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Abstract

Bo Ju Jiang introduced an invariant lying in the braid group which is the best lower bound of the number
of fixed points in a homotopy class of a given pair of self maps of a surface. Here we modify this
construction to get a lower bound of the number of coincidence points of a pair of maps between two
closed surfaces.

1991 Mathematics subject classification (Amer. Math. Soc): primary 55M20, secondary 57R99.

Introduction

The long standing problem, whether or not the Nielsen number ([2, 8]) is the best
lower estimate of the number of fixed points of self-maps of surfaces, was answered
negatively by Bo Ju Jiang [9]. In [10], for any self-map of a surface an element in
the braid group is defined and its 'width' turns out to be the best lower bound of fixed
points.

In this paper we introduce a similar element for a pair of maps f,g:M-*N
between closed surfaces and we prove that its width is the best lower bound of
coincidence points. Then in Section 3 we show that after abelianization this element
is sent onto the classical Nielsen invariant. The method of this section is simpler than
those of [10, Section 5]: we avoid commutator and Fox calculus. Finally, since the
above theory requires the assumption jt2N = 0, we show that for pairs of maps into
S2 or RP2 (the only surfaces with TT2N ^ 0) the classical Nielsen number can always
be realized.

To get the minimalization theorem, we use homotopies deforming both maps.
However it follows from [1] that the least number of coincidence points may always
be obtained by a pair of homotopies in which one map is constant.
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28 Jerzy Jezierski [2]

FIGURE 1

1. An algebraic formulation of coincidence problem

Let M and N be closed connected two-dimensional manifolds and let n2N = 0.
We will consider a pair of continuous maps f,g:M—>N and its coincidence set
*(/> s) = ix e M : fx = gx}. We will look for the lower bound of the cardinality
#4>(/, g) in the homotopy classes of / , g. Let us fix a point x0 & 4>(/, g). The
following lemma shows that we need only consider homotopies rel x0.

LEMMA 1.1. (Compare [9]) Let f, g; f',g':M->N be homotopic pairs of maps
such that fx0 = f'x0 ^ gx0 = g'x0. Then the pair f, g is homotopic reljc0 to a pair
/ " , g" such that * ( / " , g") = <&(/', #')•

PROOF. Let F,G: Mxl^-Nbea pair of homotopies between / , g and / ' , g'.
Then the restrictions F,G : {x0} x / ->• N are homotopic rel ({x0) x 57) to some maps
a, /? satisfying ct(x0, t) ^ ^(x0, t) for / e [0, 1]. The homotopy extension property
of (M x / , M x SI U {x0} x /) gives us homotopies f", G' from / , g to / ' , g' with
F'(x0. 0 ¥" G'(XQ, t). Then F'(x, t) ^ G'(x, 0 in some neighbourhood W of x0. Let
A : M -^- [0, 1] be a Urysohn function satisfying A.(x0) = 0 and k(M - W) = 1.
Then F"(x, /) = F'(x, k(x)t), G"(x, t) = G'{x, k{x)t) axe homotopies relx0 and we
put / " = F"(., 1), g" = G"(., 1)).

Now we fix a closed ball D c M with x0 on its boundary and an open ball U c N
containing fx0 and gx0 (Figure 1). Let us also fix orientations of D and U. Let b be
a loop in U — gx0 based at fxQ running once around gx0 in positive sense of U.
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FIGURE 2

LEMMA 1.2. Let f, g : M - • N be as above. Let k > 0, iu ..., ik e Z. Then the
following two conditions are equivalent.

(I) The pair f, g is homotopic relxo to a pair / ' , g' with exactly k coincidence
points of indices iu ..., ik, 4>(/', g') c int D, / ( $ ( / ' , g')) C U {the indices
are taken with respect to fixed orientations of D and U).
There exist a homomorphism <J> : n\(M — intD.jfo) —*• Jti(N x N —
A, (fx0, gx0)) and elements vu ..., vk e n^N x N - A, (fx0, gx0)) such
that the diagram

<t>
7r, (M - int D, x0) 7T, (N x N - A, (fx0, gx0))

1 '•
, x0) *• nx(N x N, (fx0, gx0))

(II)

commutes and 0 ( 7 ) = v1B
nv1

 l . . . vkB'kvk
 x {where T denotes the homotopy

class of bd D).

PROOF. (I) implies (II). We assume that / , g are homotopic rel x0 to a pair / ' , g'
that $ ( / ' , g') — {xu ..., xk] c intD and j , = / '* , = g'xt e U. Let us fix closed
disjoint balls £>, c D such that xt e int Dh /'£>, U g'Dj c U, a point x,' e bd £>, and
an arc a, joining in D — UD; the points x0 and jr('. Let 7} be a loop of 8Dt based at JC(-
oriented in a positive sense, (/ = 1 , . . . , k).

We define <D = (/ ' , g')t: n^M - int D,x0)-+TT^N xN-A, {fx0, gx0)). Then
the diagram commutes. For j = 1 , . . . , k we fix paths c;1, c,2 joining / ' x 0 with /'jr'
and g'x0 with g'jcj in U respectively satisfying cn{t) ^ cj2{t). Then

= (/ ' , g'),T = ...akTkak
x), and
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( f ' , g % ( a j T j a j ) = ( v j t C j d ^ * £ l )

where vj = (vn, vj2) = ((/'a^c",1, (g'aj)cj2) eni(N x N - A, fx0, gx0).
On the other hand

{cjdf'Tj)cJi, cj2(g'Tj)c-2
l) e nx(U x U - A) = n,(R2 x R2 - A) = Z

and the above group is generated by B. Thus we get

(/ ' , g'h(ajTja-') = vjBl> vj1 (with /; = ind (/ ' , g' : xj))

which implies

<&{T) = vxB
uv-i ...vkB

ikv~\

(II) implies (I). Let us fix as above: balls D, Dj C M, U C N, points Xj G intDjy

x' e bd Dj, y>j 6 U and paths a,-, c;i, c,2. Let us define the maps / ' , g' on the arc as

by / ' a ; = Vj\Cj\, g'dj = Uy2C;2 and then on Dj to get the unique coincidence point Xj
of index ij. We extend these maps by a retraction onto the whole of D. Let us notice
that then

(/ ' , g')*T = v . S ' V . . . ifcfl 'V e ^ , ( A / x i V - A).

Now we extend / ' , g' onto M so that M-int D is sent into N x N — A. At first we
extend (/ ' , g') on the 1-skeleton M(1) c M-int D to get a commutative diagram

x J V - A )

and this may be extended onto each 2-simplex in M-int D. Pasting the last map with
the part already defined on D we obtain the desired maps f',g':M->N.lt remains
only to show that / ' , g' are homotopic to / , g. But the vertical homomorphisms in
the commutative diagram

7Ti(M-intD)—^7ti(N x N - A)

| , | ,

TT,M *Jii(N x N)

and the ones in (II) are surjective. This implies (/, g)# = (/ ' , g%; hence, since
7tx(N x N) = 0 the pairs / , g and / ' , g' are homotopic.
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FIGURE 3

2. Braid groups

We will use the presentation of the (pure 2-) braid group given in [10, Section 2].
We denote

H = ker(pi# : n^N x N - A, (/*„, gx0)) -+ n^N, fx0))
K = ker(/# :ni(NxN-A, (fx0, gx0)) -> ii(Af x N, (fx0, gx0))).

If we remove a disk from the surface N we obtain a two-dimensional disk with r
pairs of linked bands and s twisted bands as shown on Figure 3.

We denote by rtj, r2j the loops in N based at fx0 and gx0 respectively as shown in
Figure 3,j = l,...,2r + s. The ik image of rkj in G will be denoted by pkJ, k = 1,2.
The group G is generated by p 1 ; , p2;, B with the relations 2 — 1 , . . . , 2 — 5 of [10,
Theorem 1] (where g = r,h = s,n = 0). We recall only that

B = [fti, P221] . . . [P2,2r-1, / £ * ] 4 + l • • • 4 + ,

and that the right side is denoted by R(pu,..., fhr+s)-
Similarly we denote by r, the generators of 7Ti(M, x0). Now [10, Section 2] implies

the following statements:
The group H is a free group with the basis {p^ : i = 1 , . . . , 2r + s}.
The group K = ker /# = / / D ker p2# is the normal subgroup of H generated by B.
The map p2# induces an isomorphism from the quotient group n = H/K onto

https://doi.org/10.1017/S1446788700038064 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038064


32 Jerzy Jezierski [6]

Thus n is generated by [p2j] j = 1,... ,2r + s with the one relation
R(fh\, • • •. P2,2r+j) = 1- The group K is free on the basis [sBs~u, s e 5} where
S is a minimal Schreier transversal with respect to the projection H -^ IT. We will
also write Bkv = vBkv~x and Bu+V = BUBV for u, v, B e V (a group) and A: e Z.
(This convention is not consistent with that of Jiang [10]).

We denote by Z[T] the integral group ring and by Z[F] the set of integral com-
binations of elements from T with non-commutative addition. Then Z[P] is the
abelianization of Z[F].

The 'exponential' homomorphism ft : Z[G] -» K fi(g) = Bg and a Schreier
minimal transversal of H -*• n induce an isomorphism fis : Z[n] ->• K, fSs{g) = Bg

where g is a Schreier representative of g. Now let us return to our maps / , g : M -> Af.
They induce homomorphisms: /# : n\(M, x0) —> ^ ( N , / JC 0 ) , g# : Ji\(M, x0) —*•
ni(N,gx0). Since {r;}, {ri;}, {r2y} are generators of the above groups, /#ry = / ; ,
g#rj = gj where fj, gj are words in the letters {/-iy}, {r2y} respectively.

L e t u s def ine cr, = / ; ( p , , , . . . , pt,2r+s)gj(P2i, • • • , P2,2r+,)-

L E M M A 2.1 . T/i^ condition (II) of Lemma 1.2 w equivalent to

(III) T ^ r g exw? elements Uj e K,(j = l,..,2r + s) and Vj e G (j = I, ...,k)

such that R(UjOj) = B''v'+-+i^ in K.

PROOF. (II) implies (III). By the diagram of (II), 4>(r;) and CT, differ by an element
of kery# = K; hence <£(/;) = UjOj for some Uj e K.

Since T = /?(ry),

(III) implies (II). The group n\ (Af-int D, x0) has free basis (r,-). We define
<t>(ry) = UjCTj. Then i#<t>(rj) = i#{UjOj) = i#aj = (/ , g)#j#O so the diagram in (II)
commutes. Moreover

REMARK 2.2. If TV is orientable, the condition Vj e G in (II) and (III) may be
replaced by Vj e H (see [10, (2.2)]) In the non-orientable case such reduction is also
possible but then ij may change sign. In any case we may follow [10, Section 3] to
obtain

PROPOSITION 2.3. MF(f, g) equals the minimal width of elements /?(M,<J,) 6 K
with respect to the basis {sBs~l : s e 5}, where S stands for a Schreier minimal
transversal and u t , . . . , u2r+s run over all K.
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3. Connection with the Nielsen invariant

In this section we will show that the elements appearing in Proposition 2.3 are sent
by abelianization into the classical Nielsen invariant.

We identify the groups nx (N, fx0), TTI(N, gx0) by a path from fx0 to gx0 lying in 0.
Then /-,, corresponds to r2i. We define the left action of nx(M, x0) on n = 7r{(N, gxQ)
by ra = g#(r)a(/#r)~'- We denote by nR the orbit space of this action (the set of
Reidemeister classes).

LEMMA 3.1. For any x e <J> (/, g) and a path r from fx0 to gx0 in U the set

{((8u)(fu~l)r) : u is a path in M from x0 to x]

is exactly one orbit ofnR. Two points x, y € <!>(/, g) are Nielsen equivalent if and
only if they determine the same orbit.

PROOF. Notice that itR is equal to the set V(g, / : x0, r~l) as defined in [4]. Then
apply [4, Lemma (1.2)].

COROLLARY 3.2. The above formula determines an injection I : <!>'(/, g) —>• nR:
for any x € <£(/, g) we put I(x) = {{gu)(fu)~xr)R where u is a path from x0 to x
and 4>' denotes the set of Nielsen classes.

DEFINITION 3.3. Let M and N be oriented. The element J2A i n d (/> 8 '• A)I(A) e
Z[JTR] (where the summation runs over the set of Nielsen classes) will be called the
Nielsen invariant of / , g. When either of M or N is not orientable then the element
^2A ind 2 ( / , g : A)I(A) e Z2[nR'\ will be called the Nielsen invariant modulo 2 (here
ind2( / , g : A) denotes index modulo 2 of the class A, that is, the parity of #A if /
and g are transverse).

The following two lemmas are due to Bo Ju Jiang.

LEMMA 3.4. ([10, (4.1)]) Suppose g,g' € G and g = g'modA'. Then for any
k e K the elements kg andks are conjugate in K. In particular B8 = 2 Bg where = 2

denotes equality in Kab (K abelianized).

LEMMA 3.5. ([10, (4.2)]) Suppose h e H. Then BPuh = 2 B±hp» with minus sign if
and only if the band is twisted.

PROOF. Follow [10, (4.2)], recalling only that our exponential convention Bv is not
consistent with that of Jiang.
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34 Jerzy Jezierski [8]

COROLLARY 3.6. (Compare [10, (4.3)]) Ifk = k(pls), h = /i(A>J are words then
Bkh = 2 B±hk'~' where k! = k(p2S) and where the sign is minus if and only if the path
k(ru) reverses orientation of N.

The isomorphism /J5 : Z[n] -»• K induces the isomorphism ft : Z[n] ->• Kab

which does not depend on the Schreier transversal ([10, Lemma (4.1)]). We denote
by k : Kab -> Z\n\ its inverse.

THEOREM 3.7. Let M and N be oriented. The composition

XR:K^Kab^ Z[n] -* Z[nR]

sends R (Uj a,) (from Lemma 2.1) into the Nielsen invariant (here we identify n = H/K
with n^N, gx0) by p2#).

PROOF. We may assume that (/, g) is of form as in Lemma 1.2. Recall our
convention: two paths in N with ends in U will be called homotopic if and only if
they represent homotopic loops in the quotient space N/U (U contracted to a point).
Now it follows from the proof of Lemma 1.2 that if a, is a path in D from x0 to x,
then (following the above convention) (/a,) = pi#(u;), (gtf,) = P2#(Vj) . Thus

l))R = {(p2Vj)(pxvjl))R e nR.

Let us denote

= Fj(rls)

{p2Vj) = Gj(r2s) G 7Ti(N, gX0)

and let Wj = Fj(pu)Gj(p2s), z, = Gj(p2S)Fj(p2s)~
1. The element corresponding

to I(xj) in nR = (H/K)R is determined by z, since p2#z/ = ((PIVJ)(P\VJ1)) =
{g(aj)f(aj)~l). We notice that Vj = u;ymod K (since their projections p\#, p2# are
equal) hence by Lemma 3.4 Bv> =2 Bw'. On the other hand, by Corollary 3.6,
Bw> =2 Bz>. Thus X(BV') = zj and at last

XR(R(Ujaj)) = kR(B^+-+i>v>) = ]
;=1 j=\

, g : *,)/(*,•) = J2ind(f' '8 : A^W e Z[nR]

where the summation runs over all Nielsen classes.
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REMARK 3.8. When M or N is not orientable then we may follow the above proof
using the index mod 2. Then the composition

kR : K -* Kab X Z[n] - • Z[nR] -+ Z2[7tR]

sends R(UJGJ) into the Nielsen invariant modulo 2.

4. Sphere and projective plane

As we have seen, two of the simplest surfaces — the sphere and projective plane
— are excluded from the above theory and they need an individual aproach. We will
show at first that any Nielsen class of maps into these spaces may be reduced to a
single point and then that any inessential class may be removed. This will imply

THEOREM 4.0. Any pair of maps f, g into S2 or RP2 is homotopic to a pair with
N(f, g) coincidence points.

(Here N(f, g) denotes Nielsen number introduced in [3]).
We will focus on maps into RP2. The case of the sphere is simpler and can be

easily deduced.

DEFINITION 4.1. The pair of homotopies F,,G, : M -> N will be called special if
and only if 4>(F,, Gt) does not depend on t e [0,1].

The proofs of the above two lemmas are modifications of the well known ones for
fixed points.

LEMMA 4.2. (Compare [7, 2.1]) Let X, Y be compact ANRs and let A c U C X,
with A-closed and U-open. Let the maps f,g:X-± Y and special homotopies
F;, G; : A -»• Yo satisfy F'(a) = fa, G'0(a) = ga for a e A. Then F't, G't may be
extended to the whole ofX giving special homotopies F,, G, satisfying F,(x) = f(x),
G,{x) = g{x)for (JC, 0 e X x 0 U (X - U) x / .

LEMMA 4.3. (Compare [12, 1.2,1.3]) Let f, g : M ->• N and let co be an arc in M

joining two isolated coincidence points x0 and y such that <t>(f, g)r\co[O, 1] = {x0, y}.
Let f, g be near on co. Then for any neighbourhood U ofco[0, l]f,g is homotopic
rel M — U to a pair / ' , g' of maps which are near on co and 4>(/', g') — <£(/, g) — x0.

LEMMA 4.4. Let the paths a, 0 : [0, 1] ->• RP2 satisfy a(t) = fi(t) if and only
if t e {0, 1} and be homotopic. Then they are specially homotopic {hence (a, fi) is
specially homotopic to a near pair).
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PROOF. Consider the lifts satisfying a(0) = /J(0)

S2

p—universal covering

[0, 1] ^

Since a and/? are homotopic, a(l) = f}(\) and since a(t) ^ fi(t) (0 < t <
and fi(t) are never antipodal. Now a and ft are specially homotopic (by geodesies)
hence so are a and p.

LEMMA 4.5. Let f, g : M -+ RP2 with <&(/, g) finite. Ifthe points x, y e <!>(/, g)
are Nielsen related then there is an arc between them establishing this relation.

PROOF. This follows from the fact that any path coon a surface satisfying co(0) ^
o>(l) is fixed end point homotopic to an arc [7, 3.3].

Let f,g:M-+ RP2. We may assume that <!>(/, g) is finite. Let x, y e <!>(/, g)
be Nielsen related. By Lemma 4.5 we can find an arc joining them, establishing the
Nielsen relation and moreover avoiding other coincidence points. Now Lemma 4.4
and Lemma 4.3 reduce these two points to one. In this way we obtain one point in
each Nielsen class.

It remains to show that any inessential class A of the pair / , g : M —>• RP2 may be
removed. By the above we may assume that A is a single point. In the oriented case
ind (f,g:A) = 0 and this coincidence class disappears after a local deformation.
But the following example shows that in the non-orientable case an inessential one
point class may be of non-zero local index.

EXAMPLE. Let D2 = {z e C : \z\ < 1} and let us present RP2 = D2/ = (z =
- z for |z| = 1). Let f,gbe self maps of RP2 given by f[z] = [0] (constant map)
and g[z] = [z2]. Then g, [z] = [tz2] shows that g is also homotopic to a constant map;
hence N(f, g) = 0. But on the other hand <£(/, g) = {[0]}, and the local index of
this point is ±2.

We will see that the situation of the above example occurs for defective Nielsen
classes only [6] and we will show how to remove such classes.

DEFINITION 4.6. We will say that a € n\M satisfies the condition Z if and only if
f#a = g#a and exactly one a or fact preserves the orientation.

Recall that a Nielsen class is defective if and only if there is a loop based at this
class satisfying (Z) [6].
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Let A — [x0] be a Nielsen class of / , g : M —> RP2. Let us fix local orientations
at the points x0 € M, fx0 = gx0 e RP2 and let n e Z be the local coincidence index
with the respect to these orientations (we may assume n > 0). By a small deformation
we may replace x0 by n coincidence points xx,... ,xn all of the index + 1 . Since A
is inessential, the point Xi reduces some x, and since they lie in the same euclidean
neighbourhood mapped into another euclidean neighbourhood, X\ reduces itself. Thus
the class A is defective and its local index is even.

LEMMA 4.7. Let f, g : M —> N and let A = {a} be an inessential Nielsen class. Let
&) be a closed arc based at a satisfying (Z), w(t) g 4>(/, g)forO < t < 1 and fco, gco
are specially homotopic to a near pair. Then for any open subset U containing <w[0, 1],
/ , g is homotopic rel (M - U) to a pair / ' , g' satisfying <!>(/', g') = 4>(/, g) - A.

PROOF. By Lemma 4.3 the special homotopy on co may be extended onto M so we
may assume that fco, gco are near. Since A is inessential its local index must be even,
say 2k. We may split a into two coincidence points a and a' both of local index k.
Then we translate a (as in Lemma 4.3) along the path to and we get the coincidence
point a again but now of local index — Ic (since exactly one of co or fco preserves the
orientation). Now the points a and a' cancel one another.

It remains to prove that if A = {a} is a defective inessential Nielsen class of
f,g:M-* RP2 then there exists a closed arc based at a satisfying the hypothesis
of 4.6. This follows from

LEMMA 4.8. For any defective Nielsen class of / , g : M —> RP1 there is an
element satisfying condition (Z) being the composition of at most two generators. In
particular, it may be represented by a closed arc in M.

PROOF. Suppose otherwise. Let a = c*i... ak satisfy (Z) (at,..., ak being gener-
ators). Since (Z) does not hold for generators, /#a, = g#a, implies both a, and /#a,
simultaneously preserve or reverse the orientation. We may drop such a, and assume
/#a, ^ g#a, for / = 1 , . . . , k. Now ftt(a]a2) = g#(ct1a2) and for the same reasons as
above we may drop axa2. Following this procedure we obtain k < 2.
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