 2 J and, on
the other hand, it follows from (5.3) and (5.i) that rðzÞ ¼ 0 for all z 2 X . This con-
tradiction ¢nishes the proof. &

As an immediate consequence of this proposition we get the following.

COROLLARY 5.4. If the system S is regular and parabolic (O 6¼ ;), then for every
¢nite set ~OO � O, the associated hyperbolic system S	 ¼ S	O is nonlinear.

The main result of this section is the following.

THEOREM 5.5. If both topologically conjugate systems F ¼ ffi:X ! X ; i 2 Ig and
G ¼ fgi:Y ! Y ; i 2 Ig are regular and at least one of them is parabolic, then the con-
ditions listed in Theorem 4.2 are mutually equivalent where in the items ðdÞ; ðeÞ; ðf Þ the
words o are required to be hyperbolic.

Proof.Without loosing generality we may assume that the system G is parabolic.
Let ~OO ¼ OG [ OF and let F 	 and G	 be the corresponding hyperbolic systems.
Let JF ! JG be the topological conjugacy between the systems F and G. The chain
of implications ðaÞ ) . . . ) ðhÞ can be proved in exactly the same way as in the proof
of Theorem 4.2. Notice that although ðhÞ establishes also a topological conjugacy
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between the systems F 	 and G	, we could not invoke this fact to give a proof of
implications ðaÞ ) . . . ) ðhÞ since not all hyperbolic words of F (or G), for ex.
the words of the form iji, i 2 OF , j 2 I n OF , can be represented as concatenations
of words from F 	 (or G	).
To prove ðhÞ ) ðaÞ, we can use the fact that h establishes a topological conjugacy

between the systems F 	 and G	, apply Theorem 4.2 and Corollary 5.4. The proof
is complete. &

Appendix 1. Conjugacies and Scaling

Proof of Theorem 1.4. Let us ¢rst demonstrate that conditions (2) and (3) are
equivalent. Indeed, suppose that (2) is satis¢ed and let KF and KG denote the dis-
tortion constants of the systems F and G, respectively. Then for all o 2 I	,
jjg0ojjWKGjg0oðyoÞj ¼ KGjf 0oðxoÞjWKGjjf 0ojj and similarly jjf

0
ojjWKF jjg0ojj. So sup-

pose that (3) holds and (2) fails, that is that there exists o 2 I	 such that
jg0oðyoÞj 6¼ jf

0
oðxoÞj. Without loosing generality we may assume that jg

0
oðyoÞj <

jf 0oðxoÞj. For every nX 1 let on be the concatenation of n words o. Then
gonðyoÞ ¼ gnoðyoÞ ¼ yo and similarly fonðxoÞ ¼ xo. So,

xon ¼ xo ¼ pF ðo1Þ and yon ¼ yo ¼ pGðo1Þ:

Moreover,

jg0onðyoÞj ¼ jg0oðyoÞj
n and jf 0on ðxoÞj ¼ jf 0oðxoÞj

n:

Hence

lim
n!1

jg0on ðyoÞj
jf 0onðxoÞj

¼ 0:

On the other hand, by (3) and the Bounded Distortion Property

jg0onðyoÞj
jf 0onðxoÞj

X
K�1

G jjg0on jj

jjf 0on jj
XE�1K�1

G

for all nX 1. This contradiction ¢nishes the proof of equivalence of conditions (2)
and (3). Since the equivalence of (1) and (3) is by (BDP2) and (BDP3) immediate,
the proof of the equivalence of conditions (1)^(3) is ¢nished. We shall now prove
that ð3Þ ) ð5Þ. Indeed, it follows from (3) that E�1cG;nðtÞWcF ;nðtÞWEcG;nðtÞ
for all tX 0 and all nX 1. Hence PGðtÞ ¼ PF ðtÞ and therefore by Theorem 1.2,
HDðJGÞ ¼ HDðJF Þ. Denote this common value by h. Although we keep the same
symbol for the homeomorphism establishing conjugacy between the systems F
and G, it will never cause misunderstandings.
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Suppose now that both systems are regular (in fact assuming (3) regularity of one
of these systems implies regularity of the other). Then for every o 2 I	

ðKFEÞ
�h

W
K�h

F jjf 0ojj
h

jjg0ojj
h W

mF ðfoðJF ÞÞ
mGðgoðJGÞÞ

W
jjf 0ojj

h

K�h
G jjg0ojj

h W ðEKGÞ
h:

So, the measures mG and mF 
 h�1 are equivalent, and even more

ðKFEÞ
�h

W
dmF 
 h�1

dmG
W ðEKGÞ

h:

Let us now show that ð5Þ ) ð3Þ. Indeed, if (5) is satis¢ed then the measure mF 
 h�1 is
equivalent to mG. Since additionally mF 
 h�1 and mG are both ergodic (see Theorem
3.8 of [MU1]), they are equal. Hence, using the equality HDðJF Þ ¼ HDðJGÞ:¼ h,
we get

jjg0ojj
h m

Z
jg0oj

h dmG ¼ mGðgoðJGÞÞ m mGðgoðJGÞÞ

¼ mF 
 h
�1ðgoðJGÞÞ ¼ mF ðfoðJF ÞÞ m mF ðfoðJF ÞÞ

¼

Z
jf 0oj

h dmF m jjf 0ojj
h

and raising the ¢rst and the last term of this sequence of comparabilities to the power
1=h, we ¢nish the proof of the implication ð5Þ ) ð3Þ.
The equivalence of (4) and conditions (1)^(3) is now a relatively simple corollary.

Indeed, to prove that (3) implies (4) ¢x a ¢nite subset T of I . By (3)
E�1W jjf 0ojj=jjg

0
ojjWE for all o 2 T	, and as every ¢nite system is regular, the equiv-

alence of measures mG;T and mF ;T 
 h�1 follows from the equivalence of conditions
(3) and (5) applied to the systems ffi: i 2 Tg and fgi: i 2 Tg. If in turn (4) holds
and o 2 I	, then o 2 T	, where T is the (¢nite) set of letters making up the word
o and the measures mG;T and mF ;T 
 h�1 are equivalent. Hence, by the equivalence
of (2) and (5) applied to the systems ffi: i 2 Tg and fgi: i 2 Tg we conclude that
jg0oðyoÞj ¼ jf

0
oðxoÞj. Thus (2) follows and the proof of Theorem 1.4 is ¢nished. &

We now recall from [HU] the following.

DEFINITION. A conformal system S ¼ ffi:X ! X : i 2 Ig is said to be of bounded
geometry if there exists CX 1 such that for all i; j 2 I , i 6¼ j

maxfdiamðfiðX ÞÞ; diamðfjðX ÞÞgWCdistðfiðX Þ;fjðX ÞÞ:

THEOREM ([HU]). If both conformal iterated function systems F ¼ ffi:X !

X : i 2 Ig and G ¼ fgi:Y ! Y : i 2 Ig are of bounded geometry, then the topological
conjugacy h: JF ! JG is bi-Lipschitz continuous if and only if the following two con-
ditions are satis¢ed
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(a) Q�1W
diamðfoðX ÞÞ
diamðgoðY ÞÞ

WQ

for some QX 1 and all o 2 I	.

(b) D�1W
distgiðY Þ; gjðY Þ
distfiðX Þ; fjðX Þ

WD

for some DX 1 and all i; j 2 I, i 6¼ j.

EXAMPLE 1. For in¢nite system, even in R, it is not true that (a) implies h to be
Lipschitz continuous. We shall construct such F ;G, with bounded geometry.
Let

Ai ¼ ½1=i; 1=i þ expð�2iÞ" for i ¼ 2; 3; :::

and

A0i ¼ ½expð�iÞ; expð�iÞ þ expð�2iÞ"; fi: ½0; 1" ! Ai

and gi: ½0; 1" ! A0i af¢ne, onto, preserving orientation. Let h map the end points of
foð½0; 1"Þ to the end points of goð½0; 1"Þ for all o 2 I	. Then f extends uniquely, con-
tinuously, to the limit sets of the systems due to diamðfoð½0; 1"Þ;
diamðgoð½0; 1"Þ ! 0 if the length of o tends to 1. By the construction it is a con-
tinuous conjugacy, but it is not Lipschitz even on

S
i fiðf0; 1gÞ.

If the sets X and Y are both contained in the real line R, then it can be relatively
easily to prove that already conditions (a) and (b) (without boundedness of
geometry) imply that the conjugacy h is Lipschitz continuous.

Appendix 2. The Radon^Nikodym Derivative r ¼ dm=dm in the Parabolic
Case

To ¢x terminology, m in this Appendix is a s-¢nite S-invariant measure equivalent
with d-conformal measure m. The existence and (obvious) uniqueness of m up to
a multiplicative constant have been proved in Corollary 5.11 of [MU2]. In this
appendix we establish the continuity property of r ¼ dm=dm in the parabolic case.
In order to complete terminology, by m	 we will denote the unique probability
measure that is S	-invariant and equivalent with conformal measure m and by
r	 the Radon^Nikodym derivative r ¼ dm	=dm. Our result in this appendix is
the following.

THEOREM A2.1. If a regular parabolic system S satis¢es all the conditions
ð5aÞ � ð5hÞ and the alphabet I is ¢nite, then the Radon^Nikodym derivative
r ¼ dm=dm is continuous on the set J n fxi: i 2 Og
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Proof. According to formula (5.1) from [MU2] and the de¢nition of conformal
measure we obtain

dm
dm

¼ r	 þ
X
kX 1

X
i2O

ðr	 
 fikÞ � jf
0
ik j

d:

Given now i 2 O, j 2 I n O and nX 0 we shall prove the the series
P

kX 1 jf
0
ik j

d con-
verges absolutely uniformly on finjðX Þ. Indeed, ¢x x 2 X . Then it follows from (5e)
that putting Ti;j;n ¼ inffjf0injðzÞj: z 2 Xg > 0, we get

X
kX 1

jf0ik ðfinjðxÞÞÞj
d ¼

X
kX 1

jf0ikþnjðxÞj
d

jf0injðxÞj
d W

1
Ti;j;n

X
kX 1

jjf0ikþnjjj
d

W
Kd

Td
i;j;n

X
kX 1

mðfikþnjðX ÞÞW
K

Ti;j;n

d

<1:

Since r	 is bounded from above by Kd we therefore conclude that the series

SðiÞ ¼
X
kX 1

ðr	 
 fikÞ � jf
0
ik j

d

converges absolutely uniformly on the set finjðX Þ. Employing now (5d) and using
¢niteness of I we therefore deduce that the function SðiÞ is continuous on the set[

j 6¼i

[
kX 0

fikjðX Þ � J n fxig:

Since O is ¢nite we ¢nally get that r ¼ r	 þ
P

i2O SðiÞ is continuous on the set
J n fxi: i 2 Og. The proof is complete. &
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