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Titanium alloys have been used extensively in the aerospace and biomedical industries due to their high 
strength to weight ratios, elevated temperature mechanical properties, excellent biocompatibility, and 
good corrosion resistance [1-4]. Alloys, such as Ti-6Al-4V (Ti-6-4) can be used for replacement hip 
joints, knee joints, and bone plates because of the aforementioned properties. Titanium-aluminum 
intermetallic alloys such as γ -TiAl are attractive for high temperature turbine engine components 
because of their good thermal stability and low density [5]. Recently, both of these alloys have been 
manufactured with additive manufacturing (AM) because traditional methods such as casting and 
forging present problems and limitations [5]. AM provides more design flexibility for titanium alloys, a 
great benefit when considering the complexity of certain parts made for biomedical implants or jet 
engines. Electron beam melting (EBM) is a powder processing AM technique that produces fully net 
shaped parts from a bed of powder, and it is the main focus of this study. 
 
In this research, the microstructure and mechanical properties of both Ti-6-4 and γ -TiAl were studied 
before and after the EBM process. X-Ray diffraction (XRD), nanoindentation, and micropillar 
compression were performed to gain an understanding of the effects of the EBM manufacturing process.  
Microstructural evaluation was performed with the use of a scanning electron microscope (SEM). Figure 
1 (a)(b) shows the microstructure of Ti-6-4 and γ -TiAl, respectively. Both alloys form a fine lamellar 
microstructure of alternating phases; these needle like Widmanstätten structures serve to strengthen the 
alloys by reducing crack propagation through the material. 
 
Micropillars prepared by focused ion beam (FIB) milling were compressed by a nanoindenter in order to 
gather the yield strength and Young’s modulus.  Stress/strain curves for micropillars are shown in Figure 
2(a) and (b) for Ti-64 and γ -TiAl, respectively. Tabulated values for the experimentally calculated 
compressive yield strengths, hardnesses, and Young’s Moduli are shown in Table 1. From Table 1, it is 
clear that the EBM manufacturing process has a positive effect on the mechanical properties of Ti-6-4 
and γ -TiAl. Compared to a cast sample of Ti-6-4 that underwent identical testing, the EBM sample 
displayed yield strengths that were 39% higher on average. This is due to the microstructure that is 
formed upon cooling. Specifically for Ti-6-4, the β phase that forms enhances the mechanical properties, 
as it has a higher strength than the α phase and also acts as a strengthening phase [6]. Referring to Figure 
1, very fine spacing of the lighter β phase can be observed. The mechanical properties found for γ-TiAl 
agree well with calculated and experimental values from the literature with a Young’s modulus of 179 ± 
5 GPa.   
 
From this research it can be concluded that the manufacturing process plays a significant role in the final 
mechanical behavior of a material. In the case of Ti alloys, there seems to be a strengthening effect due 
to the faster cooling rate and favorable microstructure that forms as a result. Future work to be 
performed will involve a TEM analysis of the deformation mechanisms of both materials as well as an 
analysis of the base powder from which EBM samples are produced. 
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Material Yield Strength Young’s Modulus Hardness 

EBM Ti-6-4 1135 ± 12 MPa 114 ± 6 GPa 4.5 ± 0.3 GPa 
Cast Ti-6-4 812 ± 26 MPa 116 ± 2 GPa 4.1 ± 0.2 GPa 
EBM γ-TiAl 620 ± 21 MPa 179 ± 5 GPa 5.3 ± 0.2 GPa 

Figure 1: SEM images of microstructures for (a) Ti-6-4 showing the V rich β phase (lighter) and Al 
rich α phase (darker) and (b) γ-TiAl showing the α2-Ti3Al phase (lighter) and γ-TiAl phase (darker) 

Figure 2: Micro-compressive stress-strain curves of (a) Ti-6-4 and (b) γ-TiAl 
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Table 1: Mechanical properties of tested samples 
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