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Abstract. We give a classification theorem for cellular automata, showing that either
there is a minimal quasi-attractor whose basin has full measure, or else no chain
component has a basin with positive measure.

0. Introduction
Cellular automata have received much attention in recent years, both from
mathematicians and from applied scientists [3]. One reason for this, besides their
intrinsic mathematical interest, is that they are believed to provide a class of models
for a wide range of physical and biological processes. An aspect of cellular automata
that is important for modelling is that certain automata exhibit 'self-organizing
behavior'; that is, the property that dissimilar initial conditions tend to similar states
under iteration of the automaton. From the dynamical systems point of view this
suggests the presence of attracting sets with large basins. The purpose of this paper
is to investigate the collection of attractors of a cellular automaton, with the following
questions in mind:
(1) What is the hierarchy of these attractors; i.e., how are they ordered under

inclusion?
(2) What can be said about the internal structure and dynamics of the attractors

that are important in this hierarchy?
The main result of this paper provides a fairly general answer to the first of these
questions.

THEOREM. Any cellular automaton f satisfies exactly one of the following:
(1) There is a unique minimal attractor A off. In this case A is contained in every

attractor off, A is shift invariant, and the basin of A is open, dense and has full
measure.

(2) There is a unique minimal quasi-attractor Q of f which is not an attractor. In this
case Q is contained in every attractor off and is shift invariant. There are two
subcases
(a) the basin of Q has full measure
(b) the basin of any chain component off (including Q) has measure zero.

(3) f has a pair of disjoint attractors. In this case f has uncountably many minimal
quasi-attractors, and the basin of any chain component of f has measure zero.
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132 M. Hurley

COROLLARY. In Case 1 or in case 2(a), if the minimal quasi-attractor is a periodic
orbit, then it is a single point, fixed by both f and the shift.

The paper is organized as follows: the basic definitions and some background are
given in §§ 1 and 2; § 3 contains the proof of the theorem in the special case of
one-dimensional cellular automata; § 4 describes the generalization to higher-
dimensional automata; examples and an alternate characterization of the four classes
are presented in § 5; § 6 contains a proof of the corollary; and § 7 is a discussion
of the relation between the clasification afforded by the theorem and the empirical
classification of Wolfram [10,11], and the theoretical classification of Gilman [4].
This paper was largely motivated by the results of Gilman and of Wolfram.
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1. Cellular automata
Suppose S is a finite set of symbols, and let (2, <r) denote the (two-sided) shift on
S. That is, 2 is the set of all bi-infinite sequences of elements of 5, and <r:2->2 is
given by (ax)(n) = x(n + 1).

To avoid confusion we will denote a point in 2 as x; the nth entry in the bisequence
x will be denoted x(n), and a sequence of points in 2 will be denoted xn. Since 2
can be thought of as the set of maps from Z^>S, the notation x(n) is natural.

A subbasis for the topology on 2 is the collection of cylinder sets. For any
fixed s in 5 and integer n, the cylinder set C(n, s) is defined to be {x|x(n) = s}. A
metric compatible with this topology is given by d(x,y) = 2~' where
i = min {\j\: x(j)^y(j)}. With this topology 2 is compact and cr is a homeo-
morphism. If S = {s , , . . . , sm} and {p,:\-&i<m\ are strictly positive numbers
whose sum is one, then there is a Borel probability measure fi on 2 defined by
^t(Oj=] C(rij, Sj)) = Y\j=l Pj whenever the integers n , , . . . , nk are distinct. As is well
known, n is cr-invariant and the system (2, cr, /x) is strongly mixing. In particular
if U, V are subsets of 2 of positive measure, then there is an N such that <r"(U)nV
has positive measure for all n a N [2],

A one dimensional cellular automaton is a map/: 2-»2 that commutes with cr. A
characterization of these maps was discovered by Curtis et al. [5]: /commutes with
cr if and only if there is an integer k and a map /0: S2k+l -> S such that for each x
in 2 and each integer n, (f(x))(n) =fo(x(n - k),..., x(n + k)). f0 is called a block
map that generates /

Higher dimensional cellular automata are defined similarly. Let 2n denote the
set of maps from the integer lattice Z" to 5, so if x e 2n and peZ", then x(p) e S.
Let G be the group of automorphisms of 2n that is generated by shifts in the
individual coordinates. That is, ge G if and only if there is qe Z" with the property
that (gx)(p) = x(p + q) for all p e Z". In this case we will write g = gq. This gives a
natural isomorphism between G and Z". An n-dimensional cellular automaton is a
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map / : 1n -* Sn that commutes with each geG. The proof of the Curtis-Hedlund-
Lyndon theorem in [5] generalizes directly to the n -dimensional case. To make the
meaning of this precise, for each m >0 consider the finite subset [-m, m]" of Z";
call this subset I(m). Let J{m) denote the set of maps from I(m) to S. A block
map is any map from J(m) to S. The block map/0 generates a cellular automaton
/ by (/x)Q5)=/o(Tm(g_p(x))), where Tm:ln^J(m) is the truncation operator
(Tmx)(q) = x(q) for any qe I(m). The Curtis-Hedlund-Lyndon theorem says that
any cellular automaton is generated by a block map. There are G-invariant ergodic
probability measures on £„; their definition is analogous to the one-dimensional
case. All statements about measure on 1n refer to such a measure.

To keep the argument as simple as possible, we will prove the theorem first in
the one-dimensional case. The extension to higher dimensional cellular automata
is not hard, and is discussed in § 4.

2. Attractors and chain recurrence
The definition of attractor that we will use is that of C. Conley. Suppose X is a
compact metric space and/ :X-»X is continuous. A closed nonempty subset A of
X is an attractor for/ if there is an open neighbourhood U of A with/(clos (£/)) <= U
and A = r)nsOf(U). In this situation the basin of attraction of A is the open set
B(A) = U n 2o / "(^)- This *s a weak definition in that it imposes no structure on
the dynamics of/ on A; for instance the set Y = (~)nsOf"(X) is an attractor for /
(let U = X). We choose to work with this definition because of the connection
between the chain recurrent behaviour of/ and the hierarchy of the attractors of/
Before describing this connection, we obtain the following preliminary results.

LEMMA 2.1. The number of attractors of f on X is at most countable.

Proof. Let °U be a countable basis of X, and let V be all finite unions of sets in %
so V is also countable. Let si be the set of attractors of/ By compactness, for each
A&M there is a set U(A)eT with A<=. U{A) and clos (t/(A))<= B(A). This gives
an injection M -* V. •

LEMMA 2.2. Suppose A is an attractor off, that G is an open neighbourhood of A,
and that K is a compact subset ofB( A). Then there is a positive integer n withf"(K)<^ G.

Proof. By hypothesis there is an open set U with/(clos ( t / ) )^ U, U n a 0 /~" ( t / ) =
B(A), and DnS:Ofn( U) = A. By compactness of K, there is a positive integer m such
that

n=0

Similarly there is a positive integer / with

/ ' (c los(£ / ) )=n/"(cos(£ / ) )ca

Thus/m+'(K)cG. D

Results similar to the next lemma, but in more specialized settings, can be found
in [1,6,9].

https://doi.org/10.1017/S0143385700005435 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005435


134 M. Hurley

LEMMA 2.3. If G is any neighbourhood of an attractor A, then there is an open subset
V of G satisfying
(i) /(clos (V)) c V, and

/ Since A is an attractor, there is an open set U<=X satisfying (i) and (ii).
Without loss of generality we can assume G c [/, so that any neighbourhood of A
in G will satisfy (ii). To obtain (i), observe first that, because of compactness, there
is an open set W with A c l f c U and

(*) /"(clos(WO)cG for all n a 0.

Since We: U, Lemma 2.2 ensures that there is an integer TV > 1 with fN(clos (W)) c
W. Now, for 5>0 define open sets V{,..., VN+l as follows (the notation suppresses
the dependence of VJ on 5). Let V, = W, and let Vj+] be the 8-neighbourhood of
f(Vj). Note that as 5 decreases to 0, Vj+l shrinks to fJ(W). It follows from (*) that
for sufficiently small 8>Q the open set V = U,-=i Y, is contained in G. We finish
by verifying that V satisfies (i) as long as 8 is small enough:

/(clos (V)) = U/(clos (V,))«=U VJ+I^VWH^.

VN+1 shrinks t o / N ( W) as 8 decreases to 0, and TV was chosen so that

fN(clos (W)) = clos (f"(W))a We V, so that VN+1c V for all small 5 > 0.

D

Next we outline the relationship between chain recurrence and the hierarchy of
attractors. The basic results are due to C. Conley [1]; other treatments in contexts
closer to that of this paper can be found in [6,7].

An e-chain for / is a (finite or infinite) sequence of points in X, (x,), such
that d(f(Xj),xj+x)<e for all possible values of i. When the e-chain is finite, say
0< i < n (n > 0), we will say that the e-chain goes from x0 to xn. A point x is chain
recurrent if there is an e-chain from x to x for each e>0 . Let CR(f) denote the
set of chain recurrent points off. Conley's basic result is the following.

PROPOSITION 2.4. (Conley, [ l ,p. 37].) X-CR(f) = \J[B(A)-A], where the union
is taken over all of the attractors A off.

We will not present the full proof of 2.4, but the idea behind it is simple. It is
easy to check that if xe B(A) - A, then x is not in CR(f) (use 2.3). Conversely, if
x is not chain recurrent, then there is an e > 0 such that x£U where U is the set
{yeX\ there is an e-chain from w(x) to y} (co(x) denotes the omega-limit set of
x). One can show [7, Lemma 2.3] that U is open, and / ( c los (L / ) ) e U. Thus
A = C\n^of{U) is an attractor with xeB(A)-A. D

There is a natural equivalence relation on CR(f) given by x~y if and only if
for each e < 0 there are e-chains going from x to y and from y to x. The equivalence
classes are closed subsets of X called the chain components off. A chain component
C has the property that it contained in any attractor whose basin intersects C. If x
is any point of X, then its omega limit set is contained in a unique chain component
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C. Let B(C) denote the set of x such that C contains w(x), and call this set the
basin of C. The collection of basins of chain components of/ forms a partition of
X in a dynamically natural way.

The chain components that we will be most concerned with are the minimal
quasi-attractors of / A nonempty subset Q of X is a quasi-attractor of / if
Q = Dn^0An, where the An are attractors of/ Q is actually an attractor of/ only
if Q can be realized as the intersection of a finite number of attractors. Q is a
minimal quasi-attractor if no proper subset of Q is also a quasi-attractor. (If a
minimal quasi-attractor is an attractor, we will simply call it a minimal attractor.)
It is easy to see that any quasi-attractor contains a minimal quasi-attractor, and it
follows from 2.4 that any minimal quasi-attractor is a chain component.

The following simple results are listed for reference.

LEMMA. 2.5. If Q, and Q2 are disjoint quasi-attractors off, then there are disjoint
attractors off, Ax and A2, with Qt c A(, i = 1, 2.

Proof. Use the fact that any nonempty finite intersection of attractors in an attractor
to see that anytime Q is a quasi-attractor, then there is a sequence of attractors,
each containing Q, and with the sequence converging to Q in the HausdorfT topology
on closed nonempty subsets of X. •

LEMMA 2.6. (i) If C, C are chain components whose basins intersect, then C — C
(ii) If the basins of two attractors intersect, then so do the attractors.

Proof, (i) If x is in the intersection of the basins, then <o(x) <= C nC; if two chain
components intersect, they must be equal. The proof of (ii) is similar. •

LEMMA 2.7. Suppose cr: X -> X is a homeomorphism commuting with f
(i) If A is an attractor off, then so is o-(A), and B(o-(A)) = aB{A)

(ii) If C is a chain component off, then so is <r(C), and B(a(C)) = o-B(C).

The proof is trivial.

3. Proof of the theorem in the one-dimensional case
Assume that / :£-»£ is a one-dimensional cellular automaton, and a is the shift.

PROPOSITION 3.1. Suppose f has 2 disjoint attractors, A and A'. Then any attractor
off contains a pair of disjoint attractors, and consequently f has uncountably many
minimal quasi-attractors.

Proof. Let A" be any attractor of / Since basins of attractors are open and cr is
mixing, there is an n such that the sets B(cr"(A))n B(A") and B(<r"(A'))nB(A")
are nonempty. Thus by 2.6 cr"{A) n A" and o-"(A') n A" are attractors contained in
A". They are disjoint since <x is a homeomorphism. Proceeding inductively, one sees
that for any sequence of O's and l's there is a nested sequence of attractors, and
the intersection of the attractors in one sequence is disjoint from the corresponding
intersection for a different sequence of O's and l's. Each one of these intersections
of attractors is a quasi-attractor, and therefore contains a minimal quasi-attractor.
Thus there are as many minimal quasi-attractors as there are sequences of O's
and l's. •
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LEMMA 3.2. If C is a chain component off, then either o-"(C)nC = 0 for all n #0,
or else there is an n > 0 with cr"(C) = C.

Proof. Chain components are either equal to disjoint. •

PROPOSITION 3.3. Suppose C is a chain component off and fi{B(C))>0. Then C is
a minimal quasi-attractor. Moreover, /tt(B(C))= 1, every attractor of f contains C,
and C is fixed by a.

Proof, ft is cr-invariant so by 3.2 there must be a least positive integer k with
o-k(C) = C. We claim that k = 1. To see this note that since cr is mixing, it follows
that ak"(B(C)) and B(er(C)) intersect for all sufficiently large n. By 2.6 and the
fact that C is fixed by o-k, it follows that C = cr(C). Now B(C) is cr-invariant and
has nonzero measure, so by ergodicity ft(B(C)) = 1. If A were an attractor of/ that
does not contain C, then B(A) would be in the complement of B{C); since B{A)
is open, this is impossible. Thus C lies in the intersection of all the attractors off.
This intersection is clearly a minimal quasi-attractor and therefore is a chain
component. It follows that C is equal to this minimal quasi-attractor. •

Now we can establish the one-dimensional version of the theorem. 3.1 and 3.3
show that if / has a pair of disjoint attractors, then Case 3 of the theorem holds.
Hence we can assume that all of the attractors of/ intersect, and so by 2.5 there is
a unique minimal quasi-attractor Q. Because of this uniqueness, Q is cr-invariant.
If Q is actually an attractor, then its basin has positive measure, and 3.3 implies
case 1 of the theorem. If Q is not an attractor, then 3.3 implies case 2.

4. Proof of the theorem in the general case
In order for the proof given in the previous section to carry over the n-dimensional
case, all that is needed is a verification that the shifts on 1n are mixing. Let o-,: 1n -* 1n

denote the shift in the first coordinate; that is {o~1(x))(p1,p2, •• • ,Pn) =

PROPOSITION 4.1. Suppose V, W are subsets of Sn of positive measure. Then is an
integer M with the property that if m>M, then /i-(crj"( V) n W) > 0.

Proof. Let e = /x( V) • /J,(W)/3. Since /x is a regular measure, there are open and
closed sets V, W with Vc V, Wa W, /A( V- V) < e, and n( W- W) < e. Since open
and closed sets in £„ are defined by restricting the values of x(p) for some finite
set of lattice points p e Z", there is an M such that m > M implies that

H(o-T(V)n W) = fi(o-T(V))-v(W) = n(V)n(W)>n(V)ti(W) = 3e.

But

?(V- V)n W)

Thus n(o-T( V) n W) > e > 0. •
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5. Examples and characterization
In this section we give examples to show that Cases 1, 2(a), and 3 of the theorem
are realized. We do not know of any examples of case 2(b). It is easy to find examples
of Cases 1 and 3. For instance, the zero map (fx)(j) = 0 for all x and all j is in case
1, and the identity map is in Case 3 (since X is a Cantor set, the chain components
of the identity map are just the individual points of 1). Next we give an example
of Case2(a).

Consider the cellular automaton / generated by the block map

000^0 001^0 010^0 011 ^ 1
100^0 101^0 110H»0 111 -»1.

For each k with oo> k > -oo, let xk be defined by xk(n) = 1 if and only if n > k.
Note that each xk is fixed by / and that the sequence xk converges to z, where z
denotes the bisequence consisting entirely of zeroes. Also for y e £ we have
5.1. if y(n) = 0 for arbitrary large values of n, then z is the omega limit set of y.
5.2. if y(k) = 0 and y(n) = 1 for all n> k, then xk is the omega limit set of y.

It follows that the chain components of/ are its individual fixed points. It is clear
from 5.1 that /A(2?(Z)) = 1. Since any neighborhood of z contains points whose
omega limit sets are not equal to {z}, {z} is not an attractor. This rules out Cases
1, 2(b), and 3 of the theorem.

It is obvious that if/ has only finitely many attractors, then / is an example of
Case 1. Additionally, Case 1 can occur when/has an infinite number of attractors.
For example, consider the one-dimensional automaton with symbols {0,1,2} that
is generated by the following block map /0. Define fo(a, b, c) = b if none of a, b, c
is equal to 2, and fo(a, b, c)-2 otherwise. Let B = {xe2|x(n)e{0,1} for all «};
note that each x e B is a chain component of/ The proof of 2.4 shows that if C, C"
are distinct chain components, then there is an attractor A that contains C and is
disjoint from C". It follows that for/to have an infinite number of chain components
it must have infinitely many attractors, and so / is not an example of Case 1 of the
theorem. On the other hand it is clear that the fixed point x defined by x(n) = 2 for
all n is a minimal attractor whose basin has full measure.

As with any clasification theorem, there is the practical problem of determining
the classification of specific examples. The following observations provide some
information concerning this problem.

LEMMA 5.3. If A is an attractor of f, then there is an open and closed set C with
A^C^B(A) andf(C)^ C.

Proof. The collection of open and closed sets of 2n form a basis for its topology.
Since A is compact and B(A) is open there is an open and closed set K with
AcK^B(A). Using 2.2, there is an m>0 with fm(K)c K. Let C = \J™~* fJ{K).

D

Let c€ = {Cd.n\C is nonempty, open, closed, and f(C)<=C}. If Ce% then
is an attractor Ac whose basin is U n & 0 /
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LEMMA 5.4. f satisfies Case 3 of the theorem if and only if there is a C e % and \
witho-"(C)nC = 0.

Proof. The existence of such a C obviously implies Case 3. Conversely, let A', A"
be disjoint attractors of/ Let C , C" be open and closed sets with A'<=-C'c. B(A'),
A"cC"cB(A"). Choose n such that cr~n(C')n C"#0. Let C = o-'"{C')nC". D

PROPOSITION 5.5. Assume that a"(C)nC ^ 0 for all C e ^ and neZ.
(a) f is an example of Case 2(b) of the theorem if and only if there is a C e <£ with

H(B(AC))<1.
(b) Assume in addition that /x(B(Ac)) = 1 for all C e <€. Consider the condition (*):

(*) There i s a C e « such that if C'e % then there is an « > 0 with / " ( C ) c C ' ,
With these hypotheses, / satisfies Case 1 of the theorem if and only if (*) holds,
and / satisfies Case 2(a) if and only if (*) fails.

Proof, (a) Cases 1 and 2(a) of the theorem require every attractor to have a basin
of full measure. Conversely, if Q is a minimal quasi-attractor whose basin has
measure 0, then there is a nested sequence of attractors, An+1 c An, with Q = (~] An.
Then B(Q) = (~]B(An), so if n(B(Q)) has measure 0, then fi(B(An))<l for
sufficiently large n, and the result follows from 5.3.

(b) If Case 1 of the theorem holds let A be the minimal attractor. Note that every
C e<€ contains A. Choose C e ^ such that C e B( A). Since any C" e <€ is a neighbour-
hood of A, 2.2 implies that (*) holds. If case 2(a) of the theorem holds, let Q be
the minimal quasi-attractor. For any C e % Q g Ac and we can find an attractor A'
with Qcz A% Ac. Use 5.3 to find C'e <£ with A'<= C ' e B(A'). If /"(C) <= C for any
n, then

which is absurd, so (*) must fail. •

Of course the implementation of 5.4 and 5.5 can be quite difficult. It is no small
problem to determine c€. However, there has been some effort directed towards
describing open and closed invariant sets of one dimensional automata [8].

6. Periodic attractors
In this section we will establish the following.

PROPOSITION 6.1. Suppose Q is minimal quasi-attractor off with fi(B(Q)) = 1. Then
Q is a minimal quasi-attractor of f" for each n > 1.

COROLLARY. / / in the proposition, Q is a periodic orbit off, then Q must be a single
fixed point, p, with a(p) = p (that is, p:Z" -> S is a constant map).

The corollary follows directly from the proposition, for if the periodic orbit had
jj period k, then it would consist of k chain components for /*. Thus Q is a single
jj point, which is fixed by <x because Q is. We use the following lemma in the proof

of 6.1.
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LEMMA 6.2. If C is a chain component of f and n > 1, then C consists of the disjoint
union of at most n chain components off".

Proof. Let n > 1 and e > 0 be given. By the uniform continuity of f there is a 8 > 0
such that if (x,) is a 5-chain for/, then (xni) is an e-chain for/". Pick some point
qeC. We claim that the union of the chain components of/" containing fJ(q),
0<j<n, contains C. To see this, let y be a point of C, so that there are finite
5-chains for / from y to q and from f~xq to y. Consequently there is a periodic
5-chain for / (x,), say of period m, with xo = xm= y and xk+j=fj(q) for some /c
satisfying0< fc< /n — « +1 and ally withOsys n — 1. Now (x,n) is aperiodic e-chain
for / " containing y and one of the points f'{q), 0<j < n. Since e > 0 was arbitrary
and the set {fJ{q)\0sj< n} is finite, the claim follows. It is easy to see that any
chain component of/" lies inside a single chain component of/ so the proof of
the lemma is complete. •

Proof of 6.1. Suppose Q is the disjoint union of C , , . . . , Ck where each C, is a chain
component of/". The sets C, are closed, pairwise disjoint, and invariant under/",
so there are pairwise disjoint closed neighbourhoods Uj of C, satisfying:
(a) /"(Uj) nUi*0 if and only if i =j.
Define U = UJ = i Uj, a nd let A be an attractor of/ with Q c A <= U (as in the proof
of Lemma 2.5) Use Lemma 2.3 to obtain an open neighbourhood V of A with
Vc U and
(b) /(clos(V))c V.
Set Vj=VnUj. It follows from (a), (b) that /"(clos (Vj))cz Vj. Define A, =
nm a 0 / ' ""( V/)> s o ^ *s a n attractor for/". Let w(x,/") denote the omega-limit set
of x under/". If fc> 1, then the attractors A,, A2 off are disjoint, and the theorem
applied to / " implies that the basin of each of its chain components has measure
0. In particular, each of the sets Wj = {x|w(x,/")c: CJ, 1 =£./=£ k, has measure 0 and
consequently VV = U, Wj also has measure 0. Since an omega-limit set is
contained in a single chain component, we see that W = {x\a)(x,f)<= Q}. But
w(x,/")<= w(x,/), so this last equality implies that W contains {x| w(x,/)c Q).
This last set is B(Q), which is assumed to have measure 1. Thus W cannot have
measure 0, and so k = 1.

7. Relation to other classifications
There are at least two classification schemes for cellular automata other than
the one presented in this paper. R. H. Gilman in [4] shows that for a one-dimen-
sional cellular automata / either there is a closed, /-invariant set V c S of
almost full measure on which the iterates of / act equicontinuously, or else /
resembles an expansive map in that there is an e > 0 such for any x € S, the set
{yel\d(f(x), f(y))<e for all n=0 , l , . . . } has measure 0. Gilman's results
provided one of the main motivations for the current investigation. The problem of
relating Gilman's classification to the classification given by the theorem is open.
A conjecture that seems plausible is that Gilman's equicontinuous case occurs if
and only if / has an attractor A, not necessarily minimal, whose basin has full
measure, and on which / is an almost periodic map.
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Another classification scheme, based on extensive numerical experimentation,
has been presented by S. Wolfram. The classification is based on qualitative charac-
terization of long-term iterative behaviour of random initial conditions [10,11]
(1) tends to a constant map x:Z" -* S.
(2) localized periodic structures appear and persist.
(3) chaotic behavior.
(4) complicated localized structures, sometimes long-lived.
A possible description of the relation of Wolfram's classes to the theorem is as
follows.
Class 1: attracting fixed point.
Class 2: Case 2 of the theorem; the persistence of localized periodic structures

suggests the existence of disjoint, invariant, open and closed sets.
Class 3: Cases 1 or 2(a) of the theorem, where the dynamics of/ on the minimal

quasi-attractor are chaotic.
Class 4: Case 2 of the theorem, where the minimal quasi-attractor is a fixed point.

The typical existence of long-lived localized structures might be explained
in terms of/-invariant sets that are close to the minimal quasi-attractor.
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