A NOTE ON INTEGER SOLUTIONS OF THE DIOPHANTINE EQUATION $x^2 - dy^2 = 1$

by JOHN HUNTER

(Received 1st June, 1956)

In the equation

 $x^2 - dy^2 = 1$,(1)

d is any positive integer which is not a perfect square. For convenience we shall consider only those solutions of (1) for which x and y are both positive. All the others can be obtained from these. In fact, it is well known that if (x_0, y_0) is the minimum positive integer solution of (1), then all integer solutions (x, y) are given by

$$x + y\sqrt{d} = \pm (x_0 + y_0\sqrt{d})^n$$
 $(n = 0, \pm 1, \pm 2, ...),$

and, in particular, all positive integer solutions are given by

$$x + y \sqrt{d} = (x_0 + y_0 \sqrt{d})^n$$
 (n = 1, 2, 3, ...)

The purpose of this note is to establish a procedure for obtaining solutions of (1) by Newton's method of approximating to the root \sqrt{d} of the equation $f(x) \equiv x^2 - d = 0$.

If x_1 is any positive (for convenience) rational number, then Newton's method gives a sequence (x_n) of rational numbers which is defined by the relation

and which converges to \sqrt{d} . We first note that if (2) is written in the form $x_{n+1} = p_{n+1}/q_{n+1}$, where p_{n+1} and q_{n+1} are the positive rational numbers defined by

then it is easily verified that (p_{n+1}, q_{n+1}) is a rational solution of (1) for n = 1, 2, 3, ... For $n \ge 2$, since $x_n = p_n/q_n$ and $p_n^2 - dq_n^2 = 1$, (3) can be simplified to

$$p_{n+1} = p_n^2 + dq_n^2, \qquad q_{n+1} = 2p_n q_n.$$
 (4)

Thus, corresponding to each positive rational number x_1 , (2) provides a sequence of positive rational solutions (p_n, q_n) (n=2, 3, 4, ...) of (1) which, by (4), are such that

$$p_{n+1} + q_{n+1} \sqrt{d} = (p_n + q_n \sqrt{d})^2,$$

and hence, by induction, such that

$$p_{n+1} + q_{n+1}\sqrt{d} = (p_2 + q_2\sqrt{d})^{2^{n-1}},$$
(5)

$$p_2 = \frac{x_1^2 + d}{|x_1^2 - d|}, \quad q_2 = \frac{2x_1}{|x_1^2 - d|}.$$
 (6)

where

Also, if p_2 and q_2 are integers, then (5) gives a sequence of positive integer solutions of (1).

We now establish some properties of the method in the following lemma.

LEMMA. (i) p_2 and q_2 are integers if and only if $x_1^2 - d$ divides $2x_1$.

(ii) If (p, q) is a given positive rational solution of (1), then there are two values of x_1, y_1 and y_1^* say, which give rise, by (6), to the solution (p, q), and these have the properties

$$y_1 > \sqrt{d}$$
. $y_1^* < \sqrt{d}$, $y_1 y_1^* = d$, $y_1 - y_1^* = 2/q$.

JOHN HUNTER

Proof. (i) If p_2 and q_2 are integers, then $x_1^2 - d$ divides $2x_1$. Conversely, if $x_1^2 - d$ divides $2x_1$, then q_2 is an integer and, since $\frac{x_1^2 + d}{x_1^2 - d} = 1 + \frac{2d}{x_1^2 - d}$ and $(x_1^2 - d, x_1)$ divides d, it follows that p_2 is also an integer.

(ii) We have to determine the values of x_1 for which $p = \frac{x_1^2 + d}{|x_1^2 - d|}$ and $q = \frac{2x_1}{|x_1^2 - d|}$. Suppose first that $x_1^2 > d$; then $p = \frac{x_1^2 + d}{x_1^2 - d}$, $q = \frac{2x_1}{x_1^2 - d}$ and hence $x_1^2 = \frac{p+1}{p-1}d = \frac{2x_1 + qd}{q}$, so that $x_1 = \frac{qd}{p-1}$. Similarly, if $x_1^2 < d$, then $p = \frac{x_1^2 + d}{d - x_1^2}$, $q = \frac{2x_1}{d - x_1^2}$ and $x_1 = \frac{qd}{p+1}$. If these values of x_1 are denoted by y_1 and y_1^* , respectively, then $y_1 > \sqrt{d}$, $y_1^* < \sqrt{d}$, $y_1y_1^* = \frac{q^2d^2}{p^2-1} = d$, since $p^2 - dq^2 = 1$, and $y_1 - y_1^* = \frac{2qd}{p^2-1} = \frac{2}{q}$.

From this last equation it follows that if y_1 and y_1^* are integers, then q=1 or 2, and that if $q \ge 3$, then y_1 and y_1^* are not both integers.

We now show that for certain values of d a corresponding easily-determined value of x_1 gives rise, by (6), to the minimum positive integer solution of (1). Since d is a positive integer which is not a perfect square, it can be expressed uniquely in the form $d=m^2+r$ where $r\neq 0$, $-m+1\leqslant r\leqslant m$, for some positive integer m.

THEOREM. (i) If r = -1, then $x_1 = m - 1$ gives the minimum positive integer solution of (1), and this is (m, 1).

(ii) If r divides $2m, r \neq -1$, then $x_1 = m$ gives the minimum positive integer solution of (1), and this is $\left(\frac{2m^2+r}{|r|}, \frac{2m}{|r|}\right)$.

Proof. (i) In this case, $d - x_1^2 = 2(m-1)$, $d + x_1^2 = 2m(m-1)$ and, by (6), $p_2 = m$, $q_2 = 1$, and this is clearly the minimum positive integer solution.

(ii) Here $|x_1^2 - d| = |r|$, so that $x_1^2 - d$ divides $2x_1$ and thus, by part (i) of the above lemma, p_2 and q_2 are integers. From (6), $p_2 = \frac{2m^2 + r}{|r|}$ and $q_2 = \frac{2m}{|r|}$. Suppose now that (x_0, y_0) is the minimum positive integer solution of (1). Then the second minimum positive integer solution is $(x_0^2 + dy_0^2, 2x_0y_0)$, that is $(1 + 2dy_0^2, 2x_0y_0)$. Now $1 + 2dy_0^2 \ge 1 + 2d$; but

$$\frac{2m^2+r}{|r|} = \frac{2d-r}{|r|} \leq \frac{2}{|r|}d + 1 < 2d+1 \quad \text{if } |r| > 1,$$
$$\frac{2m^2+r}{|r|} = 2d - 1 < 2d+1 \quad \text{if } r = 1.$$

and also

Hence the positive integer solution (p_2, q_2) is the minimum positive integer solution.

It is of interest to note that the results of this theorem give the minimum positive integer solutions of (1) for all values of d in the range $2 \le d \le 40$ except for d = 13, 19, 21, 22, 28, 29 and 31.

We note finally that the results in the theorem are not new (see, for example, L. E. Dickson's *History of the theory of numbers*, II, p. 378). It is surprising that no account of the relation of Newton's method to the equation $x^2 - dy^2 = 1$ appears to exist in the literature.

THE UNIVERSITY GLASGOW